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Abstract
Photoplethysmography (PPG) utilizes optical signals to mea-
sure the blood flow, which can be viewed as an indicator of
heart physiology. Electrocardiography (ECG) measures the
bioelectric signals from the human heart. Previous studies
have shown a strong correlation between PPG and ECG sig-
nals. Modern commercial electronic devices have adapted
PPG sensors. However, for VR devices, due to their instal-
lation limitations, the adaptation of PPG sensors requires
special engineering design. This project focuses on the re-
construction from VR accelerometer data to ECG. I borrowed
the idea of self-attention blocks from the Transformer and
applied it to Generative Adversarial Networks. This project
serves as the feasibility study of my future research.
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1 Introduction
Clinically, the electrocardiogram (ECG) is considered the
preferred method for monitoring vital signs and for the di-
agnosis, management, and prevention of cardiovascular dis-
eases (CVDs), which are a leading cause of death globally,
accounting for approximately 32% of all deaths in 2017 ac-
cording to Global Burden of Disease reports [1] [12]. Despite
its accuracy, the measurement of ECG requires the proper
position of ECG sensors (usually 3-12 leads). Misplacement
of such sensors results in noisy outputs. The reading of ECG
output needs expert knowledge, which prevents ECG from
being integrated into mobile devices. Photoplethysmograms
(PPG), on the other hand, consist of two components placed
on the skin. First, a light source is utilized to reflect light
to the skin surface. The red, infrared, or green light can be
selected according to the application. Second, a photode-
tector collects the light reflection [11]. Thanks to their low
energy consumption, PPG signals are widely used in com-
mercial wearable smart devices. However, input PPG signals
might be distorted due to noises caused by motion artifacts
and other environmental sources, which are ubiquitous and
unavoidable in everyday life settings [6]. Body hair, skin
color, moisture level, or misplacement of the PPG sensors
may cause the inaccurate measurement of PPG. Modern VR
headsets have encapsulated many sensors, including inner
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camera, outer camera, accelerometers, gyroscopes, LiDAR,
etc. However, the installation of PPG sensors requires ad-
ditional engineering design since the way people wear VR
headsets provides limited space for optical sensors.
In order to solve such problems, people have come up

to many innovative solutions. Previous studies have shown
a high correlation between PPG and ECG signals [5]. The
peaks of the PPG signal in Fig. 1 are in alignment with the
ECG signals since the rise of blood volume co-occur with the
start of the extraction of human hearts. On the other hand,
the sensitivity of the accelerometers in VR headsets guaran-
tees the nominal gain of 0.0015𝑚/𝑠2, whereas, the sensitivity
of human skin is 0.02𝑚/𝑠2. Theoretically, if human hands
can feel the pulse, VR accelerometer can do better. Fig. 2
shows the correspondence between the accelerometer and
PPG. In this project, I would like to study the deep neural
network models that learn from VR accelerometer signals
and reconstruct ECG signals.

Figure 1. The Correspondence between PPG and ECG

2 Related Works
To leverage the convenience of PPG and the accuracy of
ECG, many previous researchers have introduced various
novel solutions. Dhanya et al [3]. showed the correlation
between the accelerometer readings and the PPG signals.
Santos et al. [8] studied the accelerometer-assisted PPG mea-
surements using the LAVIMO sensor system. P. Sarkar et al.
proposed CardioGAN [9], which implemented Generative
Adversarial Networks on ECG measurements. It incorpo-
rated two discriminators targeting both time domain and



Figure 2. The Correspondence between Accelerometer and
PPG

frequency domain information. The forward mapping learns
features from PPG and generates ECG. The inverse mapping
summarizes ECG and recovers PPG. Knowing that train-
ing GANs takes more computational power than training
other deep neural networks, incorporating two discrimina-
tors would inevitably slow down the training time. D. Shome
et al. applied the diffusion model to the PPG-ECG transla-
tion field. They brought solutions to address region-specific
intricate details of ECG signals and introduced the Region-
Disentangled Diffusion Model (RDDM) [10]. By including
an additional ROI noise module in the forward process and
an additional denoise module in the reverse process, RDDM
successfully captures regional features in ECG data. T. Zhang
et al. [13, 14] used bidirectional LSTM with attention layers
in order to generate PPG signals from other sensors with
waveform. Lan et al. [4] take advantage of the Transformer
model to reconstruct ECG from PPG.

3 Methodology
Lan et al. applied the attention mechanism directly from the
Transformer model. However, this mechanism requires both
PPG and ECG to be present at the same time. During the
testing phase, the presence of the ECG signal as the decoder
input may suffer the critique of data leakage. My intentional
idea was to use self-attention instead of cross-attention. In
order to enhance the features in the frequency domain, the
Fourier Transform was applied to the raw PPG signal and
concatenated as the second channel alongside the PPG signal.
Fig. 3 demonstrates the Transformer block. The input for
both the encoder and decoder is constructed by the vertical
stack of the raw PPG signal and FFT of the PPG signal, of
which both the real part and the imaginary part are included.

Inspired by the previous results from my college, Ye et
al. [15] was the first time introducing the generative model

Figure 3. The Transformer Block with Raw PPG and Trans-
formed PPG

in the recovery of vital signs. In their approach, they im-
plemented the Variational Auto Encoder and used the ac-
celerometer data fromVRheadsets as the input.My improved
idea was to use another generative model, which was GANs.
Chen et al. [2] used UNet in their GANs generator. The ob-
jective of this research is to reconstruct cardiac auscultation,
an audio signal generated from heartbeats with a frequency
of less than 500 MHz. To further improve the performance,
I also took advantage of the self-attention mechanism and
applied it at the end of each down-sample and up-sample
block in the traditional UNet. The discriminator used the
traditional CNN. Fig. 4 illustrates the generator structure.

During training, the discriminator loss function is the bi-
nary cross-entropy loss. The generator loss function contains
the traditional MSE loss combined with peak alignment loss.
The MSE loss can be defined as:
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Noticing that the model may misalign the peaks in the
prediction. I also include a peak alignment loss, which is
defined as:

𝐿𝑂𝑆𝑆𝑝𝑒𝑎𝑘 =
1
𝑁

𝑁∑︁
𝑖=1

(
𝑑𝑦

(𝑖 )
𝑝𝑟𝑒𝑑

𝑑𝑖
− 𝑑𝑦 (𝑖 )

𝑑𝑖
) (2)

2



Figure 4. The Generator of GANs

The overall loss is the sum of the MSE loss and the align-
ment loss, where 𝛼 is the weight to balance those two losses.

𝐿𝑂𝑆𝑆𝑝𝑟𝑒𝑑 = 𝛼 ∗ 𝐿𝑂𝑆𝑆𝑚𝑠𝑒 + (1 − 𝛼) ∗ 𝐿𝑂𝑆𝑆𝑝𝑒𝑎𝑘 (3)

4 Experiments
4.1 Dataset and EDA
The dataset I used for the accelerometer to PPG was col-
lected in my research group, which consists of 5 people.
Each of us wore a VR headset for 25 min and collected both
accelerometer data and the PPG data. The PPG data was
collected from a PPG sensor connected to an Arduino Uno
developer board. Each experiment was repeated for 4 times.
Fig. 5 demonstrates the PPG sensor connected to the Arduino.
Before feeding into the model, the accelerometer data was
preprocessed to filter out the high frequency noise using a
Butterworth bandpass filter. The cutting frequency was set
to be 40Hz. Then the accelerometer signal was smoothed by
a convolution of a constant signal of 1.
The dataset I used for PPG to ECG is the BIDMC PPG

and Respiration Dataset [7]. This dataset was collected from
53 patients from clinical records. Each patient collected 8
minutes of respiration, PPG, ECG lead V, II, and AVR. The
sample rate was 125Hz. One of the data samples is illustrated
in Fig. 6.
The overall dataset was formed by randomly selecting

60000 samples out off the entire dataset. The training set
was built by 80% of 60000 samples, which was 48000 samples.
The test set took the rest 20%. Before feeding into the model,
I performed the min-max scale to make both PPG and ECG
in the range [-1, 1]. The dataset was split into continuous
windows of 160 samples since the heart rate was around 1Hz.

Setting the window size to 160 guaranteed at least 1 beat in
each window.

4.2 Hyperparameters
The Transformer model has an input dimension of 3, of
which the first is the raw PPG, the second is the real part of
the Fourier Transform of PPG, and the third is the imaginary
part of the Fourier Transform of PPG. In order to capture
the inner-related feature, I also add two CNN layers before
feeding the signal into the Transformer. The embedding
dimension is 160. The number of heads is 16. The number of
encoder layers is 16.
The GANs model generator has 4 down-sample and up-

sample blocks. Each block is then followed by a self-attention
layer. The discriminator has 4 consecutive convolutional
layers.
Both Transformer and GANs are trained for 100 epochs.

The learning rate is set to 10e-4 for both discriminator and
generator. The optimizer is Adam with weight decay to be
0.1.

5 Results Analysis
Fig. 7 shows one of the reconstructed PPG from the ac-
celerometer signals using GANs. Fig. 8 shows one of the
reconstructed ECG from PPG data using Transformer. Fig.
9 shows one of the reconstructed ECG from PPG using
GANs. The MSE of Transformer model was 0.0462. The MSE
of GANs in ACC2PPG was 0.0358. The MSE of GANs in
PPG2ECG was 0.0284. From the images, we could tell the dif-
ference between those two models. The Transformer model
gave more smooth but inaccurate predictions. Whereas, the
GANs model generated more accurate but fuzzy predictions.
By changing the weight between 𝐿𝑂𝑆𝑆𝑚𝑠𝑒 and 𝐿𝑂𝑆𝑆𝑝𝑒𝑎𝑘 , the
GANs model would generate more smooth signals with high
𝐿𝑂𝑆𝑆𝑚𝑠𝑒 weight. Table 1 shows the relationship between
the number of heads in Transformer, the number of encoder
layers in Transformer, and the MSE values.

Table 1. The impact of the number of heads and number of
encoder layers in Transformer

number of heads number of encoder layers MSE

4 4 0.0528
8 8 0.0499
16 16 0.0462

6 Conclusion
As a feasibility study, using accelerometer signals to recon-
struct ECG signal is achivable. Both the Transformer and the
GANs models can work as the PPG to ECG translator. How-
ever, the Transformer model suffers from the reconstructive
accuracy.Whereas, the GANsmodel performs better in terms
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Figure 5. The BIDMC Data

Figure 6. The PPG sensor connected with an Arduino Uno
board

of accuracy, but the fuzziness of the output cannot be used
in clinical conditions. Instead, the time interval between the
reconstructive peaks in the GANs model could be used as a
clinical indicator.
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Figure 7. One of the Reconstructed PPG from accelerometer data using GNAs. Blue: prediction, Orange: ground truth

Figure 8. One of the Reconstructed ECG from PPG data using Transformer. Blue: prediction, Orange: ground truth
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Figure 9. One of the Reconstructed ECG from PPG data using GNAs. Blue: prediction, Orange: ground truth
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