EchoSense: An Attempt at Reinforcement Learning Approach to
Personalized Information Prioritization for Visually Impaired Users

Nahom Tamene

December 16, 2025

Abstract

This document reveals EchoSense, a system reliant on Al, which helps in the processing of huge volumes of
data in camera-based applications for blind users. The system uses a Deep Q-Network (DQN) reinforcement
learning agent that learns how to prioritize information according to each user’s feedback. What is more,
EchoSense does not only take the feedback given by the user but also the feedback from the user’s behavior
and combines these. The system employs the combination of three pre-trained computer vision models
(YOLOVS8, CLIP, EasyOCR) as feature extractors and adds a trainable decision layer which tries to figure out
the best possible prioritization policies. The project has opened new avenues in learning about reinforcement
for human-in-the-loop systems, designing state representation, and the issues that arise in applying ML
systems in real-time applications.

1 Introduction

1.1 Problem Statement

People with visual impairment have a hard time understanding and moving around in the world. Although
camera-based devices have come up as new solutions to this problem, they all have a common drawback:
people get overwhelmed with too much information. Usually, these gadgets give detailed descriptions of
everything around the user like objects, text, and people, making it very hard for the user to get a clear
insight due to the large amount of irrelevant information.

Users of old-style systems were provided with even the most minute details about the detected elements,
thus being bombarded with irrelevant information. For instance, an application could say: "I see a person,
a chair, a table, a laptop, a sign that says "Exit’...” where the important exit sign is completely missed and
is now among the non-important facts.

1.2 Motivation

The primary difficulty is not the precision of detection but rather the smart information prioritization.
Users are different in terms of what they need: a user focused on navigation will give priority to signs and
landmarks, whereas a user who is mainly concerned with social interaction will give priority to people and
conversations. Furthermore, variables like time of day, type of location, and current goals are very important
in determining what information is relevant.

This is the problem that this project intends to solve through the innovation of EchoSense, a system that
uses reinforcement learning to master the art of the personalized information delivery. The system learns
from both explicit feedback (user ratings) and implicit signals (response times, patterns of interaction) to
adapt to individual user preferences, which results in a personalized experience that lessens cognitive load
but at the same time ensures that safety-critical information is available.



1.3 Contributions
The primary contributions of this work are:

e A novel application of reinforcement learning to assistive technology, demonstrating how RL can learn
personalized information prioritization policies

A comprehensive state representation that combines visual features, contextual information, and user
history

e A multi-component reward function that balances explicit feedback, response time, contextual rele-
vance, and information diversity

An end-to-end system implementation integrating perception models, RL agent, and real-time audio
feedback

Empirical evaluation comparing RL-based prioritization against rule-based baselines

2 Background and Related Work

Assistive technologies that rely on cameras such as Seeing Al [1], Envision Al [2], and Be My Eyes [3] use
computer vision to analyze surroundings and thus require users to accept their fixed prioritization rules.
However, reinforcement learning techniques, especially Deep Q-Networks (DQN) [4], are now viewed as
promising solutions for human-in-the-loop systems since they can learn from sparse feedback. Among the
key innovations of DQN are experience replay [5] and target networks [4] which provide stable training. In
this project, we will employ frozen pre-trained models as feature extractors while at the same time learning
the decision policy, thus following a hybrid approach which is common in vision-based RL [6,7].

3 System Design and Methodology

3.1 Architecture Overview

EchoSense employs a three-layer architecture:

Perception Layer (Frozen): The computer vision models that are pre-trained and already trained at the
top of the pipeline to the data such as YOLOvS8 [8] for object detection, CLIP [9] for scene embeddings,
and EasyOCR [10] for text recognition provide the features of the camera frames as the frozen models that
facilitate training by unfreezing them to be the very ones models in the stage of feature extraction.

Decision Layer (Trainable): A DQN agent gradually learns to instruct the information that the state
representations encoded perceive as the most important to be presented to the user. The agent selects the
items that have been detected for the user and learns the suitable policies through the interaction.

Interface Layer: A GUI crafted in PyQt6 that shows the incoming video feed from the camera and receives

user input is accompanied by an audio output produced by a text-to-speech system.

3.2 State Space Design

The state representation combines three components:

Visual Features (526 dimensions): The feature set consists of object detection (class embeddings, nor-
malized bounding boxes, and confidence scores), 512-dimensional CLIP scene embedding, and text attributes
(presence, count, and confidence).

Context Features (10 dimensions): The context features include time of the day (sin/cos), day of the
week (one-hot encoding), session length, and the last action performed.



User History Features (64 dimensions): User history features comprise the last 10 feedback scores,
learned preference vector (size 10), average satisfaction, and frequency of interaction.
The overall state dimension is 600 after the normalization procedure for the purpose of numerical stability.

3.3 Action Space

The action space is discrete and consists of 50 actions each of which indicates a distinct method of information
item prioritization. Actions are assigned to the various combinations of objects that have been detected,
regions of text, and descriptions of the scene. Action masking is used to limit the selection of actions to only
those that are valid according to currently available detections.

3.4 Reward Function
The reward function combines multiple signals:
R = a - regplicit + B * Ttime 7 - Tcontext + 0 * Tdiversity (1)
where:
e o = 0.5: Explicit user feedback (+1 for helpful, —1 for not helpful)
e 5 =0.2: Response time reward, encouraging quick user acknowledgment
e 7 = 0.2: Contextual relevance, rewarding contextually appropriate information
e § = 0.1: Information diversity, preventing repetitive announcements
Contextual relevance considers scene type, time of day, and item importance (e.g., navigation signs

prioritized in navigation contexts, people/vehicles during daytime).

3.5 Training Strategy
The DQN agent uses:

e Experience Replay: Buffer size of 10,000 transitions, batch size of 32

Target Network: Updated every 10 steps to stabilize Q-value estimates

Epsilon-Greedy Exploration: Starts at ¢ = 1.0, decays to 0.1 over 10,000 steps

Network Architecture: Fully connected layers [256, 256, 128] with ReLU activations

Optimization: Adam optimizer with learning rate 0.001, gradient clipping at 1.0

4 Implementation Details

The system was constructed primarily with Python 3.9 or later as the main programming language and
PyTorch [11] for neural networks, YOLOvVS (8] for object detection, Transformers [12] for CLIP, EasyOCR [10]
for text recognition, Gymnasium [13] for RL environments, PyQt6 |14] for GUI, and OpenCV [15] for image
processing as the main application programming interface (API) and libraries.

Perception Manager: Controls the various perception models and features vector extraction while also
handling the errors.

State Encoder: Produces 600-dimensional normalized state vectors from the outputs of perception, the
context, and user history.

DQN Agent: Combines neural networks, experience replay, epsilon-greedy policy, and training with check-
pointing.



Feedback Handler: Takes feedback, calculates rewards, and records user preference history.

Baseline System: Comparison through rule-based prioritization (text > people > vehicles > other).
The system has a frame processing rate of 2 FPS along with rate limiting and audio deduplication to
avoid overload and repetitive announcements.

5 Project Outcomes and Current Limitations

The project, though it achieved the integration of reinforcement learning and computer vision in assistive
technology, did not produce the results that were anticipated. The performance of the RL agent which was
based on improvements over the baseline systems in the place of virtual evaluations, has not reached the
level of efficiency that was hoped for. Learning and prioritization were inconsistent for the agent especially
in situations where there was little user feedback and the context was complex.

On the other hand, the system’s perception layer functions efficiently. The object detection facilities that
are supported by YOLOvVS, keep on identifying and localizing objects with a high level of accuracy. The
system is capable of detecting a large number of different objects such as humans, cars, signs and various
other items that people use daily. Likewise, the text recognition part (EasyOCR) accurately retrieves text
from the images, and the scene comprehension based on CLIP gives valuable contextual embeddings. This
is an indication that although the decision-making layer needs more polishing, the perception infrastructure
that supports it is already robust and has the capability of being instrumental in the improvement of the
future.

The discrepancy between the achievement of the perception layer and the RL agent’s limitations at
present has revealed the most important lesson that using pre-trained models as feature extractors is simple
but deriving good policies from restricted and noisy feedback is still a big issue. This case has given deep
understanding of the practical obstacles that come with the use of reinforcement learning in real life, where
the theoretical advantages of adaptive learning must fight against the challenges of sparse data, limited
computational resources, and high demand for reliable performance.

6 Reflection and Learning

6.1 Key Challenges Encountered

State Representation: One of the most difficult problems to solve in this project was to come up with
a good state representation. The first idea of using raw pixels was ruled out due to dimensionality and
therefore the second idea of using pre-trained models as feature extractors came in; the agent could then
concentrate on decision policies.

Reward Function: The exclusive use of explicit feedback resulted in sparse rewards and learning speed
reductions. The acceptance of implicit signals (response time, contextual relevance) demanded precise bal-
ancing. The ultimate multi-component function was found through repetitive testing.

Real-Time Performance: The combination of RL inference into the system put a demand on optimization.
Among the solutions were limiting the rate (2 FPS), processing asynchronously, and caching. This indicated
the significance of profiling in machine learning systems that are close to production.

Exploration vs Exploitation: It is quite difficult to manage the exploration factor in systems over human-
in-the-loop. Epsilon-greedy with gradual decay ensured a good balance, however, adaptive strategies could
be more effective.



6.2 Design Decisions and Trade-offs

Frozen vs Fine-tuned Models: I preferred to freeze the perception models instead of fine-tuning, thus
trading off possible incremental advantages for quicker research and development. The models come with a
lot of features already, and the main obstacle is setting the right order of priority.

Discrete vs Continuous Actions: I opted for discrete actions (50) for the reasons of keeping the system
simple and stable. Continuous actions bring the benefit of finer control but discrete actions make Q-learning
easier and fit the discrete nature of item selection.

State Dimension: Through a series of empirical tests, the 600-dimensional state was established as the
right point between information richness and efficiency.

6.3 Mistakes and Lessons Learned

Error Handling: The first releases of the system crashed whenever models could not be loaded. This
incident emphasized the need for the application of thorough error handling and also the permitting of
systems to degrade.

State Normalization: The concatenation of raw features without normalization in the beginning led to
the training process being unstable as the scales were different. Normalization has been confirmed to be
indispensable for the training process to be stable.

Reward Function Complexity: An initially over-engineered reward function having a lot of components
made the debugging process very difficult.

6.4 Learning Outcomes

This project has grown one’s knowledge about: (1) Reinforcement Learning: DQN hands-on training,
experience replay, target networks, and theoretical foundations (Bellman equations, Q-learning); (2) State
Representation: Feature engineering in RL and iterative refinement are of critical importance; (3) System
Integration:

Key resources included PyTorch [11] and Gymnasium [13] documentation, the DQN paper [4], YOLOvS8
[8] and CLIP [9] repositories, and PyQt6 tutorials.

7 Conclusion

EchoSense proves a potential use case wherein reinforcement learning is applied to personalize information
delivery in assistive technologies. Even though the system’s performance during simulation evaluations is
better than that of the rule-based systems, the RL agent’s effectiveness has not yet reached the original
target. The agent encounters problems with slow learning, unpredictable prioritization, and non-negligible
real-world factors like sparse feedback and context complexity.

On the other hand, the project is able to show the successful operation of the perception layer. The
YOLOvS8-powered object detection capabilities never fail to spot and locate objects with good accuracy,
capturing a great variety of items from humans to cars, signs, and a lot of other objects used in daily life.
The same goes for the text recognition module (EasyOCR), which consistently extracts text from pictures
and, at the same time, the CLIP-based scene understanding offers expressive contextual embeddings. This
shows that while the decision-making layer still needs some polishing, the perception part is already strong
enough and reliable to support further enhancement in the future.

This project provided invaluable experience in reinforcement learning, system integration, and the prac-
tical challenges of deploying ML systems. The challenges encountered—from state representation design



to real-time performance, and particularly the gap between theoretical promise and practical implementa-
tion—offered deep learning opportunities that extend beyond the specific application domain. The experi-
ence of integrating pre-trained models as feature extractors proved straightforward, while learning effective
policies from limited and noisy feedback remains a significant challenge that requires further investigation.

Future work should focus on: (1) conducting real user studies with visually impaired participants to
validate the approach with authentic feedback, (2) exploring more sophisticated state representations and
reward functions to improve RL agent learning, (3) implementing online learning for continuous adaptation,
and (4) refining the RL training process to achieve more reliable and consistent performance. Additionally,
the robust perception layer could be leveraged independently or integrated with alternative decision-making
approaches while RL techniques are further developed.



Acknowledgments

I would like to acknowledge the open-source communities that developed the tools and libraries used in this
project, particularly the PyTorch, Ultralytics, and Hugging Face teams for their excellent frameworks and
documentation.

References

[10]
[11]

[12]

Microsoft Seeing Al. Seeing Al - Talking Camera for the Blind. https://www.microsoft.com/en-us/
ai/seeing-ai

Envision Al. Envision Al - Visual Assistant. https://www.letsenvision.com/
Be My Eyes. Be My Eyes - See the world together. https://www.bemyeyes . com/

Mnih, V., et al. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540),
529-533.

Lin, L. J. (1992). Self-improving reactive agents based on reinforcement learning, planning and teaching.
Machine learning, 8(3-4), 293-321.

Zhuang, F., et al. (2020). A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1),
43-76.

Ngiam, J., et al. (2011). Multimodal deep learning. Proceedings of the 28th international conference on
machine learning.

Ultralytics. (2023). YOLOv8 Documentation. https://docs.ultralytics.com/

Radford, A., et al. (2021). Learning transferable visual models from natural language supervision.
International Conference on Machine Learning.

Jaided Al (2020). EasyOCR. https://github.com/JaidedAI/Easy0CR

Paszke, A., et al. (2019). PyTorch: An imperative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32.

Wolf, T., et al. (2020). Transformers: State-of-the-art natural language processing. Proceedings of the
2020 conference on empirical methods in natural language processing: system demonstrations.

Towers, M., et al. (2023). Gymnasium. https://gymnasium.farama.org/

The Qt Company. (2023). PyQt6 Documentation. https://www.riverbankcomputing.com/static/
Docs/PyQt6/

Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools.


https://www.microsoft.com/en-us/ai/seeing-ai
https://www.microsoft.com/en-us/ai/seeing-ai
https://www.letsenvision.com/
https://www.bemyeyes.com/
https://docs.ultralytics.com/
https://github.com/JaidedAI/EasyOCR
https://gymnasium.farama.org/
https://www.riverbankcomputing.com/static/Docs/PyQt6/
https://www.riverbankcomputing.com/static/Docs/PyQt6/

	Introduction
	Problem Statement
	Motivation
	Contributions

	Background and Related Work
	System Design and Methodology
	Architecture Overview
	State Space Design
	Action Space
	Reward Function
	Training Strategy

	Implementation Details
	Project Outcomes and Current Limitations
	Reflection and Learning
	Key Challenges Encountered
	Design Decisions and Trade-offs
	Mistakes and Lessons Learned
	Learning Outcomes

	Conclusion

