
INTRODUCTION 

The focus of this project is to explore reinforcement learning by the means of a hands-on 

project; the basis of the code for developing the game is from python-engineer whose github is 

linked at the end of the report. I chose to use the game “snake” because of it’s simple but 

difficult style of play. My overall objective is to build an AI that will ultimately be able to play 

the game reasonably well; however, my primary learning goals focused on trying out different 

parameters to see how they would affect the way that the agent played the game. I wanted to be 

able to break down the problem and form predictions on what parameters would have the biggest 

impact on the performance and subsequently check to see if the behavior aligned with 

expectations.  

 

BACKGROUND 

 

Essentially, snake is a 2d survival game on a grid where the player controls a “snake” and 

chooses the direction that it moves in. The “snake” starts off as a block and once the game starts 

it moves in a linear motion at a predetermined speed. An important thing to note is that there’s 

no stopping at all once the game starts; the snake is constantly propelled forward, and the goal is 

to get the highest score possible without letting the snake run into the wall or run into itself. In 

order to increase the score, the snake needs to eat “food” which are the red blocks on the grid. As 

the snake moves around the grid, if its location overlaps with the piece of food, the block gets 

added on to the tail and the score increases by a set amount. In my case the score increased by 1 

every time, and after the snake eats a piece of food, another one is randomly generated 

somewhere else on the grid. 

The snake starts at a size of 1 block and gradually increases in length proportional to the 

number of food pieces that it eats. The size of the playing grid is also fixed so technically there is 

an upper limit for the highest score. It would be the length times the width – 1 because the snake 

starts off by occupying 1 spot with a score of 0. In my particular experiments, I used a grid of 

size 20 by 20 so the highest score that can be achieved is 399.   

Figure 1. demonstrates that there are multiple different avenues that the snake can take in 

order to get the food. It’s almost impossible to calculate exactly how many different viable paths 

there are because the snake can always loop around infinitely without consequence. In the 

traditional game, as long as it doesn’t run into anything, it’s free to keep going. One thing that 

can be said for certain is that as the snake grows in size the number of viable paths decreases 

until eventually the snake either wins or encloses itself with no viable paths. If we take a 

conceptual examination of what happens as the snake grows, it becomes clear that each time a 

piece of food is eaten the number of valid positions on the grid decreases by 1. Another 

important consideration is that in my particular experiments I implemented a timer that would 

end the game if the snake would find itself in a long loop. This serves to remedy the issue of 



infinite loops since there were times in training that the snake would get stuck because there is 

not enough incentive to explore.   

 

Figure 1. Demonstration of multiple paths 

 

The reason why I decided to use deep reinforcement learning in order to tackle this 

problem is because I felt as though breaking down the problem into rewards for certain actions 

would be the most efficient way to go about learning as opposed to using something like 

supervised or unsupervised learning. Since it wouldn’t really be feasible to have an “answer key” 

or have the model find patterns because of the nature of the problem. I was able to assign certain 

rewards for actions to encourage certain behaviors which I will discuss in the next slide.  

REWARDS 

When I was deciding how to allocate the rewards, I tried multiple different combinations to see 

which ones worked the best. In the case of eating the food the main two options that I was 

deciding between were whether to just reward the program when it successfully ate the food or 

whether to give it rewards for going towards the food and negative rewards for going farther 

away. The results, which can be seen in figure 2., clearly show that the superior option is simply 

rewarding the agent when it successfully ate the food.  I think that this was because if I 

negatively rewarded it for moving away from the food then it would be reluctant to try more 

complex strategies. Sometimes moving away is advantageous because it positions the tail in a 

convenient location relative to the food and the direction that the snake is going. It’s also 

advantageous sometimes to move away from the food because it allows for different attack 

angles; for example, if the southern side of the food is a wall it might be more effective to attack 

it from west to east instead of north to south. I think this was because of the reward being tied to 

actually getting the food and surviving for as long as possible after in order to continue the cycle. 

Again, this is not as much of a problem in the earlier stages but as the snake grows it gets 



enclosed in its tail much more often than if it would be able to move away from the food 

strategically without consequence.  

 

Figure 2. Comparing rewards structures 

 

The next three rewards that were established were for hitting the wall, when the snake ran 

into its tail, and when the snake timed itself out. There wasn’t much room for variation here – I 

just set a negative reward value for each action so the agent would try to avoid it as much as 

possible. Even though it was clear that those actions should yield a negative reward, I tested 

various values to determine how that value should scale to the rest of the rewards. The optimum 

value that was determined was -5 for each of them. When the value was a large negative number 

for hitting the wall and running into its tail, the snake did not try different routes and would end 

up in loops which would cause the game to end. Similarly, when I had a large negative number 

for ending the game by timing out, the snake had much more direct routes and ended up running 

into the wall a lot more.  

 

Another factor that was considered was whether there should be a reward for the agent 

for staying alive. This implementation severely crippled the performance of the system. The 

snake would disproportionally try to loop around since it was rewarded for doing so. In my 

experimentation it seemed as though this detracted the snake from the immediate goal of getting 

the food. If it survived it was getting points so there was less of a reason it needed to risk itself 

and try different paths to get the food. This was obviously counterbalanced by the negative 

reward for the timer but nonetheless even with increasing the negative reward for the timer this 

reward did not prove to increase performance in any meaningful way.  

 

0

5

10

15

20

25

30

35

Reward Strategy 1 Reward Strategy 2

Average Score After 1000 Runs



 

 

INFORMATION ALLOCATION 

In addition to deciding the rewards, I need to decide what information to give the agent 

such as where the food is. Between giving the general direction of the food relative to the head of 

the snake and giving the exact coordinates, my experimentation showed that giving the general 

direction actually performed better. The average score for the snake that was given the exact 

coordinates was 11, after 1000 runs, which is much less than the score of 32 for a snake that was 

just given the general direction.  

This was definitely an unexpected outcome since I was under the impression that giving 

more information would yield better results. When the program had the exact coordinates it 

would often make it to the food faster but then get trapped in itself by going on more direct 

routes. When it had general directions the paths of the snake were a lot windier which ended up 

giving the head a better chance at survival. By having windier routes, the tail of the snake would 

fold and limit the space that it would take up. Even though technically the size of the snake is 

still the same, if the snake is laid out in an undesirable position, it can effectively reduce the size 

of the usable board by limiting the directions that the snake can move in without running into 

itself.   

The other piece of information is the location of the wall relative to the head of the snake. 

Similar to the location of the food, I opted to limit the information given to the agent by only 

letting it know if there is an obstacle in any direction 1 block away from the head. This includes 

either the wall or the tail of the snake. My thought process behind this was to let the agent 

explore without having to consider the obstacles until it was necessary. If I gave it too much 

information at once I didn’t want to unnecessarily complicate its decision process. Not only 

would this result in an overly complex process, but it would also waste computational resources 

and slow training down significantly. Since the walls were always at the edge of the grid instead 

of like a labyrinth, the 1 block away method worked reasonably well.  

HYPER-PARAMTETERS 

I decided to go for a single hidden layer with 512 neurons because of the relative 

simplicity of the problem. When I tried adding more hidden layers the performance didn’t 

increase – I found that it capped out at around 32. Since it didn’t increase performance, I decided 

that it would be a waste of resources and time to include additional layers. 

 For the input layer I used 11 neurons. I decided to use this number because of the 4 movement 

directions the snake is travelling in, 4 relative directions of the food to the head and 3 potential 

collision directions (either to the left, straight, or right).  

For the output layer, I chose 3 neurons because the idea is to decide which direction the head 

should go in. The system outputs a probability for each direction and the agent chooses the 

highest value and travels in  



For the activation function I used a ReLu activation function which is the popular choice.  

I considered using a dropout rate; however, after thinking about it further I decided not to since 

there is no real concern for overfitting like in other types of problems.  

I tested multiple batch sizes and found that smaller batch sizes worked terribly for this problem. 

Figure 3. depicts the learning curve for when I tried a batch size of 8.  This is most likely because 

with such a small batch size the system was changing its parameters before there were any 

meaningful conclusions about strategies and thus was stuck with subpar performance. The 

breakdown of the scores makes it seem that the agent is performing no better than random 

movements. I ended up using a batch size of 1024. Any batch size larger than that did not 

performed similarly to a batch size of around 1024 but took much longer for the system to train 

on.  

 

Figure 3. Batch size 8 example 

EXPLOATION VS. EXPLOITATION 

Because of the nature of the problem, I didn’t have to deal with “overfitting” in the 

traditional sense. The training data is essentially the same as the test data because each level is 

random, and the agent is given the same information and quality of environment. One thing that I 

did need to account for however is the issue of exploration vs. exploitation. This is a common 



problem in reinforcement learning. Your agent wants to get rewards, so it wants to try new things 

to see which actions yield the most reward. But at the same time if it knows certain actions that 

will yield a reward it might not want to try new things in case those actions yield less reward 

than it could otherwise get. To combat this, I used a random variable epsilon to force a random 

move every so often. If we refer to figure 3., we can see that the epsilon value that I chose is 100 

and the cutoff value is 200. This essentially means that when the game starts, there is a 50% 

chance to make a random move regardless of what the agent thinks is the best direction to travel 

in. As the games progress, the chance that the agent will be forced to choose a random move 

reduces to 0. After the epsilon value reduces to 0 or less, the chance that the random number 

generator chooses a number that is smaller than epsilon is 0.  This would ensure that the agent 

would be forced to try new things regardless of what it already knows but after it has gained 

some experience it can start to rely more on its own decisions. The reason why I wanted to 

include this was to inhibit the agent from trying the same strategy too much in the beginning and 

getting stuck in certain patterns – hence fostering exploration. As mentioned earlier, this was not 

the only factor when considering the issue of exploration vs. exploitation. When deciding the 

different rewards distributions, this was definitely a major factor to consider. By not having a 

disproportionately high negative value for running into an obstacle, I tried fostering exploration 

of the environment. Similarly, by giving the agent a reward if it gets food, I was able to get it to 

take advantage of what it knows is effective to find food and continue to survive.  

 

Figure 4. Random moves 

 

 

FINAL THOUGHTS 

Overall, my system capped out at around an average score of 32. It showed that the agent 

was able to play the game reasonably well although a skilled player would be able to beat this 

score. It is interesting to see that even as time progresses and the agent has more experience 

playing the game, the range of scores that it gets remains relatively large. The highest score that 

it was able to achieve was 92, but even after that it scored less than 20 many times. Based on my 

observations on how the snake behaves as it plays the game, most of the time that it was losing 



was when it would enclose itself with its tail. This is much different than the beginning before 

any training where the snake would move erratically and either not be able to find the food until 

the time runs out or simply run into the wall. I think the agent isn’t taking the location of the tail 

into account so when it gets longer it moves in such a way that it doesn’t leave an escape route 

when it circles a food. A possible improvement on this system would be if I would give the agent 

more information about the relative location of the tail and how it’s situated onto the graph so it 

can take it into account when taking actions. I could potentially do this with coordinates of each 

block on the tail.  

 

Figure 5. Optimal Performance 

This project allowed me to explore the different intricacies of deep reinforcement 

learning. When I first started researching this topic, I was surprised to find that there weren’t 

necessarily any benchmarks for hyper-parameters that scholars deemed appropriate for certain 

types of problems. After experimenting, I realized that this was because of the immense 

variability that each problem has from one another and how much the different combinations of 

hyper-parameter values actually changes the results. For example, when I changed the learning 

rate from 0.0001 to 0.00001, it completely changed the shape of the learning curve and decreased 

performance slightly, as can be seen in figure 4. However, for some other games, a learning rate 

of 0.00001 or even smaller might prove to work better than 0.0001. Another good example of 

why there is not a single standard for designing a neural network is when I was deciding how 



many hidden layers to include. As I mentioned earlier, I decided to have a single hidden layer 

and I stated that it was because the problem was relatively simple, but there actually isn’t a 

metric that I can use to verify that or compare it to other problems that might be similar. I just 

needed to evaluate the game as a whole and after trial and error concluded that having only a 

single hidden layer was the best approach.  

 

 

 

Figure 6. Learning rate reduced to 0.0001 

 

 

Some future extensions to this project could be if I increased the size of the board after a certain 

score. It would give the snake more room to work with and since the main issue I saw was 

enclosing it would be interesting to see how the model would perform. I could also add obstacles 

to see how the model would avoid these.  

 



Additional potential experiments would also be adding multiple pieces of food on the board at 

the same time to see if this could increase the high score. And finally adding a poison food that 

would give a negative score but not necessarily end the game. It would be interesting to see how 

heavily the model would try to avoid these blocks. If I would be able to implement these 

variations of the problem, then I think that would give valuable insight on how the model works 

and thus provide us direction on how to tweak the existing parameters to further improve 

performance.  

  



 

References 

 

https://www.mdpi.com/2079-9292/11/4/540/htm  

https://www.baeldung.com/cs/reinforcement-learning-neural-network 

https://neuro.bstu.by/ai/To-dom/My_research/Papers-2.1-done/RL/0/FinalReport.pdf 

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.2894 

https://towardsdatascience.com/snake-played-by-a-deep-reinforcement-learning-agent-

53f2c4331d36 

https://machinelearningmastery.com/choose-an-activation-function-for-deep-

learning/#:~:text=ReLU%20Hidden%20Layer%20Activation%20Function,function%20used%2

0for%20hidden%20layers. 

https://arxiv.org/pdf/1811.03378.pdf 

https://github.com/python-engineer/snake-ai-pytorch 

 

https://www.baeldung.com/cs/reinforcement-learning-neural-network
https://neuro.bstu.by/ai/To-dom/My_research/Papers-2.1-done/RL/0/FinalReport.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.2894
https://github.com/python-engineer/snake-ai-pytorch

