

Medical Recommendation on Knowledge Graph Diffusion Model

Yang Zhao PhD CIS Department

Background

- Medical Recommendation System
 - ✓ Drug Recommendation System
 - ✓ Diagnostic Recommendation System
 - ✓ Lifestyle and Preventative Health System
 - ✓ Clinical Decision Support Systems

https://images.app.goo.gl/LofUbVs 1zMTWh7CG8

https://images.app.goo.gl/hrNcEY2McPfizaTK8

Epocrates: https://www.epocrates.com/

https://images.app.goo.gl/ixRJkQ7ZEnmX49vJ8

Background

Medical recommender systems based on continuous-valued logic and multi-criteria decision operators, using interpretable neural networks https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-021-01553-3/figures/1

Background

Medical Recommendation System

- ✓ noisy implicit feedback between user and KG; personal recommendation
- alleviate the noise issues from data cleaning perspective (resampling or reweighting)
- ✓ from model view: denoising by diffusion models
- ✓ Idea: controlled Gaussian noises in the forward process and iteratively removes noises in the reverse denoising process

Medical recommender systems based on continuous-valued logic and multi-criteria decision operators, using interpretable neural networks https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-021-01553-3/figures/1

Related Works

- □ Knowledge-aware Recommender System
 - ✓ Embedding-based
 - ✓ Path-based
 - ✓ GNN-based: KGCN: consider items' fixed number of neighborhoods for aggregation

KGAT: assign weights to important neighborhoods

KGIN: integrate user's preferences as embedding

- □ Self-supervised learning + data augmentation
 - \checkmark To address data sparsity and improve recommendation performance
 - ✓ Generate new view of use/item representations by maximize the differences between positive and negative pairs
 - ✓ BERT in NLP, mask items to predict, enforce model learn contextual relations

Related Works

Diffusion models

Forward path $(x_0 \rightarrow x_{\textit{T}})$

Transform a data distribution to noise

For each training data point $\mathbf{x}_0 \sim p_{data}(\mathbf{x})$, each step from data to noise: $p(\mathbf{x}_t | \mathbf{x}_{t-1}) = \frac{\mathcal{N}(\mathbf{x}_t; \sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I})}{\frac{1}{\text{Gaussian distribution}}}$

$$\Rightarrow p(\mathbf{x}_t | \mathbf{x}_0) = \mathcal{N} \left(\mathbf{x}_t; \sqrt{\alpha_t} \mathbf{x}_0, (1 - \alpha_t) \mathbf{I} \right)$$

where $\alpha_t = \prod_{s=1}^t (1 - \beta_s)$

Reverse path $(x_{\textit{T}} \rightarrow x_{0})$

Generate data starting from Gaussian noise

Each step from noise to data: $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}) = \mathcal{N}(\mathbf{x}_{t-1}; \mu_{\theta}(\mathbf{x}_{t}, t), \sigma_{t}^{2}\mathbf{I})$

Sampling for
$$t = N, N - 1, ..., 1$$

 $\begin{aligned} \mathbf{x}_{N} \sim \mathcal{N}(0, \mathbf{I}) & \text{Trainable denoising function} \\ \mathbf{x}_{t-1} = \frac{1}{\sqrt{1-\beta_{t}}} \left(\mathbf{x}_{t} - \frac{\beta_{t}}{\sqrt{1-\alpha_{t}}} \mathbf{\epsilon}_{\theta}(\mathbf{x}_{t}, t) \right) + \sigma_{t} \mathbf{z} \end{aligned}$

- Applications
 - ✓ GraphGDP: generate new graphs by continuous-time

noise;

✓ Diffusion probabilistic model:

Recommendation systems

https://www.slideshare.net/slideshow/diffusion-deformable-model-for-4d-temporal-medical -image-generation-253730447/253730447#4

Entity Knowledge Aggregation Module

For knowledge graph G_k , we have:

$$\mathbf{x}_{i} = \operatorname{Drop}\left(\operatorname{Norm}\left(\mathbf{x}_{i} + \sum_{e \in \mathcal{N}_{i}} \alpha(e, r_{e,i}, i) \mathbf{x}_{e}\right)\right),$$
$$f(e, r_{e,i}, i) = \frac{\exp\left(\operatorname{LeakyReLU}\left(r_{e,i}^{\top} W[\mathbf{x}_{e} \| \mathbf{x}_{i}]\right)\right)}{\sum_{e \in \mathcal{N}_{i}} \exp\left(\operatorname{LeakyReLU}\left(r_{e,i}^{\top} W[\mathbf{x}_{e} \| \mathbf{x}_{i}]\right)\right)},$$

- N_i : the neighboring entities of record *i*
- $X_i \in \mathbb{R}^d$: embedding of record
- α e, r_{e,i}, i : the estimated records-specific and relation specific attentive relevance during knowledge aggregation process, to capture distinct semantics of relationships between *i* and *e*.

 α

- $r_{e,i}$: relation type
- $X_e \in R^d$: embedding of patient
- *Norm*: normalization operation
- $W \in R^{d \times 2d}$: customize the input *i* and *e*.
- *LeakyReLU*: non-linear activation function
- Random dropout before aggregation: sparse KG has potential to significantly enhance the performance of recommender system.

Diffusion with KG

Objective: Generate G'_k from G_k

Setup: patient *i* has relations $z_i = [z_i^0, z_i^0, \dots, z_i^{|q|-1}]$ with records set \mathcal{E} , where $z_i^e = 0$ or 1

✓ Forward Process

$$q(\boldsymbol{\chi}_t | \boldsymbol{\chi}_{t-1}) = \mathcal{N}(\boldsymbol{\chi}_t; \sqrt{1 - \beta_t} \boldsymbol{\chi}_{t-1}, \beta_t \boldsymbol{I})$$

Re-parameterize by two
independent Gaussian noise
$$q(\boldsymbol{\chi}_t | \boldsymbol{\chi}_0) = \mathcal{N}(\boldsymbol{\chi}_t; \sqrt{\bar{\alpha}_t} \boldsymbol{\chi}_0, (1 - \bar{\alpha}_t) \boldsymbol{I}), \bar{\alpha}_t = \prod_{t'=1}^{t} (1 - \beta_{t'})$$
$$\boldsymbol{\chi}_t = \sqrt{\bar{\alpha}_t} \boldsymbol{\chi}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, \boldsymbol{\epsilon} \sim \mathcal{N}(0, \boldsymbol{I}).$$

а.

- x_0 : initial state; original adjacency matrix z_i of the record
- $x_{1:T}$: in a Markov chain by gradually adding Gaussian noise in T steps
- N: Gaussian noise distribution
- $\beta_t \in (0,1)$: control the scale of Gaussian noise
- Linear noise scheduler:

Diffusion with KG:

✓ Reverse Process

 $p_{\theta}(\boldsymbol{\chi}_{t-1}|\boldsymbol{\chi}_{t}) = \mathcal{N}(\boldsymbol{\chi}_{t-1}; \boldsymbol{\mu}_{\theta}(\boldsymbol{\chi}_{t}, t), \boldsymbol{\Sigma}_{\theta}(\boldsymbol{\chi}_{t}, t)).$

- $\mu_{\theta}(x_t, t)$: neural network parameterized by θ
- $\sigma\theta(xt, t)$: covariance of Gaussian distribution
- ✓ Optimization of KG Diffusion Process

Maximize the Evidence Lower Bound (ELBO):

 $\log p(\mathbf{x}_{0}) \geq \mathbb{E}_{q(\mathbf{x}_{1}|\mathbf{x}_{0})}[\log p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1})]$ $-\sum_{t=2}^{T} \mathbb{E}_{q(\mathbf{x}_{t}|\mathbf{x}_{0})}[D_{KL}(q(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})||p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}))]$ $\bullet \mathsf{T}$

• The first term: Gaussian log-likelihood $logp(x_0|x_1)$

 $\mathcal{L}_{first} \triangleq -\mathbb{E}_{q(\boldsymbol{\chi}_1|\boldsymbol{\chi}_0)}[\log p_{\theta}(\boldsymbol{\chi}_0|\boldsymbol{\chi}_1)]$ $= \mathbb{E}_{q(\boldsymbol{\chi}_1|\boldsymbol{\chi}_0)}\left[||\hat{\boldsymbol{\chi}}_{\theta}(\boldsymbol{\chi}_1, 1) - \boldsymbol{\chi}_0||_2^2\right]$

• The second term: make the distribution $p_{\theta}(x_{t-1}|x_t)$ approximate the tractable distribution $q(x_{t-1}|x_t, x_0)$ through the KL divergence D_{Kk}

$$\mathcal{L}_t = \mathbb{E}_{q(\boldsymbol{\chi}_t | \boldsymbol{\chi}_0)} \left[\frac{1}{2} \left(\frac{\bar{\alpha}_{t-1}}{1 - \bar{\alpha}_{t-1}} - \frac{\bar{\alpha}_t}{1 - \bar{\alpha}_t} \right) || \hat{\boldsymbol{\chi}}_{\boldsymbol{\theta}}(\boldsymbol{\chi}_t, t) - \boldsymbol{\chi}_0 ||_2^2 \right]$$

□ Collaborative Knowledge Graph Convolution (CKGC)

Objective: Aggregate the user-item interaction data into denoised KG

Enhance its relevance to recommendation tasks

Introduce a dimension to KG's diffusion optimization

Construct the loss (MSE) to CKGC L_{ckgc}

$$\mathcal{L}_{ ext{ckgc}} = \left\| \left[\mathcal{A} \cdot \hat{\mathbf{x}}_0^\top \right]^\top \cdot \mathbf{E}_p - \mathbf{E}_i \right\|_2^2$$

Optimizing ELBO and CKGC loss simultaneously:

$$\mathcal{L}_{\mathrm{kgdm}} = (1 - \lambda_0) \mathcal{L}_{\mathrm{elbo}} + \lambda_0 \mathcal{L}_{\mathrm{ckgc}}$$

- *A*: item-user interaction
- $\widehat{x_0}$: denoised KG's predicted relation probability
- A: aggregation operation
- E_p : patient's embedding
- E_i : record's embedding
- λ_0 : hyperparameter of strength

G KG-enhanced Data Augmentation

Objective: reconstruct G'_k from G_k , only contains the relationships relevant to the downstream recommendation tasks.

graph embedding propagation layer

$$\mathbf{x}_{p}^{(l+1)} = \sum_{i \in \mathcal{N}_{p}} \frac{\mathbf{x}_{i}^{(l)}}{\sqrt{|\mathcal{N}_{p}| \cdot |\mathcal{N}_{i}|}}, \quad \mathbf{x}_{i}^{(l+1)} = \sum_{p \in \mathcal{N}_{i}} \frac{\mathbf{x}_{p}^{(l)}}{\sqrt{|\mathcal{N}_{i}| \cdot |\mathcal{N}_{p}|}}$$

- x_i^l : the encoded representations of item *i*
- x_p^l : the encoded representations of patient p
- N_i : the neighboring entities of item *i*
- N_p : the neighboring entities of patient p

Graph-based collaborative filtering (CF) capture collaborative signals of higher order.

Contrastive loss: maximize the agreement among Positive pairs and minimize the agreement among negative pairs.

$$\mathcal{L}_{cl}^{user} = \sum_{u \in \mathcal{U}} -\log \frac{\exp(s(\mathbf{x}_{u}^{'}, \mathbf{x}_{u}^{''})/\tau)}{\sum_{v \in \mathcal{U}} \exp(s(\mathbf{x}_{u}^{'}, \mathbf{x}_{v}^{''})/\tau)}$$

$$\mathcal{L}_{\rm cl} = \mathcal{L}_{\rm cl}^{\rm patient} + \mathcal{L}_{\rm cl}^{\rm iten}$$

- s(·): cosine similarity
- *τ*: hyper-parameter
- $(x'_{w}x''_{v})|u, v \in U, u \neq v$: negative pairs (the different nodes pairs)
- $(x'_{u'}, x''_{u}) | u, u \in U$: positive pairs (the same node pairs)
- L_{cl}^{user} : contrastive loss of patient, L_{cl}^{item} : contrastive loss of item

□ The overall loss of DiffKG

Optimizing recommendation task by Bayesian personalized ranking (BPR):

$$\mathcal{L}_{ ext{bpr}} = \sum_{(u,i,j) \in \mathcal{O}} -\log \sigma(\hat{y}_{ui} - \hat{y}_{uj})$$

Integrative Optimization:

$$\mathcal{L}_{\rm rec} = \mathcal{L}_{\rm bpr} + \lambda_1 \mathcal{L}_{\rm cl} + \lambda_2 \|\Theta\|_2^2$$

- λ_1, λ_2 : hyperparameter
- o^+ : observed interaction from the Cartesian product of patient and record set
- o^- : observed interaction from the Cartesian product of patient and record set
- O: learnable parameters set of model

Training and Inference

```
Algorithm 1: Pipeline for Knowledge Graph Modification
1 Original KG relations x_0, items, entities, k Updated Knowledge Graph
   G'_{h}
2 Procedure AddNoiseToKG(x_0):
       Apply noise to x_0;
 3
       return x_{T'};
 4
5 Procedure ReverseDenoise(x_{T'}):
       Initialize \hat{x}_T = x_{T'};
 6
       for t = T to 1 do
 7
        \hat{x}_{t-1} = \mu_{\theta}(\hat{x}_t, t) // Deterministic denoising;
 8
       return \hat{x}_T;
 9
10 Procedure ReconstructKG(\hat{x}_T):
       Use \hat{x}_T to build G'_{\mu};
11
       return G'_{k};
12
13 Procedure AddTopKRelations (G'_k, items, entities, k):
       foreach item i in items do
14
           Select top-k entities J = \{j_1, j_2, ..., j_k\} based on scores;
15
           foreach entity j \in J do
16
               Add relation between item i and entity j in G'_k;
17
       return G'_k;
18
19 Function MainPipelinex_0, items, entities, k:
       x_{T'} \leftarrow \text{AddNoiseToKG}(x_0);
20
       \hat{x}_T \leftarrow \text{ReverseDenoise}(x_{T'}):
21
       G'_{\mu} \leftarrow \text{ReconstructKG}(\hat{x}_{T});
22
       G'_{k} \leftarrow \text{AddTopKRelations}(G'_{k}, items, entities, k);
23
       return G'_{k};
24
```


MIMIC Knowledge Graph

□ MIMIC dataset: <u>https://mimic.physionet.org/</u>; (prescription, diagnose, procedure) NDC-RXCUI-ATC4 mapping, CID-

ATC, NDC-RXCUI mapping, drugbank, drug DDI

Preprocess data: <u>https://github.com/ycq091044/SafeDrug.git</u>

ATC4: Anatomical

MIMIC Knowledge Graph

Construct KG on patient, diagnosis, medication, procedure:

✓ Records_final.pkl

User_3 <has_procedure> Procedure_[1, 0, 13, 22, 27, 31, 14, 39, 28, 41, 26, 32, 17, 29]</has_procedure>		
User_4 <has_diagnosis> Diagnosis_[63, 64, 65, 66, 67, 68, 20, 47, 46, 52, 69, 70]</has_diagnosis>		
User_4 <has_diagnosis> Diagnosis_[28, 29, 30, 31, 32, 33, 2, 15]</has_diagnosis>		
User_4 <has_diagnosis> Diagnosis_[0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 13, 2, 22, 26, 40, 41, 28, 42, 43, 4</has_diagnosis>	4, 37, 45, 46,	47, 18, 20, 48, 49, 50, 17, 51, 52]
User_4 <has_procedure> Procedure_[71, 65, 72, 73, 74, 75, 76, 68, 46, 52, 77, 70]</has_procedure>		
User_4 <has_procedure> Procedure_[34, 28, 35, 36, 37, 38, 39]</has_procedure>		
User_4 <has_procedure> Procedure_[1, 5, 6, 0, 13, 22, 2, 29, 26, 38, 28, 41, 32, 45, 18, 17, 52, 44, 12, 39,</has_procedure>	11, 42, 3, 47,	53]
User_4 <has_medication> Medication_[20, 50, 68, 46, 78, 69, 52, 70, 79]</has_medication>		
User_4 <has_medication> Medication_[21, 40, 41, 14, 42, 43, 4, 1]</has_medication>	Table 1: Datase	et Statistics for MIMIC3-Drug
User_4 <has_medication> Medication_[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 22, 26, 40, 29, 47,</has_medication>	Statistics	MIMIC3-Drug
User_5 <has_diagnosis> Diagnosis_[80, 81, 82, 12, 83, 84, 85, 86, 87]</has_diagnosis>	// Dationta	6.250
	# Patients	0,330

 \checkmark Get the actual ID of each patient, diagnosis,

medication, procedure through voc_final dictionary

- \checkmark Drug-drug actions:
 - > Map drug ID to drug SMILEs dictionary through act3toSMILES.pkl
 - connect as the value of adjacency matrix is 1 (ddi_A_final.pkl)
- ✓ Flatten the updated KG and only keep the unique entities and relations.
- [0, 2999] for diagnoses, [3000, 5999] for procedure, [6000, 8999] for med

	#	4 Pati	ents				6,350	1			
	# Diagnoses										
	# Procedures			1,898 1,593							
	# Medication										
	#	Inte	racion				40,326	6			
	# Density					1.					
	ĸ	now	ledge	Grap	oh						
	# Entities										
	# Relations										
	#	4 Trip	lets				41,000	C			
10	٥	11	322500		100	1200	ana				
(0,	0,	1)	(0,	3000,	1)	(0,	6043,	1)	(1,	3007,	1)
10,	1,	1)	(0,	3001,	1)	(0,	6044,	1)	(1,	3009,	1)
(0,	2,	1)	(0,	3002,	1)	(0,	6046,	1)	(1,	3010,	1)
(0,	3,	1)	(0,	3003,	1)	(0,	6048,	1)	(1,	3012,	1)
(0,	6,	1)	(0,	3006,	1)	(0,	6049,	1)	(1,	3013,	1)
(0,	7,	1)	(0,	3017,	1)						

(0, 3012, 1)

(0. 3017. 1)

(0, 8, 1)

Experiment

Experiment Setting

Train/test split: 0.8/0.2diffusion steps: 60epochs: 50dropout rate: 0.2Evaluation: Recall@N,NDCG@N as top-N recommendation metrics, N=20Recall@N = $\frac{\text{Number of relevant items in Top-N recommendations}}{\text{Total number of relevant items}}$ DCG@N = $\sum_{i=1}^{N} \frac{\text{rel}_i}{\log_2(i+1)}$,NDCG@N = $\frac{\text{DCG@N}}{\text{IDCG@N}}$

- rel_i : Relevance score of the item at position i (e.g., binary or graded relevance).
- $\log_2(i+1)$: A discount factor that penalizes lower-ranked items.

Baseline: GNN-based KG-enhanced: KGCN, KGAT, KGIN

Other generative models: multiVAE, CDAE, DiffRec

Result

Q1: How does the performance of our proposed model compare to a diverse range of state-of-the-art models?

Model	Recall@20	Recall@10	NDCG@20	NDCG@10			
DiffKG (ours)	0.0716		0.2515				
MultiVAE	0.0693		0.1988				
CDAE	0.0701		0.1917	Diagnosis		Methods	Medicine Recommendations
DiffRec	0.0706	8	0.2471	Sepsis, Acute respiratory failure, Hypertension		MultiVAE	Metoprolol Tartrate, Vancomycin, Furosemide
KGIN	0.0615		0.2234			CDAE	Furosemide, Metoprolol, Insulin, Nore- pinephrine
KGCN	0.0621		0.1999			KGIN	Vancomycin, Metoprolol Tartrate, Corticos- teroids
KGAT	0.0572		0.1764			DiffKG	Furosemide, Furosemide, Amlodipine, Nore- pinephrine, Acetaminophen, Corticosteroids
				Type 2 diabetes, arthritis, Hyperte lipidemia	, Rheumatoid ension, Hyper-	MultiVAE	Phenylbutazone, Insulin, Fenofibrate, em- pagliflozin, liraglutide
						CDAE	Metformin, Tolbutamide, Phenylbutazone, In- sulin, Acetaminophen, empagliflozin and li- raglutide
						KGIN	Metformin, Amethopterin, Amiloride/HCTZ, Fenofibrate, empagliflozin, liraglutide
						DiffKG	Metformin, Insulin, Acetaminophen, Nifedip- ine, Fenofibrate

Future Works

- **D** Compare with more baseline models
- D Ablation study on different collaborative filtering method: MFBPR, LightGCN, SGL

https://arxiv.org/pdf/2401.06982

- □ Ablation study on different noise scheduler method
- □ Incorporate with LLM for actual user input and provide denoised recommendation
- Efficient denoising strategy
- Visualization and comparison

References

1. Jiang, Y., Yang, Y., Xia, L., & Huang, C. (2024, March). Diffkg: Knowledge graph diffusion model for recommendation. In Proceedings of the 17th ACM International Conference on Web Search and Data Mining (pp. 313-321).

2. Zhao, J., Wenjie, W., Xu, Y., Sun, T., Feng, F., & Chua, T. S. (2024, July). Denoising diffusion recommender model. In Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 1370-1379).

3. Yang, C., Xiao, C., Ma, F., Glass, L., & Sun, J. (2021). Safedrug: Dual molecular graph encoders for recommending effective and safe drug combinations. arXiv preprint arXiv:2105.02711.

Thank you!

