EduCode: An Authenticity-Ensuring Algorithm for
Al-Mediated Education

Lei Shi
Collaborator: Tangrui Li

Course: CIS 5603 — Artificial Intelligence

1. Introduction

The recent rise of large language models (LLMs) such as ChatGPT has fundamentally
transformed the educational landscape. These tools can assist students in drafting essays, solving
problems, and refining their language, creating new opportunities for personalized support and
creative expression. However, they also raise critical concerns about academic authenticity,
authorship attribution, and the integrity of student learning. School districts and universities have
responded with mixed strategies: ranging from outright bans to ad hoc Al-detection tools, yet
none of these approaches has proven fully effective or sustainable.

Al-detection systems, for instance, suffer from well-documented limitations. They are often
unreliable and susceptible to adversarial evasion, and recent studies have shown they
disproportionately flag non-native English writers, leading to potential discrimination.
Meanwhile, completely prohibiting Al use risks depriving students of valuable learning aids.
Research increasingly supports the view that, when used responsibly, Al tools can enhance
student engagement, metacognition, and self-explanation. As such, educators now face a
dilemma: how to preserve trust and fairness in academic work without discarding the benefits of
LLM-assisted learning.

To address this challenge, we propose EduCode, a protocol-based system designed to embed
authorship transparency directly into the student workflow. Rather than attempting to identify
Al-written text after the fact, EduCode constrains the copy, paste, and typing operations within
the learning platform itself, ensuring that any Al-assisted content is transparently sourced and
contextually traceable. At its core, EduCode reframes the problem of Al misuse not as one of
text classification but of interaction design — by shaping the way content moves through the
platform, it creates a space where LLMs can be used ethically, with oversight, and without
undermining academic trust.

The idea builds on earlier conceptual work in the Cognitive Authorship Protocol (CAP), which
aimed to verify student understanding by prompting short, reflective responses after submission.
CAP remains the philosophical foundation of EduCode, emphasizing the need to validate the
learning process rather than simply evaluate the final product. However, technical limitations,
including the complexity of real-time NLP feedback and instructional UI integration, made CAP
difficult to implement at scale. This led to the design of EduCode as a lighter-weight, platform-

centered system that achieves similar goals through structural enforcement and traceable
authorship data.

This report outlines the motivation, system architecture, implementation details, and
experimental results of the EduCode prototype. We also compare our approach to related work in
authorship attribution, Al-detection, and trustworthy learning environments.

2. Related Work

2.1 AI-Generated Text Detection Tools and Limitations

A surge of tools for detecting Al-generated student writing (e.g., GPTZero, Turnitin’s Al
detector) has emerged to uphold academic integrity. However, studies have found that these
detectors often exhibit poor reliability and biases. For example, Weber-Wulff et al. tested 12
public and commercial detectors (including Turnitin) and found a tendency to misclassify Al
outputs as human-written, with overall low accuracy[1]. Similarly, Elkhatat et al. reported high
false-negative and false-positive rates across detection tools[2]. Moreover, adaptive strategies
can easily evade such detectors: Lu ef al. demonstrate that by paraphrasing through semantic
substitutions, LLM-generated text can slip past multiple detectors[3]. These findings underscore
the limitations of purely post hoc text analysis for AI misuse detection. In practice, relying solely
on final-document classifiers is problematic, motivating exploration of alternative approaches
beyond traditional detection algorithms.

2.2 Process-Based Authorship Verification

Rather than analyzing the submitted artifact alone, recent work has proposed verifying
authorship by capturing the writing process itself. Kundu et al. introduce a keystroke dynamics
method to distinguish genuine student writing from Al-assisted writing by analyzing how a text
was typed[4]. By training on typing pattern data (e.g., timing, pauses), their system detected Al
assistance with promising accuracy, highlighting distinctive process signatures of Al-generated
content. Aburass and Abu Rumman take a complementary approach with the “Writer’s Integrity”
framework, which logs granular writing-process metrics (typing speed, edits, copy-paste ratio)
and produces a certificate of authenticity attesting that a document was human-authored[5]. This
provenance-based approach emphasizes transparency and trust: instructors or reviewers can
inspect the step-by-step evolution of a document as evidence of original student work. Such
process-focused frameworks align closely with the goals of EduCode, which verifies authorship
via recorded writing sessions rather than post-submission detection. They offer a preventive
deterrent to misconduct by making the creation process traceable.

2.3 Transparent and Guided Use of LLMs in Education

Beyond detection and verification, researchers have called for pedagogical strategies to integrate
Al writing tools ethically and transparently. Hoque et al. present HaLLMark, an interactive
provenance system that logs a writer’s interactions with an LLM and visualizes this history for
readers[6]. By clearly disclosing where and how Al assistance was used, the tool helped writers
maintain a sense of agency over their work while assuring audiences of human oversight. Such
transparency-oriented systems support informed use of Al rather than outright prohibition. In a
broader context, Park and Ahn argue that maintaining academic integrity in the age of ChatGPT
requires a holistic socio-technical approach encompassing human factors and institutional policy,
not just technical detection[7]. They and others advocate for guided use policies—educating
students on acceptable Al assistance, requiring process documentation, and fostering a culture of
integrity alongside Al tools. In contrast to reactive Al-output detectors, these approaches (and
the EduCode system) aim to design integrity into the writing process, combining technological
support with clear pedagogical guidelines for responsible Al use.

3. Learning Process and Pivot

The original goal of this project was to implement the Cognitive Authorship Protocol (CAP), a
conceptual framework that verifies student understanding by generating personalized reflection
prompts after submission. CAP directly targets the cognitive authenticity of student work,
making it a strong philosophical fit for educational integrity in the age of LLMs. However, as we
began implementation planning, we encountered significant technical challenges: CAP required
NLP-based prompt generation, real-time semantic comparison between reflections and
submissions, and integration with dynamic instructional interfaces — all of which exceeded the
feasible scope of a semester-long project. This led us to pivot toward EduCode, a system-level
protocol that enforces process authenticity through structural constraints and traceable content
history. While CAP remains our conceptual foundation, EduCode provides a more
implementable framework that still preserves the core value of transparent, Al-assisted learning.
This pivot taught us the importance of aligning project ambitions with realistic engineering
constraints, and how theoretical goals can inform practical system design.

4. Method

EduCode is designed with the philosophy that, given the ubiquity of Al tools, the most practical
way to preserve academic integrity is to increase the effort required for unsanctioned Al usage
while seamlessly supporting sanctioned, transparent usage. In other words, the system creates an
environment that deters students from using external LLMs inappropriately by making such
behavior inconvenient or ineffective, while encouraging them to use LLMs in approved ways
within the platform. EduCode’s implementation focuses on regulating three core user behaviors
on an educational portal: (1) typing, (2) copying, and (3) pasting. By controlling these

operations, any content that a student attempts to move in or out of the platform can be tracked
and managed.

Figure 1 gives an overview of the EduCode architecture and its major components. EduCode
defines three types of endpoints to mediate interactions (explained in Section 3.2). It also
introduces a specialized encoding for copy-paste operations (Section 3.1) and maintains a
structured history graph of all content modifications (Section 3.3). Together, these mechanisms
ensure that students’ use of LLMs is conducted in a controlled, teacher-auditable manner,
without overly hindering legitimate learning activities.

4.1 Specialized Unicode

One core idea in EduCode is to prevent students from simply copying text from the platform and
pasting it into an external LLM (or vice versa) to get unsupervised answers. We achieve this by
altering the way text is encoded at the user interface level. By default, almost all input methods
and text areas use standard Unicode characters. EduCode, however, intentionally scrambles
copied text into a human-readable form that is only meaningful within the educational platform.

Concretely, when an instructor enables EduCode for an assignment, the system generates a
mapping from normal Unicode code points to a set of Unicode Private Use Area (PUA) code
points. This mapping acts as a simple substitution cipher for text. Only the educational platform
knows the mapping (via a secret key or seed), so any text copied out will appear garbled in other
applications. Conversely, pasted text that doesn’t conform to a valid mapping will not be
accepted.

The mapping is generated per assignment (using a secret key plus an assignment-specific nonce
to seed a pseudo-random generator). We use an HMAC-SHA256 construction with the
instructor’s secret key and a nonce to produce a pseudo-random bit stream. This stream is used to
shuffle a subset of Unicode characters via a Fisher—Yates shuffle, assigning each character a new
code point in the PUA range. For example, if the chosen PUA block starts at 0xXE00O and the
character 'A' is assigned an offset of 4, then 'A' would be represented by the code point 0OxE004
in the EduCode interface. This procedure produces a deterministic encoding mapping for the
allowed characters. It needs to be run only once when the instructor issues the assignment and is
computationally inexpensive.

All copy operations in the platform are then overwritten to use this mapping. Whenever a
student copies text, instead of placing the plain text on the clipboard, the frontend produces a
formatted, encrypted payload string. This payload encapsulates not only the encoded content,
but also metadata about its origin (as discussed below in the Copy/Paste protocol). If a student
tries to copy text by any other means (for instance, through developer tools or unapproved
methods), the system will instead yield an unreadable bit stream. In effect, EduCode’s
specialized Unicode scheme ensures that text leaving the platform cannot directly be fed into an
external Al, and text coming from outside won’t be understood unless properly encoded.

head formatted structure tail bit stream
| 3 P4
formatted payload non-formatted payload
AN ~
Copy

Figure 1: EduCode copy/paste encoding mechanism

As shown in Figure 1, all text copied within the EduCode platform is converted into a structured,
encrypted payload (with header, body, etc.). The diagram illustrates how a copy operation takes
user content (e.g., a draft answer) and produces a formatted payload. The “Head” and “Tail”
segments carry metadata and checksums, while the “Body” carries the content (in specialized
Unicode encoding). If a user attempts to copy via any non-approved method, the clipboard will
receive only meaningless data. Conversely, when pasting, the system expects a well-formed
payload and will reject or flag any text that does not conform.

It is important to note that EduCode’s encoding is a frontend-enforced constraint. The platform
itself (backend) does not need to decode the PUA characters back to standard Unicode — it can
simply store and handle the content in the encoded form. Only when displaying to the user (or
exporting under instructor permission) is the text rendered back in a normal readable form. This
design minimizes any performance impact on the LLM service providers, as they are not
required to support or handle the encoding. EduCode focuses on the education side, imposing
minimal constraints on the LLM provider. From the LLM’s perspective, queries coming from
EduCode might be slightly obfuscated text, but in permitted scenarios the platform could decode
queries before sending them to the LLM API.

4.2 Endpoints and Architecture

EduCode’s controlled environment is organized around three types of endpoints: (1) the
Education endpoint (EDU), (2) the Draft endpoint (DRAFT), and (3) the LLM endpoint. These
roughly correspond to the roles of content provider (instructor/platform), student workspace, and
Al assistant respectively. Each endpoint has a distinct purpose and a unique encryption key.
Figure 2 illustrates the overall architecture and interactions between these endpoints.

Submit Operations and Supported Endpoints (in color)
Copy
Paste
Student
Type In Draft
— Endpoint
ik AN
copy/paste copy/paste
Education LLM
Endpoint Endpoint
copy/paste copy/paste

/ submit submit \
copy/paste / / \ \ c;c?//paste

Relevant Relevant
Draft <———copy/paste—» Draft
Endpoint Endpoint

Figure 2: EduCode system architecture — endpoints and interactions

Figure 2 demonstrates that Each box represents an endpoint where content can reside: the
Education endpoint (managed by the instructor/platform), the Draft endpoint (the student’s
working draft space), and the LLM endpoint (a regulated interface to an AI model). Arrows
indicate supported operations: Students can Copy content from any endpoint, Paste into any
endpoint (if permitted by policy), Type (enter original text) in Draft or Education endpoints, and
Submit final answers from the Education endpoint. Copying always produces an encrypted
payload tied to the source endpoint. Pasting triggers decryption and insertion of content as a new
node in the target endpoint’s history graph (with provenance data attached). The architecture
ensures that any Al assistance (via the LLM endpoint) is only accessible through these regulated
copy/paste actions, preventing raw text from leaving or entering the system without
authorization.

In this architecture, the Education endpoint represents the problem content and the final
submission space. It is controlled by the educational platform/instructor. The Draft endpoint is a
sandbox where the student can write and revise content (think of it as a student’s private notes or
working area for an assignment). The LLM endpoint is a special interface in EduCode that
allows the student to query an Al model for help, but only under the platform’s supervision.
Importantly, each endpoint has its own encryption context. This means that a copy operation
from one endpoint produces a payload that is labeled with that endpoint’s ID (in the payload
header) and can only be decrypted by the corresponding key when pasted into another endpoint.

For instance, if a student copies text from the EDU endpoint, the payload header will indicate
“source=EDU” and include enough information for the EDU backend to identify the correct key
to decode it upon paste. If someone somehow obtained that payload and tried to paste it into a
different system (or the wrong endpoint), it would fail to decode properly.

All payloads share a common format comprising: (1) a header with the source endpoint ID (so
the system knows which key to use), (2) a body containing the actual content (in PUA encoding)
possibly segmented by sub-parts (like question text, draft text, or Al response depending on
source), (3) a history graph snapshot representing the provenance of that content (discussed
more in next section), (4) optional AAD (Additional Authenticated Data) which can include
public info such as instructions or policy notes relevant to the content, and (5) a verification
checksum to ensure integrity. This rich payload ensures that when content is pasted, the target
endpoint not only gets the text but also knows where it came from and how it fits into the overall
work history.

By defining these endpoint-specific operations, EduCode prevents arbitrary transfer of text.
Students can only move content via Copy and Paste within this tri-endpoint system. Any attempt
to, say, select text and use the usual clipboard outside of EduCode will result in gibberish (as per
Section 3.1). Likewise, if they try to paste text from an external source, the EduCode frontend
will reject it unless it’s formatted as a valid payload from one of the known endpoints. Standard
typing (keyboard input) is allowed in the draft or directly in the education prompt, but even here
EduCode can impose restrictions—e.g., it could prevent pasting large blocks of text that weren’t
generated in the system, forcing students to actually type out any external content (which at least
increases effort and likelihood of detection).

Through this multi-endpoint structure, we effectively create a walled garden for Al-assisted
work. The LLM endpoint acts as a gated portal to Al: students cannot directly query ChatGPT or
similar by copy-pasting the assignment prompt into it unless they do so via the EduCode LLM
endpoint (which would log that action). The instructor or platform can set policies on the LLM
endpoint (such as limiting how much of the prompt can be sent, or requiring that the AI’s answer
be logged and cited). Meanwhile, any content going from the LLLM back into the draft or final
answer must travel via an encrypted payload that carries its origin information. This way, the
final submitted answer can be accompanied by a trace of whether Al was used in its creation.

4.3 History Graph

To establish a traceable record of each student’s problem-solving process, EduCode introduces a
history graph mechanism. All interactions — copying from one endpoint, pasting into another,
typing new text, submitting final answers — are represented as events in a directed acyclic graph
(DAG) data structure. The purpose of this history graph is to encode the provenance of every
piece of content in the student’s work.

In the history graph, nodes represent states or content versions, and edges represent operations
that transform one state into another (e.g., a “copy-paste” action linking a node in the source
endpoint’s graph to a new node in the target endpoint’s graph). Each endpoint (EDU, DRAFT,
LLM) maintains its own local history graph capturing the sequence of actions in that context.
However, when content is transferred between endpoints, these graphs are connected via special
cross-links (using the payload’s embedded history data).

For efficiency and privacy, the actual content of each node is not broadcast in the payload.
Instead, only hash values (identifiers) of nodes and edges are included. The platform’s database
stores the full history graphs (with actual content at nodes), but the payload just contains
cryptographic hashes representing those nodes. This ensures that even if someone intercepted the
payload or if parts of the history graph were exposed, they could not reconstruct the student’s
answer or the AI’s answer from the hashes alone. The hashes act as unique IDs, enabling the
platform to merge or extend the graphs when a paste occurs, without revealing the text.

Every operation updates the history graph in a defined way: - Typing (user manually writing
new text) does not immediately create a new node in the history graph; it just updates a “current
working node” in the draft. (Essentially, typing is considered an in-place edit to the current draft
node until a significant action occurs.) - Copying finalizes the current active node (freezing that
version of content) and creates a new node that represents the “copy event” output[25]. That new
node’s content is the payload created. The history graph thus branches: the node in the source
endpoint from which the copy was made now has an outgoing edge representing the copy,
pointing to the new payload node. - Pasting in a target endpoint also finalizes the current node in
that endpoint (if any edit was in progress) and then integrates the incoming history structure
from the payload. Essentially, the payload carries a subgraph (or references to nodes) from the
source; the target will attach that subgraph as predecessor(s) to a new node in the target graph
which contains the inserted content. The new node in the target is thus linked to the source’s
node(s) as parents, reflecting that the content originated elsewhere.

Using these rules, the history graph grows as the student works. By the end, we have a DAG
representing exactly how the student composed their answer: which parts were typed originally,
which parts came from the LLM (and how), which came from copying the problem statement or
earlier drafts, and so on. All of it is traceable and time-sequenced.

This history mechanism is crucial for accountability. It means that even if a student consults the
LLM, the manner and extent of that consultation is recorded. For instance, if a student copies the
assignment prompt and pastes it to the LLM endpoint, we will have a record (a node that shows
an edge from EDU prompt node to an LLM query node). If they then paste the LLM’s answer
into their draft, that content’s origin is marked as from the LLM. If they edit it, the edits are
noted as well (some typing on the draft node). In the end, when they submit from EDU endpoint,
the submission node in EDU’s graph will have incoming edges from various sources (some from
purely typed content, some from LLM-derived content).

Because only hashes are transmitted, the approach is scalable and privacy-preserving. The graphs
can potentially be published or shared (like as part of assignment submission metadata) without
leaking the answer text, since they are just cryptographic identifiers. This could allow, for
example, third-party verification or audits of the process without seeing the content (useful for
competitions or research on writing processes).

Each endpoint managing its own graph also means if a student works outside the system (which
we cannot stop entirely), those actions simply won’t appear in the history. EduCode can’t track
what happens completely off-platform, but if the student then tries to integrate externally
generated content, it will lack a valid history and be flagged. In practice, a student might try to
circumvent by, say, using ChatGPT on another device and then manually re-typing or pasting
text. EduCode’s design raises the effort for this: they would have to manually type large
sections (since direct paste of external text is disallowed), which is cumbersome and increases
the chance of inconsistencies or detection by an instructor. By contrast, using the LLM endpoint
within EduCode is convenient and gives them help but with oversight.

5. Experiment and Authorship Analysis

To demonstrate EduCode’s functionality, we constructed a small-scale simulated assignment
scenario. The goal was to show how the system captures the interactions between a student and
an LLM and to evaluate the authorship contribution of the Al in the final work. We combined
the Education endpoint and Draft endpoint on the front-end for simplicity during this simulation
(i.e. the student’s main interface allowed entering text that counted as both the prompt space and
a draft), and similarly adjusted the LLM endpoint to streamline the workflow. The student
(simulated) then followed a series of steps to solve a problem, sometimes using the Al help and
sometimes working on their own, as outlined below.

Workflow Simulation:

1. Copy the instructor’s question from the EDU endpoint and paste it into the DRAFT
endpoint. (This simulates the student starting their draft by grabbing the assignment text.)

2. Type some original content in the DRAFT endpoint. (Student adds their own thoughts or
answer elements.)

3. Make an edit to the question or notes on the EDU side. (Perhaps the student rephrases the
question or adds a note in the prompt area — demonstrating an edit in the EDU context.)

4. Copy text from the DRAFT endpoint and paste into the LLM endpoint. (Student asks the
Al for help by providing their current draft to the Al)

5. On the LLM endpoint, have the Al generate a response; copy a portion of the Al’s
answer. (This represents an Al assistant answering, and the student selecting useful parts
of that answer.)

6. Paste the copied Al content into the DRAFT endpoint. (Incorporate the AI’s suggestion
into the draft.)

7. Copy another piece of content from the LLM endpoint (perhaps another part of the
answer or a follow-up) and paste it into the DRAFT. (Further use of Al answer content,
done twice in our simulation.)

8. Make further edits on the DRAFT (student’s own contribution), then copy the refined
draft and paste into the LLM endpoint for one more Al check/refinement. (Simulating an
iterative refinement loop with the Al.)

9. Finally, copy the completed answer from the DRAFT endpoint back into the EDU
endpoint and submit it. (The answer is turned in through the official channel, completing
the cycle.)

The above sequence covers a realistic scenario: the student oscillates between using the Al and
their own editing. Every single one of these actions is captured by EduCode. The resulting
history graph is shown in Figure 3. This graph is a DAG where each node represents a version
or action and is color-coded by endpoint (green for EDU, orange for DRAFT, blue for LLM in
the figure). An edge indicates a copy/paste or submit relation. For clarity, we simplified the
graph by merging consecutive typings and focusing on the major copy/paste events.

o o History Graph Dema (Maximum-Complexity Simple Case) IPASTEL)

EDU - & 'y
\TEJ 1CORT) \F'ﬂ [PASTE) [COPY)
DRAFT] - .

[PETEY WCOFY IPRETE) “HEASTE} (COFY) |C/ (PRSTEY ICOFY) (00|
LLI o, i . a4 .
T T T T T T T T T T T T
A

.
e & Y & Y a @ 3 5
Ty i b o L’
A e A o F F S & s S
& af r: " i & a oF o o 2 5 £ 3 &
& &8 5 = s o é s I 3 F & & &8
& g g o & ¢ & o = > & o o 3 o 3 4
< e & o K & o o & & o F AF 5 o » o e
AN AN A A A A A A A A A Y B R N
. > =
A A A R R A A A A
r K i K o o & E o F oF - o o o S N
W @)La é:&\"b Jﬁs}’ _1_5’&" . d':‘{m & a\f‘ & ,%:0"’ o K 1@.@ & o i 1@"’
& o & A o K & " s o a h & 2 A L o
of A e & F: & o & I o
s Py o o A & I o Ca i = ¥ & 3 ¥ ¥ &
: & #F & o B o) a5 ¥ o o AV o £ a~ 15 Ly
& & * ~ & g & i o S +F & L ¥ “

Event timeline (topological order)

Figure 3: History graph of the example workflow

Figure 3 shows that The directed acyclic graph (DAG) represents the sequence of operations
from the simulated experiment. Each node corresponds to a state or content piece (annotated
with the action and endpoint), and edges show the flow of content. For example, the graph shows
the initial copy from EDU to DRAFT (step 1), the drafting and editing in DRAFT (step 2), the
copy from DRAFT to LLM (step 4) and subsequent return of Al-generated content to DRAFT
(steps 5—7), etc. The final submission from DRAFT back to EDU (step 9) is also shown. By
tracing this graph, an instructor can see exactly how the final answer was constructed and
identify which parts originated from the Al.

With the history graph in hand, EduCode enables a form of authorship analysis — evaluating the
contribution of human vs Al at each stage. We implemented an initial analysis module that treats
the history graph as a flow network of content. In simple terms, we assign “credit” to each source
at the root of the graph and propagate those credits through the edges to the final submitted
node. In our scheme, content originating from the LLM endpoint is tagged as A/-derived, content
typed in the Draft (or EDU) by the student is tagged as human-derived, and content that came
from the EDU prompt (if reused in answer) could be tagged as prompt-derived. We propagate
these tags in a proportional manner: when two pieces (e.g., one Al-generated and one human-
generated) are merged or edited together, the resulting node inherits a mix of the credits from its
parent nodes. We also consider the sizes of contributions when propagating (e.g., copying a large
chunk from Al vs a small edit by human).

A potential extension of EduCode lies in leveraging the history graph for fine-grained authorship
attribution. By tracing data provenance through node-level operations—including Al generations
(LLM endpoint), student edits (DRAFT/EDU), and prompt reuse—the system can, in theory,
estimate weighted source contributions to the final submission. Each node in the graph retains
metadata about its origin and transformation. Through topological traversal and proportional
credit propagation (e.g., averaging contributions from merged parent nodes), EduCode could
compute an approximate authorship breakdown—such as 58% Al-generated, 31% human-
authored, and 11% prompt-derived. With calibrated thresholds, this model might assign
interpretive tags like “Moderate Al assistance,” supporting process-level analysis rather than
static detection. While not implemented in this version, such functionality would represent a
principled, data-driven alternative to current Al detection tools—one that evaluates writing as a
traceable synthesis of contributions, not a black-box output.

6.Conclusion

We have presented EduCode, a novel protocol-level approach to maintaining academic integrity
in the presence of Al tools. Unlike traditional plagiarism detection or Al output detection
systems, EduCode does not attempt to analyze the text artifact alone; instead, it architects the
interaction process such that any Al involvement is explicitly marked and controlled. By
combining endpoint-specific encryption and structured payloads for copy/paste, the system
prevents unsanctioned use of external LLMs while allowing approved usage in a transparent
manner. All student activity — whether typing, copying from materials, or querying an Al — is
encoded as a history DAG of actions. This provides an immutable audit trail of the solution
development process.

An initial authorship analysis module demonstrates how the history graph can be leveraged to
quantify Al contributions. Rather than guesswork based on linguistic features, EduCode can
literally trace which portions of an answer originated from an Al model. This process-aware,
provenance-based assessment is far more robust to obfuscation and evolution of Al models, since
it doesn’t depend on cracking the AI’s “style” but on having constrained the workflow itself.

In its current prototype form, EduCode has been tested on a limited scale. There are practical
considerations for future work, such as integration with real LLM APIs, refining the user
interface, and ensuring scalability in terms of graph storage and performance. Usability is also
important — the system should not overly burden honest students or instructors. Nonetheless, our
results point toward a promising direction: by embedding integrity into the tools and
protocols students use, we can support innovative Al-aided learning while preserving trust and
accountability. EduCode illustrates that it is feasible to let students harness powerful LLMs
without sacrificing the transparency of their learning process. We envision this approach could
be extended beyond coding or Q&A scenarios to essay writing or other domains, ultimately
contributing to Al-compatible evaluation methods in education.

Acknowledgments: The author thanks Tangrui Li for the help on this project. His contribution is
invaluable to the project’s development.

References

[1] D. Weber-Wulff et al., “Testing of detection tools for Al-generated text,” International
Journal for Educational Integrity, vol. 19, no. 1, p. 26, 2023.

[2] A. M. Elkhatat et al., “Evaluating the efficacy of Al content detection tools in differentiating
between human and Al-generated text,” International Journal for Educational Integrity, vol. 19,
no. 1, p. 17, 2023.

[3] N. Lu, D. Xu, T. Zhang, J. Liu, and X. Yuan, “Large Language Models can be Guided to
Evade Al-Generated Text Detection,” Transactions on Machine Learning Research, preprint,
2024.

[4] D. Kundu, A. Vattikonda, and N. Ganguly, “Keystroke Dynamics Against Academic
Dishonesty in the Age of LLMs,” in Proc. IEEE Int. Joint Conf. Biometrics (IJCB), 2024.

[5] S. Aburass and M. A. Rumman, “Authenticity in Authorship: The Writer’s Integrity
Framework for Verifying Human-Generated Text,” arXiv preprint arXiv:2404.10781, 2024.

[6] M. N. Hoque, D. Lee, and D. S. Weld, “The HaLLMark Effect: Supporting Provenance and
Transparent Use of LLMs in Writing with Interactive Visualization,” arXiv preprint
arXiv:2311.13057, 2024.

[7] H. Park and D. Ahn, “The Promise and Peril of ChatGPT in Higher Education: Opportunities,
Challenges, and Design Implications,” in Proc. CHI Conf. Human Factors Comput. Syst., 2024.

[8] E. Kasneci et al., “ChatGPT for Good? On Opportunities and Challenges of Large Language
Models for Education,” Learning and Individual Differences, vol. 103, 2023.

[9] D. Dalalah and O. M. A. Dalalah, “The false positives and false negatives of generative Al
detection tools in education and academic research: The case of ChatGPT,” International Journal
of Management Education, vol. 21, no. 2, art. 100822, 2023.

	EduCode: An Authenticity-Ensuring Algorithm for AI-Mediated Education
	1. Introduction
	2. Related Work
	2.1 AI-Generated Text Detection Tools and Limitations
	2.2 Process-Based Authorship Verification
	2.3 Transparent and Guided Use of LLMs in Education
	3. Learning Process and Pivot
	4. Method
	4.1 Specialized Unicode
	4.2 Endpoints and Architecture
	4.3 History Graph

	5. Experiment and Authorship Analysis
	References

