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Abstract

Medical Recommendation Systems (MRS) have become essential in healthcare,
leveraging advancements in Large Language Models (LLMs) and Knowledge
Graphs (KGs). Many efforts have been investigated in this field, however, two
primary challenges hinder the development of reliable Medical Expert Systems
(MES): insufficient domain knowledge on complete and noisy data limited gener-
ative recommendation. To overcome these issues, I applied a modified diffusion
model that integrates a noising-denoising process on a patient-diagnosis-drug
KG. I reconstruct the patient-diagnosis-medication graph using the MIMIC-3
dataset and map it to the Drug-Drug Interaction (DDI) KG using consistent
encodings. The combined KGs are input into the diffusion model to predict
patient-medication connections probabilistically. A collaborative filtering mod-
ule further refines personalized recommendations. Lastrly, I compare the pro-
posed diffusion-based method with existing graph-based approaches and validate
its improved accuracy through experiments and case studies.

1 Introduction

MRS have gained significant popularity due to the rapid development of LLMs
and KGs. A notable example is the IBM Watson Health program [9], which
collaborates with Google Health, Microsoft Health, and Nvidia Health. This
program aims to provide powerful diagnostic analysis as well as accurate and
efficient medication recommendations, leveraging its extensive backend knowl-
edge dataset and powerful online, objective-oriented computation engines. The
research challenges summarized from their experience and other teams’ findings
highlight that insufficient domain knowledge and excessive irrelevant noise sig-
nificantly hinder the further investigation of MES. These challenges need to be
urgently explored and addressed.

Specifically, the first challenge, insufficient medication knowledge, refers to
the gap between clinical data and biomedical KGs, such as Electronic Health
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Records (EHR) data [28]. Although the patient-diagnosis and drug-diagnosis re-
lationships have been widely studied recently, connecting the patient-diagnosis-
drug relationship remains challenging. This difficulty arises due to subject barri-
ers among different encoding standards and the complex molecular and chemical
interactions at different stages of disease progression.

The second difficulty is more closely related to the recommendation system
itself. Noisy data, including inconsistencies between user interactions and un-
derlying medical knowledge, can negatively affect the accuracy and reliability
of recommendations. While implicit feedback, such as recorded prescriptions
or treatment outcomes, is often used to understand patient needs, it can be
misleading [15]. For instance, a prescribed medication may not fully address a
patient’s condition due to incomplete diagnosis or external factors, making it
harder to establish accurate patient-diagnosis-medication relationships [3]. This
noise can confuse recommendation models and reduce their effectiveness in sug-
gesting the most suitable treatments. [4]

To address the aforementioned problems, I integrated the noising and de-
noising process on a processed patient-diagnosis-drug KG to train a diffusion
model by incorporating the loss of the MRS recommendation task between a
patient’s diagnosis and medications. Specifically, I rebuilt the patient-diagnosis-
medication KG from the MIMIC-3 dataset and mapped it to the DDI KG us-
ing the same encoding methods. The combined historical MIMIC-3 and DDI
KGs are then fed into a modified diffusion model to output patient-medication
connections with different probabilities. Finally, the recommended medication
ranks are extracted from the last collaborative filtering module, which consid-
ers personalized recommendation tasks. Additionally, I compared the proposed
modified diffusion-based recommendation method with other knowledge graph-
based and graph-based methods on overall evaluation performance and specific
case study.

2 Related Works

2.1 Medication Knowledge-aware Recommendation Sys-
tems

The method of MRS could be summarized the following key approaches: Knowl-
edge Graph-Based Methods, Collaborative Filtering Approaches, Deep Learning
Models, and Hybrid Methods. Knowledge graphs have become a cornerstone
in many MRS frameworks, as they provide structured representations of enti-
ties and relationships. For example, [28] proposed PharmKG, which integrates
biomedical knowledge graphs with patient-specific data to enhance drug recom-
mendations. Similarly, DDI graphs [18] are often utilized to identify potential
conflicts or synergies between medications, improving the safety and effective-
ness of recommendations. Collaborative filtering methods have been widely ap-
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plied in recommendation systems, including MRS. These methods typically rely
on historical patient-medication interaction data to predict future prescriptions.
Techniques such as matrix factorization and deep collaborative filtering [8] have
demonstrated significant potential in identifying personalized medication rec-
ommendations. However, these approaches often face challenges in dealing with
sparse or noisy data, limiting their effectiveness in real-world applications. Deep
learning models, particularly those using sequence-based architectures, have also
been explored for MRS. Recurrent Neural Networks and Transformers are com-
monly used to model temporal dependencies in EHR data. For instance, [6] de-
veloped RETAIN, an interpretable model that uses attention mechanisms to rec-
ommend treatments based on patient histories. Furthermore, generative mod-
els like Variational Autoencoders (VAEs) [14] and diffusion-based models [22]
have recently been introduced to better capture complex relationships between
patient conditions and medications. Hybrid methods that combine multiple
techniques, such as KGs, collaborative filtering, and deep learning, have shown
promise in overcoming individual limitations. For example, hybrid models often
use knowledge graphs to address data sparsity issues in collaborative filtering
and employ deep learning to capture intricate patterns in patient-medication
interactions [1].

2.2 Sparse Knowledge Graph Recommendation System

Sparse KG recommendation systems aim to leverage knowledge graph represen-
tations to enhance recommendation tasks in scenarios where user-item interac-
tion data is sparse. The integration of KGs into recommendation models has
shown promise in addressing the cold-start problem, improving explainability,
and leveraging additional contextual knowledge. Knowledge Graph Embedding
methods is used to capture semantic relationships within sparse KGs for rec-
ommendation. Early works such as TransE [5] and TransR [27] encode KG
entities and relations into low-dimensional vector spaces. These embeddings
have been integrated with collaborative filtering techniques to enhance recom-
mendation performance in sparse data scenarios. Models such as CrossRec [20]
and CoNet [10] leverage auxiliary domain KGs to augment sparse target KGs,
sharing knowledge across domains. Additionally, context-aware recommenda-
tion systems [2] incorporate user-specific contextual information into KG-based
models to refine sparse interaction data and improve recommendations.

2.3 Generative Recommendation System

Generative Recommendation Systems have gained significant attention for their
ability to model user preferences and item interactions by learning data distri-
butions. Unlike traditional methods, which primarily rely on historical inter-
actions and embeddings, generative approaches aim to synthesize recommenda-
tions through learned generative processes. MultiVAE [14] introduced a vari-
ational autoencoder with multinomial likelihood to capture implicit feedback
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in user-item interaction data. Extensions such as RecVAE [17] improved upon
MultiVAE by incorporating regularization techniques to address overfitting and
enhance recommendation performance. These methods excel in capturing user-
item interaction distributions, especially in sparse datasets. GANs have been
applied to recommendation systems for generating realistic user-item interaction
data. DiffRec [22] employs a diffusion generative model to infer user preferences
by modeling the probabilities of user-item interactions, demonstrating state-of-
the-art performance in sparse recommendation settings. Large Language Mod-
els (LLMs) such as GPT and BERT have shown potential in recommendation
systems by generating recommendations as a sequence prediction task. Models
like GPT-Rec [11] utilize transformer-based architectures to capture sequential
dependencies in user interactions, generating personalized recommendations.
These models excel in scenarios involving sequential or session-based recom-
mendation tasks. Hybrid approaches combine generative models with other
recommendation techniques to leverage their respective strengths.

3 Method

The method on generative medical recommendation worked on diffusion knowl-
edge graph focus on parts: efficient fusion knowledge aggregated from sur-
rounding entities, diffusion process to output as much as varied relations among
triplets, and filtered reliable recommendations feedback. So, I here primarily
applied the method which proposed in DiffKG [12] to integrate medication KGs
on it. And the figure 1 is the pipeline of this method under my understanding.
The following subsections just shown the primary part of the whole method.

3.1 Entity Knowledge Aggregation

The first part is about the comprehensive embedding of entities in KG. To suffi-
cient consider the potential positive relation between entities, like the different
drugs with specific molecular structures might be able to medicate to other di-
agnosis, the aggregations from neighboring entities are fully investigated and
learned. Specifically, for knowledge graph GK , we have:

xi = Drop

(
Norm

(
xi +

∑
e∈Ni

α(e, re,i, i)xe

))
,

α(e, re,i, i) =
exp

(
LeakyReLU

(
r⊤e,iW [xe∥xi]

))∑
e∈Ni

exp
(
LeakyReLU

(
r⊤e,iW [xe∥xi]

)) ,
where, Ni: the neighboring entities of item i. xi ∈ Rd: embedding of

item. Drop: dropout operation to prevent overfitting. α(e, re,i, i): attentive
relevance during knowledge aggregation process, to capture distinct semantics of
relationships between i and e. re,i: relation type. xe ∈ Rd: embedding of entity.
Norm: normalization operation. W ∈ Rd×2d: weight matrix to customize the
input i and e.LeakyReLU: non-linear activation function.
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Figure 1: Pipeline of Medication Diffusion Recommendation System: There are
three main modules: the Entity Knowledge Aggregation Module, the Knowl-
edge Graph Diffusion Module, and the KG Data Augmentation Module. The
integrated KG, which combines historical data from MIMIC-3 and DDI, is fed
into the Entity Knowledge Aggregation Module in the form of a binary patient-
diagnosis-drug graph (D-D). In this graph, a value of 1 denotes that a diagnosis
p can be treated with drug D, while a value of 0 indicates otherwise. The Entity
Knowledge Aggregation Module mitigates the sparsity of diagnosis D by aggre-
gating information from its neighboring diagnoses and medication procedures.
Next, the aggregated embedding entities are passed to the Knowledge Graph
Diffusion Module. In this module, Gaussian noise is added to the entities dur-
ing the forward process. The reverse process denoises the entities by optimizing
the similarity between the original entities’ distribution and the generated dis-
tribution. Finally, the KG Data Augmentation Module applies a collaborative
filtering layer to refine the recommendations. This layer maximizes the agree-
ment among positive pairs (e.g., related patients and drugs) while minimizing
the agreement among negative pairs (e.g., unrelated patients and drugs) within
the patient-drug (P-D) graph. This process is performed simultaneously to im-
prove the recommendation accuracy and reliability.

3.2 Optimizing the diffusion generation and

The aggregated triplets are fed to diffusion model by adding Gaussain noise
and reversing by removing noising according to the learnable way (typically a
neural network). By optimizing the evidence lower bound objective on similarity
between the ground-truth and inferred data distribution at different noise level.
This loss could be denoted as Lelbo.

Further, in order to aggregate the patient diagnosis-medication interaction
and DDI data into denoised KG to enhance its relevance to recommendation
tasks, applyong the Collaborative Knowledge Graph Convolution layer (CKGC)
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before the final output layer of diffusion model. Thus, the training objective
which optimizing ELBO and CKGC loss simultaneously is transformed as fol-
lowing:

Lkgdm = (1− λ0)Lelbo + λ0Lckgc

where, the MSE loss to CKGC could be defined as:

Lckgc =
∥∥∥[A · x̂⊤

0

]⊤ ·Ep −Ei

∥∥∥2
2

3.3 Generated KG reconstruction

Reconstruct G′
k from Gk, only containing the relationships relevant to the down-

stream recommendation tasks. For the Graph Embedding Propagation Layer

with x
(l+1)
p =

∑
i∈Np

x
(l)
i√

|Np|·|Ni|
, and x

(l+1)
i =

∑
p∈Ni

x(l)
p√

|Ni|·|Np|
, the Graph-

based collaborative filtering (CF) captures collaborative signals of higher order
by maximizing the agreement among positive pairs and minimize the agreement
among negative pairs.

Lpatient
cl =

∑
u∈U
− log

exp(s(x′
u,x

′′
u)/τ)∑

v∈U exp(s(x′
u,x

′′
v)/τ)

Lcl = Lpatient
cl + Litem

cl

where, x
(l)
i : the encoded representations of item i. x

(l)
u : the encoded repre-

sentations of user u. Ni: the neighboring entities of item i. Nu: the neighboring
entities of item u. s(·): cosine similarity. (x′

u,x
′′
v) | u, v ∈ U , u ̸= v: negative

pairs (the different node pairs). (x′
u,x

′′
u) | u ∈ U : positive pairs (the same node

pairs). Luser
cl : contrastive loss of user, Litem

cl : contrastive loss of item.
So, the Overall Loss of DiffKG could be defined as optimizing recommenda-

tion task by Bayesian personalized ranking (BPR):

Lrec = Lbpr + λ1Lcl + λ2∥Θ∥22,

where, Lbpr =
∑

(u,i,j)∈O − log σ(ŷui − ŷuj). λ0, λ1, λ2: hyperparameters of

strength respectively. O+: observed interaction from the Cartesian product of
user and item set. O−: observed interaction from the Cartesian product of user
and item set. Θ: learnable parameters set of the model.
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Algorithm 1: Pipeline for Knowledge Graph Modification

1 Original KG relations x0, items, entities, k Updated Knowledge Graph
G′

k

2 Procedure AddNoiseToKG(x0):
3 Apply noise to x0;
4 return xT ′ ;

5 Procedure ReverseDenoise(xT ′):
6 Initialize x̂T = xT ′ ;
7 for t = T to 1 do
8 x̂t−1 = µθ(x̂t, t) // Deterministic denoising;

9 return x̂T ;

10 Procedure ReconstructKG(x̂T ):
11 Use x̂T to build G′

k;
12 return G′

k;

13 Procedure AddTopKRelations(G′
k, items, entities, k):

14 foreach item i in items do
15 Select top-k entities J = {j1, j2, ..., jk} based on scores;
16 foreach entity j ∈ J do
17 Add relation between item i and entity j in G′

k;

18 return G′
k;

19 Function MainPipelinex0, items, entities, k:
20 xT ′ ← AddNoiseToKG(x0);
21 x̂T ← ReverseDenoise(xT ′);
22 G′

k ← ReconstructKG(x̂T );
23 G′

k ← AddTopKRelations(G′
k, items, entities, k);

24 return G′
k;

4 Experiment

To evaluate the effectiveness of the DiffKG framework applied to our prepared
MIMIC-3 and DDI KG for medication recommendation, we have designed a
series of experiments to address the following research questions:

• RQ1: How does the performance of the DiffKG framework compare
against various state-of-the-art recommendation systems in the context
of medication recommendation tasks?

• RQ2: How effectively does the DiffKG framework enhance the inter-
pretability of its recommendations, providing deeper insights into its decision-
making process for medication recommendations?
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4.1 Data

The experiments are carried out on MIMIC-3 [13]. The dataset consists of EHR
collected over 11 years, with each record corresponding to one visit. These
records include diagnosis, procedure, and medication information. The diagno-
sis and procedure codes are further merged according to the ICD-9 standard.
2 shows the typical examples of MIMIC-3 KG with three patients and their
corresponding medical procedure, diagnosis, and medication index encoded by
ATC.

Figure 2: Screenshot of MIMIC-3 knowledge graph

Figure 3: Relationship among Datasets

Figure 4: Screenshot of flatten MIMIC-3 + DDI knowledge graph without du-
plicates
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For DDI information, the top-40 severity types are obtained from TWO-
SIDES [19], and the drugs are subsequently coded according to the same ATC
level. Drug molecular information is extracted from SMILES strings obtained
from [7], and interactions are derived using RDKit’s Chem.

The EHR data, along with the DDI data, are processed following the method-
ology proposed by [26]. The process begins with a longitudinal patient represen-
tation module that learns patient representations from their EHR data. These
patient representations are then passed to a global message-passing neural net-
work (MPNN) encoder, which outputs a global drug vector. Each entry in this
vector quantifies the similarity between the patient representation and each drug
representation. Next, a bipartite encoder, also using the patient representation
as input, generates a local drug vector that encodes the molecular substruc-
ture functionalities of the drugs. Finally, the global and local drug vectors are
element-wise combined in the medication representation module, where the fi-
nal drug representation is obtained through element-wise thresholding. The
relations among used dataset is shown in 3.

Lastly, the triplets extracted from the above process was further flatten and
processed to only keep the unique entities in 4. and relations with scope [0,
2999] for diagnosis, scope[3000, 5999] for procedure, and scope [6000, 8999] for
medication. The statistics of the post-processed data are reported in Table 1.

Table 1: Dataset Statistics for MIMIC3-Drug

Statistics MIMIC3-Drug

# Patients 6,350
# Diagnoses 1,917
# Procedures 1,898
# Medication 1,593
# Interacion 40,326
# Density 1.28× 10−5

Knowledge Graph
# Entities 3,612
# Relations 4
# Triplets 41,000

4.2 Evaluation

Recall@N and NDCG@N (Normalized Discounted Cumulative Gain) are com-
monly used evaluation metrics in information retrieval, recommendation sys-
tems, and ranking tasks. They could be defined as following:

Recall@N =
Number of relevant items in the top-N results

Total number of relevant items
(1)

Where, N denotes the number of top-ranked items considered. Number of rel-
evant items in the top-N results represents the count of relevant items present
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within the top-N retrieved results. Total number of relevant items denotes the
total count of relevant items available for the query or dataset.

DCG@N =

N∑
i=1

reli
log2(i+ 1)

(2)

Where, reli: is the relevance score of the item at position i. And i is the rank
position of the item in the retrieved list.

IDCG@N =

N∑
i=1

relideali

log2(i+ 1)
(3)

Where relideali represents the relevance score of the item in the ideal ranking.
NDCG@N is obtained by normalizing the DCG by the IDCG:

NDCG@N =
DCG@N

IDCG@N
(4)

Where, reli represents the relevance score of the item at position i. relideali is the
relevance score of the item in the ideal ranking. N is the number of top-ranked
items considered. Recall@N focuses only on the presence of relevant items in
the top-N results, without considering their order. NDCG@N takes into account
both the relevance and the ranking position, giving higher weight to relevant
items appearing earlier in the ranking. Both of the two evaluation represents
better when values are bigger.

4.3 Baselines

For a comprehensive evaluation, we thoroughly compare our DiffKG with a
diverse set of baselines derived from different research streams.

GNN-based KG-enhanced Recommenders .

• KGCN [21]: The implementation of this method is based on their released
GitHub repository: https://github.com/hwwang55/KGCN.git.

• KGAT [23]: The implementation of this method is based on their released
GitHub repository: https://github.com/xiangwang1223/knowledge_graph_
attention_network.git.

• KGIN [24]: The implementation of this method is based on their released
GitHub repository: https://github.com/huangtinglin/Knowledge_Graph_
based_Intent_Network.git.
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Generatio-based KG-enhanced Recommenders .

• MultiVAE [14]: The implementation of this method is based on their
released GitHub repository: https://github.com/dawenl/vae_cf.git.

• CDAE [25]: The implementation of this method is based on their released
GitHub repository: https://github.com/henry0312/CDAE.git.

• DiffRec [22]: The implementation of this method is based on their re-
leased GitHub repository: https://github.com/YiyanXu/DiffRec.git.

4.4 Hyper-parameters

For all baseline models, I directly applied their default or recommended hyper-
parameters from their original experiments. For DiffKG, the parameters from
the original paper vary significantly across datasets such as Last-FM, MIND,
and Alibaba-iFashion, which have different structures compared to our dataset,
MIMIC-3 + DDI. Specifically, differences include the User-Item (U-I) graph
settings and graph sparsity. To adapt to these differences, I began by testing the
recommended hyper-parameters from the original paper and then made further
modifications and adjustments. The final experimental settings are summarized
in Table 2.

Table 2: Hyper-parameters for DiffKG
Category Hyper-parameter Value / Tuning Range

Diffusion Setting

Diffusion steps (T ) 50
Noise lower bound (αmin) 1× 10−4

Noise upper bound (αmax) 1× 10−3

Noise scale (s) {1× 10−4, 1× 10−3}
Denoising Neural Network MLP

Loss-related
Loss balance factor (λ) {0.1, 0.2, . . . , 0.6}
Denoising weight factor (σ) {0, 0.05, 0.1, 0.2, . . . , 0.9}

5 Results

5.1 Overall Results

The experimental results, as shown in Table 3, demonstrate that the DiffKG
model outperforms other baseline models across multiple key metrics for med-
ical recommendation tasks, utilizing the MIMIC-3 and DDI knowledge graph.
DiffKG effectively leverages the structural and relational information from the
knowledge graph to address challenges like data sparsity and enhance its ability
to recommend medications.
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Notably, DiffKG achieves the highest Recall@20 (0.0716) and excels in ranking-
based metrics such as NDCG@20 (0.2515) and NDCG@10 (0.4378), highlight-
ing its superior ability to prioritize and rank relevant recommendations. These
strengths make it well-suited for medical applications requiring accurate and
reliable medication suggestions.

While DiffKG slightly lags behind CDAE in Recall@10, this indicates po-
tential for further improvement, particularly for smaller recommendation sets.
Future enhancements, such as integrating user-specific noise handling or collab-
orative filtering techniques, could improve its performance in this area. Over-
all, DiffKG demonstrates state-of-the-art performance, particularly excelling in
ranking relevance, making it a robust framework for precise and clinically rele-
vant medical recommendations.

Table 3: Performance comparison of models on recommendation metrics.

Model Recall@20 Recall@10 NDCG@20 NDCG@10

DiffKG (ours) 0.0716 0.1300 0.2515 0.4378

MultiVAE 0.0693 0.1210 0.1988 0.3757

CDAE 0.0701 0.1331 0.1917 0.3642

DiffRec 0.0706 0.1292 0.2471 0.4223

KGIN 0.0615 0.1239 0.2234 0.3843

KGCN 0.0621 0.1292 0.1999 0.3718

KGAT 0.0572 0.1196 0.1764 0.3681

5.2 Case Study

To further analyze the performance of DiffKG, a case study was conducted to
compare its medication recommendations against other baseline methods, in-
cluding MultiVAE, CDAE, and KGIN. The case study is based on two diagnosis
scenarios, with the corresponding recommendations summarized in Table 4.

The case study highlights DiffKG’s ability to provide broader and more
targeted medication recommendations compared to other methods. For both
diagnosis scenarios, DiffKG suggests a diverse and clinically meaningful set of
medications, effectively balancing specificity and comprehensiveness. For in-
stance, DiffKG includes additional medications such as Amlodipine and Nifedip-
ine, demonstrating its strength in addressing hypertension-related conditions
and complex comorbidities. These results reflect DiffKG’s capability to lever-
age the underlying knowledge graph structure to model intricate relationships
between diagnoses and medications.
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Table 4: Diagnosis and medicine recommendations for different methods.

Diagnosis Methods Medicine Recommendations

Sepsis,
Acute respiratory failure,
Hypertension

MultiVAE Metoprolol Tartrate, Van-
comycin, Furosemide

CDAE Furosemide, Metoprolol, Insulin,
Norepinephrine

KGIN Vancomycin, Metoprolol Tar-
trate, Corticosteroids

DiffKG Furosemide, Amlodipine, Nore-
pinephrine, Acetaminophen,
Corticosteroids

Type 2 diabetes,
Rheumatoid arthritis,
Hypertension, Hyperlipidemia

MultiVAE Phenylbutazone, Insulin, Fenofi-
brate, Empagliflozin, Liraglutide

CDAE Metformin, Tolbutamide,
Phenylbutazone, Insulin, Ac-
etaminophen, Empagliflozin,
Liraglutide

KGIN Metformin, Amethopterin,
Amiloride/HCTZ, Fenofibrate,
Empagliflozin, Liraglutide

DiffKG Metformin, Insulin, Ac-
etaminophen, Nifedipine, Fenofi-
brate

6 Conclusion and Future Work

In this work, we evaluated the DiffKG framework for medication recommenda-
tion tasks using the MIMIC-3 and DDI knowledge graph. The results demon-
strate that DiffKG outperforms baseline models in key metrics such as Recall
and NDCG, highlighting its ability to provide clinically relevant and well-ranked
medication recommendations. This superior performance underscores the effec-
tiveness of leveraging knowledge graph structures and diffusion-based mecha-
nisms to address challenges like data sparsity and noise. Furthermore, the case
study illustrates DiffKG’s capacity to generate diverse and targeted recommen-
dations by modeling complex relationships between diagnoses and medications.

While the overall performance comparison confirms DiffKG’s strong capa-
bility in medication recommendation tasks, further investigations are necessary.
Specifically, hyper-parameter tuning and key module ablation studies should be
conducted to enhance DiffKG’s adaptability and performance in real-world med-
ical systems. Additionally, the datasets used to evaluate DiffKG’s performance
are derived from historical knowledge graphs. Thus, its effectiveness in online
medication recommendation systems, where real-world patient-drug feedback
introduces more complex noise, remains to be thoroughly explored.
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Future work will focus on integrating DiffKG with SSLRec [16] to collaborate
with other modules and improve its generative capabilities in real-world scenar-
ios. This integration aims to address the unique challenges posed by dynamic
and noisy environments, ensuring the framework’s scalability and reliability in
practical medical applications.
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