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Abstract
This report details the design, implementation, and rigorous valida-

tion of a five-phase Natural Language Processing (NLP) pipeline for the
automated extraction and analysis of factual claims from unstructured
YouTube video transcripts. The focus is on high-volume, noisy health
discourse surrounding GLP-1 Agonists (e.g., Ozempic/Wegovy). The core
engineering challenge was converting raw video data into a structured,
queryable knowledge base of atomic claims, strategically counteracting
the inherent inconsistency and data corruption issues common in social
media scraping. We achieved high reliability on our core extraction tasks
(F1 score of 0.94 for extraction and 0.87 for decomposition) through a
novel Extract-and-Decompose strategy coupled with an iterative, human-
verified prompt optimization loop. The resulting architecture establishes
a robust foundation for PhD-level analysis of semantic relationships across
large-scale health discourse.

1 Introduction and Motivation
In recent years, social media has evolved from a platform for social networking
into a primary source of information gathering for the general public, particu-
larly in the domain of healthcare. Patients increasingly turn to platforms like
YouTube, TikTok, and Instagram to seek advice on treatments, share their
personal experiences, and find communities of similar patients. While this de-
mocratization of information has benefits, it also creates a fertile ground for
the spread of misinformation, anecdotal evidence presented as fact, and the
promotion of pharmaceutical products for off-label use.

The volume and velocity of health-related information on platforms like
YouTube make manual content analysis intractable. Our research addresses
the discourse surrounding GLP-1 Agonists, specifically drugs like Ozempic and
Wegovy. This topic is a massive phenomenon, with our dataset comprising over
10,000+ hours of unstructured video data.

The problem is two-fold: the sheer proliferation of information makes manual
tracking impossible, and the content is often noisy, machine-generated, and
anecdotal. The content includes advice from board-certified doctors, patient
anecdotes, and influencer misinformation.

The project’s goal is the creation of a machine capable of producing a struc-
tured output: a list of discrete, falsifiable statements (atomic claims) from an
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initial dataset. Our overall goal is to automatically process transcripts and
analyze factual claims and their logical relationships.

1.1 Problem Statement
The core technical challenge lies in the unstructured nature of video data. A
YouTube video is a multimodal object consisting of visual data, audio tracks,
and textual metadata. The audio track, when transcribed, results in messy, un-
structured text often exceeding 5,000 tokens. Standard Information Extraction
(IE) techniques often fail on such noisy data because:

• Context Dependency: A sentence like “It made me feel sick” is mean-
ingless without knowing the antecedent (the drug).

• Subjectivity: Distinguishing between a verifiable medical claim (“Ozem-
pic causes pancreatitis”) and a subjective feeling (“I hate needles”) is dif-
ficult for keyword-based systems.

• Redundancy: A speaker may repeat the same point multiple times in a
conversational manner.
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1.2 Engineering Objective

Figure 1: End-to-end pipeline for structured claim extraction and reasoning
from video. Raw, unstructured videos are preprocessed via speech-to-text and
segmentation, decomposed into atomic factual claims, and represented with
stance and aspect labels. Natural Language Inference (NLI) is then applied to
identify semantic relationships—such as contradiction, entailment, or neutral-
ity—between claims across different videos.

Our primary engineering goal is to build a machine learning pipeline that trans-
forms raw video inputs into a structured list of atomic factual claims. Specifi-
cally, we aim to:

1. Ingest and Transcribe: Build a scalable scraper to retrieve video meta-
data and audio, converting it to text with high accuracy.

2. Extract Atomic Claims: Develop an LLM-based method to identify
and isolate specific claims from the transcript noise.

3. Classify and Cluster: Categorize these claims by speaker stance (Pro/Anti),
speaker type (Doctor/Patient), and topic aspect (e.g., Side Effects, Cost).

4. Map Relationships: Construct a knowledge graph that identifies con-
sensus and contradictions across the dataset.
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2 Related Work
Our work builds upon several key advancements in Natural Language Processing
and Public Health surveillance, particularly at the intersection of large language
models, speech processing, and large-scale analysis of online health discourse.

Large Language Models in Health: Recent work by Zhang et al. (2024)
demonstrated the utility of LLMs in constructing taxonomies of factual claims
from social media (LLMTaxo). However, their work focused primarily on short-
form text such as tweets, where individual posts are typically self-contained and
limited in length. In contrast, long-form video transcripts present substantially
different challenges, including managing extended context windows, resolving
coreference across long narratives, and handling repeated or evolving claims
within a single source. Our work extends this line of research by addressing
these challenges directly, enabling structured claim analysis over thousands of
tokens and across multiple speakers and videos.

Automatic Speech Recognition (ASR): The release of OpenAI’s Whis-
per model (Radford et al., 2022) revolutionized the transcription of noisy, real-
world audio. Unlike traditional Hidden Markov Model (HMM)–based systems,
Whisper utilizes a Transformer-based sequence-to-sequence architecture trained
on approximately 680,000 hours of multilingual data, allowing it to generalize
effectively across accents, recording qualities, and background noise. This ro-
bustness is particularly important for YouTube videos, which often feature infor-
mal speech, variable microphone quality, and non-studio environments. Reliable
ASR is a critical prerequisite for downstream semantic analysis, as transcription
errors can propagate and significantly degrade claim extraction performance.

Fact Extraction and Verification: The FEVER shared task (Thorne
et al., 2018) established widely adopted benchmarks for fact extraction and
verification against curated knowledge sources such as Wikipedia. Subsequent
work has focused on improving evidence retrieval, reasoning, and classification
accuracy within this verification-centric paradigm. However, such approaches
assume the existence of an authoritative ground truth and are primarily de-
signed to determine factual correctness. In contrast, our system emphasizes
discourse analysis: rather than verifying claims, we analyze the distribution,
framing, and repetition of claims across videos and speakers. This perspective
is particularly well-suited for public health surveillance, where understanding
narrative patterns and conflicting viewpoints is often as important as factual
verification itself.
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3 System Architecture: The 5-Phase Pipeline

Figure 2: The figure illustrates the end-to-end pipeline for transforming raw
YouTube videos into structured, analyzable atomic claims. The system pro-
ceeds through five sequential phases: (1) Collection; (2) Transcription anda
data cleanup; (3) Smart Triage; (4) Extraction; and (5) Classifications.

The pipeline is architected into five sequential phases (Figure:2), designed to
handle specific data engineering and NLP challenges.

1. Collection: Data ingestion and metadata capture using the YouTube
Data API.

2. Transcription: Converting audio to text locally with Whisper and re-
solving major data corruption issues.

3. Smart Triage: High-level content filtering and speaker/stance classifica-
tion using LLMs.

4. Extraction: Decomposing text into atomic claims using the Extract-and-
Decompose strategy.

5. Classification: Organizing claims globally via clustering and Inter-Claim
Analysis.
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4 The Learning Process: Problems Solved and
Lessons Learned

This project served as a rigorous exercise in building a robust, end-to-end data
and NLP pipeline. Beyond model selection, the work required solving real-
world data engineering challenges and confronting fundamental limitations of
large language models. An overview of the full system architecture and learning
pipeline is shown in Figure 3.

Figure 3: The pipeline converts YouTube videos into structured atomic claims
through metadata collection, audio transcription, large-context LLM analysis,
granular claim decomposition, and semantic vector-based contradiction detec-
tion across videos. Further description is described below.

4.1 Data Collection (Phase 1)
As illustrated in Figure 3, the foundation of the pipeline is a robust data in-
gestion engine. We utilized the YouTube Data API v3 to ingest metadata for a
targeted list of video IDs.
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The input to this phase is a text file, ozempic_video_ids.txt, containing
unique identifiers for videos identified via keyword search. A Python script
iterates through this list and queries the API for specific metadata fields. A
critical component of this phase was capturing the video description and
tags. Our initial analysis revealed that speakers frequently place citations,
study links, and sponsor disclosures in the description box—information that is
essential for evaluating the credibility of claims made in the video.

The output of Phase 1 is a centralized CSV database, youtube_metadata_final.csv,
containing:

• Video ID and Title

• Channel ID and Name

• Full Description Text

• Engagement Metrics (View Count, Like Count, Comment Count)

• Upload Date

4.2 Data Engineering Challenges (Phase 2)
Phase 2, shown in Figure 3, involves the conversion of raw audio data into
clean text transcripts. This phase presented the most significant engineering
challenges of the project.

4.2.1 Audio Extraction

We utilized yt-dlp, a command-line media downloader, to extract the audio
track from each video. To minimize bandwidth and storage costs, we configured
the tool to download the lowest bitrate audio sufficient for speech recognition
(approximately 50 kbps), converting all files to a standardized .wav format.

4.2.2 The Whisper Implementation

For transcription, we selected OpenAI’s Whisper model (specifically the medium.en
architecture) and ran it locally rather than via an API. This decision reduced
operational costs and ensured data privacy. Whisper was chosen over traditional
HMM-based systems (e.g., CMU Sphinx) due to its superior robustness to back-
ground noise, accents, and informal speech patterns common in user-generated
content.

4.2.3 Challenge 1: Bot Detection and Rate Limiting

During bulk downloads, YouTube servers aggressively flagged our scraper, re-
sulting in HTTP 429 (Too Many Requests) errors and temporary IP bans. To
mitigate this, we implemented a browser cookie injection strategy. Au-
thentication cookies were extracted from a legitimate, logged-in browser session
and passed to yt-dlp, allowing requests to be authenticated as a valid user and
bypassing bot detection mechanisms.
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4.2.4 Challenge 2: Data Sanitization and Corruption

We encountered substantial data corruption issues in CSV storage. User-generated
descriptions often include non-standard Unicode characters, emojis, and irreg-
ular line breaks (CR/LF), which can break standard CSV parsers. Early fail-
ures resulted in row misalignment, where description text spilled into numeric
columns such as view counts.

To resolve this, we implemented a custom sanitization pipeline using Python’s
pandas and regex libraries. The cleaning protocol:

• Encodes all text to UTF-8 and removes unsupported byte sequences.

• Replaces newline characters within text fields with a placeholder token
(e.g., <br>).

• Escapes delimiter characters embedded in free-form text.

4.3 Deep Video-Level Analysis (Phase 3)
With clean transcripts available (Figure 3), we moved to large-scale semantic
analysis using LLMs. We selected the Gemini 1.5 Pro model due to its extremely
large context window (up to 1M tokens), enabling full-transcript processing
without truncation.

To control inference costs, we implemented a Smart Triage strategy:

1. Relevance Filtering: The model first determines whether a video mean-
ingfully discusses GLP-1 agonists, filtering out coincidental keyword men-
tions.

2. Metadata Enrichment: For relevant videos, the model classifies:

• Speaker Type: Doctor, Patient, Influencer, or News Anchor.

• Stance: Pro-Drug, Anti-Drug, or Neutral/Educational.

• Evidence Level: Anecdotal or Cited Research.

3. Entity Extraction: Identification of medical entities such as Mounjaro,
Pancreatitis, Thyroid Cancer, and Nausea.

Technical Pivot: Initial experiments using the experimental gemini-2.5-flash
model failed due to a restrictive quota of 20 requests per day. To enable the pro-
cessing of our full dataset, we pivoted to the stable gemini-1.5-flash model,
which supports higher throughput.

4.4 Granular Claim Extractio (Phase 4)
This phase addresses the hallucination problem. Asking an LLM to "sum-
marize" a 5,000-word transcript often leads to data loss. We implemented a
"Decomposition" strategy.

4.4.1 Phase 4-a: Relevance Filtering

We first filtered the transcript to remove non-medical "fluff" (intros, outros,
ads), reducing the token count by approximately 30%.
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4.4.2 Phase 4-b: Context-Aware Atomic Decomposition

Complex sentences were split into atomic facts. Crucially, we utilized a context-
aware prompt to resolve pronouns.

• Input: "She felt nauseous after the shot."

• Context: Video title is "Oprah’s Weight Loss Journey."

• Transformation: "Oprah felt nauseous after the Ozempic shot."

4.4.3 Phase 4-c: Aspect & Stance Classification

We classified each claim into a taxonomy of 13 aspects (e.g., Side Effects, Cost,
Stigma). The Batching Bottleneck: We initially attempted to process claims
in batches of 50. However, the LLM frequently truncated the JSON output
due to token limits, resulting in parse errors. The Solution: We switched
to Individual Processing (one API call per claim). To handle the volume
(thousands of calls), we utilized the gemma-3-27b-it model, which offers a high
daily quota (∼14,000 RPD), ensuring 100% data integrity.

4.5 Semantic Vector Analysis (Phase 5)
To find contradictions across the dataset, using an LLM to compare every claim
pair (O(N2) complexity) was computationally prohibitive. Instead, we imple-
mented a vector-based approach.

1. Embedding: We generated 384-dimensional embeddings for all 1,884
claims using Sentence-BERT (all-MiniLM-L6-v2).

2. Clustering: We grouped claims by Aspect.

3. Conflict Detection: We calculated the Cosine Similarity between all
pairs in a cluster. A "Conflict" was defined as a pair with High Similarity
(> 0.70) but Opposite Stance.

4.6 Ground Truth Construction
To ensure the reliability of our pipeline, we could not rely on automated metrics
alone. We established a Human Ground Truth.

• Selection: We selected 14 videos representing a diverse range of speakers
(3 Doctors, 5 Patients, 4 Influencers, 2 News Clips).

• Annotation: Two researchers (F. Nilizadeh and A. Ansari) indepen-
dently watched the videos and annotated every factual claim made, clas-
sifying its start/end time and semantic meaning.

• Reconciliation: Disagreements were resolved in consensus meetings to
create a “Gold Standard” dataset.
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4.7 Performance Metrics and Model Limitations
We evaluated our pipeline against this Gold Standard using the F1 Score, which
balances Precision (how many extracted claims were real) and Recall (how many
real claims were extracted).

For our initial validation of the Ground Truth dataset, we utilized the ad-
vanced Gemini 2.5 Pro model, which demonstrated high reasoning capabili-
ties for complex medical nuance. However, during the expansion phase where
we intended to run our prompts on the broader dataset of other videos, we
encountered availability issues with the 2.5 Pro model (it was no longer ac-
tive/accessible for our API tier). Consequently, we were forced to pivot to the
Gemini 2.5 Flash model for the bulk processing. While Flash is faster and more
cost-effective, we acknowledge this as a limitation compared to the reasoning
depth of Pro.

Despite this, our validation metrics remain strong across the pipeline com-
ponents:

Table 1: Pipeline Performance Validation
Component F1 Score Status

Step 1: Extractor 0.94 High Reliability
Step 2: Decomposer 0.87 High Reliability
Step 3: Aspect Extraction 0.75 Moderate Reliability

The high F1 scores for extraction (0.94) and decomposition (0.87) indi-
cate that our “Extract and Decompose” strategy is highly effective at mirroring
human-level comprehension of these transcripts. The Aspect Extraction score
of 75% suggests that while the model is generally capable of categorizing claims,
the subtle distinctions between certain medical categories (e.g., differentiating
general medical benefits from specific weight-loss mechanisms) remains a chal-
lenging task for the Flash model.

5 Taxonomy and Discourse Analysis
To structure the unstructured data, we defined a taxonomy of 13 aspects.
This taxonomy was derived inductively from our initial manual analysis of the
dataset.

5.1 The 13-Aspect Taxonomy
1. Weight Loss Effectiveness: Claims regarding amount/speed of weight

loss.

2. Medical Health Benefits: Non-weight benefits (e.g., A1C reduction,
cardiovascular health).

3. Appetite & Satiety: Mechanisms of action regarding hunger ("food
noise").

4. Gastrointestinal Side Effects: Nausea, vomiting, diarrhea.
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5. Long-term Safety Risks: Thyroid cancer, pancreatitis, paralysis.

6. Financial & Insurance: Cost, prior authorization, copay cards.

7. Social Stigma & Perception: "Ozempic Face," shaming, celebrity us-
age.

8. Dosage & Administration: Injection mechanics, titration schedules.

9. Lifestyle Changes: Diet requirements, exercise necessity.

10. Mental Health: Depression, anxiety, mood shifts.

11. Supply Chain: Shortages, compounding pharmacies.

12. Patient Demographics: Who is taking it vs. who should take it.

13. Misinformation Correction: Explicit debunking of myths.

6 Results & Analysis
Our pipeline successfully processed the dataset, yielding 1,884 classified atomic
claims. The analysis reveals several critical trends in the public discourse.

6.1 The "Positivity Gap"
Contrary to media narratives that focus on "horror stories" and severe side
effects, our volume analysis reveals that Positive claims consistently out-
number Negative claims across most categories.
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Figure 4: The Pain vs. Gain Landscape: Sentiment Distribution by Aspect.
Note the dominance of Positive sentiment in Weight Loss and Mental Health
categories.

As seen in Figure 4, while "Gastrointestinal Side Effects" skew negative, the
"Mental Emotional Impact" category shows a surprising dominance of positive
sentiment, with users reporting relief from "food noise" and anxiety.

6.2 The Safety Paradox (Conflict Analysis)
Our vector analysis identified "Long-term Safety" as the primary area of
semantic conflict in the dataset.

• The Conflict: The algorithm detected direct contradictions regarding
pancreatic cancer.

• Cluster A: Users citing 2023 studies linking GLP-1s to cancer and paral-
ysis.

• Cluster B: Users citing refutations and safety profiles from clinical trials.

Insight: Unlike subjective side effects (e.g., "I felt nauseous"), this represents
"Scientific Confusion" propagating through the patient community. Patients
are actively debating medical literature, often without the expertise to interpret
it correctly.

6.3 Speaker Divergence: Who Says What?
By correlating our extracted claims with the Speaker Metadata from Phase 3,
distinct narrative "lanes" emerged.
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Figure 5: Speaker Analysis Heatmap: Percentage of Claims per Aspect by
Speaker Type.

Figure 5 illustrates a clear division of labor:

• Physicians (Far Right): Dominate the discourse on Mechanism of Ac-
tion (19.9% of their claims) and Dosing. They rarely discuss social impli-
cations.

• Patients (Second from Right): Are the primary source for Gastroin-
testinal Side Effects (12.2%) and Appetite/Satiety (14.1%). To understand
the biological reality, one must listen to doctors; to understand the sensory
reality, one must listen to patients.

• News Media: Focuses disproportionately on Social Stigma and Financial
Barriers, framing the drug as a controversy rather than a treatment.

6.4 Engagement Analysis
We analyzed whether negative sentiment drives higher engagement (views).
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Figure 6: Engagement Impact: Video Views vs. Aspect Sentiment.

Figure 6 shows that for "Social Stigma," negative claims generally align with
lower median views, while positive/neutral discussions drive higher engagement.
However, in "Long-term Safety," we see massive outliers in the Positive senti-
ment category, suggesting that videos reassuring patients about safety ("It’s
safe, don’t worry") may actually go viral more often than fear-mongering con-
tent in this specific niche.

7 Learning Process and Problem Solving

7.1 Engineering Hurdles
This project surfaced several unforeseen technical challenges that required non-
trivial engineering solutions and influenced the final system design.

• API Rate Limiting and Access Constraints: Large-scale data col-
lection using the YouTube Data API exposed strict quota limits and ag-
gressive rate-limiting behavior. We implemented request throttling and
exponential backoff strategies to manage quota exhaustion. However, sus-
tained ingestion required a browser cookie injection approach that authen-
ticated requests as a legitimate user session. This solution enabled access
to restricted metadata while remaining within acceptable usage patterns,
highlighting the importance of understanding platform-level constraints
when designing data pipelines.

• Data Hygiene and Corruption: Working with real-world, user-generated
content revealed significant data quality issues. Non-standard Unicode
characters, emojis, and inconsistent line breaks frequently corrupted CSV
files and caused downstream parsing failures. These issues reinforced the
necessity of rigorous input sanitization, explicit encoding standards, and
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defensive file handling. The classic “garbage in, garbage out” principle
became especially apparent when unclean transcripts propagated errors
into later analytical stages.

• LLM Hallucinations and Task Overload: Early experiments demon-
strated that prompting an LLM to perform broad, unconstrained anal-
ysis led to hallucinations and inconsistent outputs. Attempting to ex-
tract complex structured knowledge in a single step proved unreliable.
By decomposing the task into smaller, well-defined stages—first extract-
ing candidate claims and then decomposing them into atomic units—we
significantly improved precision and stability. This experience reinforced
that effective LLM engineering requires explicit task decomposition and
controlled reasoning pathways rather than monolithic prompts.

7.2 Lessons Learned
Through the development and evaluation of this system, several key lessons
emerged that extend beyond this specific application and are broadly relevant
to building reliable LLM-driven pipelines.

• Validation First: Establishing a human-verified ground truth early in
the development process proved essential. This reference set enabled sys-
tematic error analysis, quantitative evaluation, and informed prompt re-
finement. Without a trusted validation baseline, model outputs would
have appeared plausible but contained silent failures that were difficult
to detect. This experience reinforced that LLM-based systems must be
evaluated continuously against human annotations rather than trusted at
face value.

• Context Matters: We learned that auxiliary metadata—such as video
descriptions, upload dates, tags, and engagement signals—is often as infor-
mative as the transcript itself. In many cases, critical context including ci-
tations, sponsorship disclosures, and links to supporting studies appeared
only in the description field. Relying solely on transcript text would have
resulted in incomplete or misleading interpretations of claim credibility.

• The "Context Window" Trap: Early in the project, we attempted to
use a single prompt to extract, classify, and analyze a video in one pass.
This led to severe hallucinations, where the model would invent claims
to fill the output structure. We learned that LLM performance degrades
non-linearly with task complexity. Breaking the pipeline into discrete steps
(Triage → Extract → Atomize → Classify) increased latency but was the
only way to ensure accuracy. This reinforced the concept of "Chain of
Thought" architecture.

• Iterative Design: Initial prompt designs consistently underperformed,
producing noisy or inconsistent outputs. Adopting an iterative, human-
in-the-loop workflow—where prompt revisions were guided by systematic
inspection of failure cases—was necessary to achieve stable performance.
This process highlighted that prompt engineering is not a one-shot task
but an experimental design problem requiring repeated refinement and
validation.
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• Model Availability Constraints: The sudden unavailability of Gemini
2.5 Pro underscored the importance of architectural flexibility. Systems
tightly coupled to a specific model version are brittle and difficult to main-
tain. Designing modular interfaces that allow models to be swapped with
minimal disruption proved critical for long-term robustness, reproducibil-
ity, and cost-aware deployment.

• Vector Search vs. LLM Reasoning: We initially planned to use an
LLM to determine if two claims were contradictory. We calculated that
for N = 2000 claims, this would require N(N − 1)/2 comparisons (∼2
million API calls). We discovered that semantic embeddings (Sentence-
BERT) could perform this task in seconds using matrix multiplication.
This highlights the importance of using the right tool for the job—LLMs
for generation, Vectors for retrieval and comparison.

8 Compliance and Submission Logistics
This section is dedicated to fulfilling the specific submission requirements of the
course.

8.1 File Submission and Access
All project files, including the final report (LATEX script, compiled PDF), source
code (Python scripts for all 5 phases), and the cleaned dataset (the master CSV
with transcription and JSON columns), will be submitted as a single compressed
ZIP file or a shared folder URL.

8.2 Material Used and Public Accessibility
• External Material: We used OpenAI’s Whisper model (running locally)

and the YouTube Data API. URLs for these tools and related literature
are cited in the References section and do not need to be included in the
submission package.

• Public Access Declaration: We explicitly consent to the default set-
ting. The submitted files may be uploaded to or linked on the course
website and made accessible to the public.

9 Conclusion
We have successfully engineered a robust, fault-tolerant NLP pipeline capable of
operating on the highly noisy and unstructured nature of social media data. By
integrating the reasoning capabilities of large language models with the scalabil-
ity and efficiency of vector embeddings, the system enables fine-grained, claim-
level analysis rather than surface-level keyword statistics. Our findings reveal
measurable gaps between clinical guidance and lived patient experiences, partic-
ularly around perceived safety risks, side effects, and expectations of treatment
outcomes. These discrepancies highlight how medical information is interpreted,
amplified, or distorted in online discourse. Importantly, the pipeline’s modu-
lar design allows contradictory narratives to be identified and contextualized
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across videos, offering a more nuanced understanding of public sentiment and
misinformation dynamics.

Beyond the Ozempic case study, this work establishes a reusable technical
foundation for large-scale public health surveillance. The approach enables con-
tinuous monitoring of emerging health narratives, supports early detection of
conflicting or misleading claims, and provides a pathway for evidence-driven in-
terventions. By moving beyond keyword counting toward structured semantic
reasoning, the system opens new opportunities for data-informed public health
analysis and responsible AI-driven insight generation.
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