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1 Abstract

Minecraft has been the focus of much Al research in past years. Most recently, interest
has risen in procedural generation of settlements in Minecraft, largely due to a annual
competition established in 2018 called the Generative Design in Minecraft Competition.
Inspired by this recent research, we aim to develop a set of algorithms that are capable
of building a realistic & functional Minecraft settlement in a randomized location with
previously unseen terrain. We utilized a variety of search-based algorithms to accomplish
different goals, including a modified version of the A* algorithm for road-building & a
modified fitness function for analyzing plots of land. These algorithms communicate with
Minecraft through the use of a HI'TP server and Python client described on page 10. Our
final product is capable of clearing trees & grass, analyzing the best plots of land to build
on, building houses, and connecting houses with a dynamic path. After several tests, it’s
evident that it handles various terrain quite well with few inconsistencies. Looking forward,
we’d like to expand our methodology to allow for the creation of more varied & intricate
buildings: cellular automata or graph grammar seem to be good options for this. We also
found that deep learning approaches haven’t been explored much in this research area, but
very recent work done using GANs look promising.



2 Introduction

Minecraft is a sandbox video game, created by Mojang in 2009, where players explore and
build in a procedurally generated 3D grid-like world with infinite terrain. The main game-
play element of Minecraft consists of collecting various types of materials and using them
to build tools and structures. The world is divided into 1 x 1 x 1 blocks which can vary
in material, spawning location, and usability. Aside from the popularity of the base game,
Minecraft has become well known for it’s customization possibilities through a variety of
open source application program interfaces. These application program interfaces allow
players to modify textures and color palettes, add new items, block types and enemies, and
more.

(a) Grid (b) Developer Overlay

Figure 1: Observable Minecraft Environment

The open source nature and in-game environment of Minecraft has also caught the
attention of artificial intelligence researchers. The environment of Minecraft is ideal for
research in Al because of the endless possibilities, from training an agent on simple tasks
like searching for a specific object or material, to building complex structures or navigating
obstacle courses. Since the environment is divided into a three-dimensional grid of equal
sized cubes, it is also easy to measure and evaluate the performance of Al in Minecraft.
See figure 1 for a depiction of the Minecraft environment.

This project is focused on the application of Al for Procedural Content Generation
(PCG) within Minecraft. PCG is defined as the algorithmic creation of game content
with limited or indirect user input [14]. Content in the context of PCG can be described as
most of what can be contained within a game including maps, rules, textures, items, quests,
music, characters, and more [14]. Many popular games have made use of PCG including
Rogue, Dwarf Fortress, Diablo, Spore, Civilization, Spelunky, as well as Minecraft itself
[14]. The usage of PCG varies from game to game and can range from fully autonomous
game design, to automating routine or common aspects of game design. One major critique
of PCG in game design has to do with repetition and functionality; rule-based agents are



likely to create good looking and functional content that looks similar, and search-based
agents are likely to create more diverse content, but takes more time and resources to
ensure that it is functional for the player [6].

Most instances of PCG in video games operate from a ’'clean-state’ where the generator
does not have to consider interaction with preexisting in-game elements [6]. Exploring PCG
within Minecraft opens up a new challenge within AI, in which the goal is to produce a
functional and believable village settlement that adapts to different environments within a
Minecraft map [12]. Instead of generating a village on a clean slate, this problem restricts
the generator with the presence of preexisting game elements and focuses on adaptive
generation of artifacts [6]. A map in Minecraft is made up of various biomes which contain
different types of terrain, elevation gradients, fauna, and bodies of water. In order for a
procedurally generated settlement to be functional and believable, it must be adaptive and
able to build on top of and in response to these elements that already exist in the Minecraft
environment.

3 Related Work

3.1 PCG in Games

The most common use of Procedural Content Generation (PCG) in video games historically
has been dungeon generation. Dungeons are labyrinthine-like environments which are made
up of intricate pathways leading to rewards, puzzles, or progression points [18]. Surveys on
the use of PCG for dungeon generation found that it has been applied mostly to 2D games,
while rarely being found used in 3D games [20]. These same surveys found that two main
approaches have been used for PCG, constructive algorithms and search-based algorithms.
Constructive algorithms are usually based on random positioning, cellular automata, or
graphs grammars.

3.1.1 Constructive Algorithms

Cellular automata applies a set of rules for specifying cell-state transitions based on cells’
neighbors to a two dimension grid of cells [2]. This method repeatedly applies the defined
set of rules to the grid, which leads to the change of cell states until the grid stabilizes.
Cellular automata methods for PCG generates large 2D maze-like patterns, which are
generally merged using a region merging algorithm to ensure that the entire area is playable
[2]. This approach is generally used in PCG to create a randomized spatial structure /
layout for a level or dungeon. See figure 2 (a) for an example of a map generated with
cellular automata.
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Figure 2: Dungeon Generation Methods

Graph grammar is an extension of generative grammar, a system of grammatical rules
used to generate sentences or words [16]. Graph grammar is used in PCG to support the
creation of levels that are divided into rooms. Typically, player actions are mapped onto
a directed graph, which is then used to generate the dungeon or level layout. Nodes on
the graph are the player actions, while graph edges indicate the order of actions. This
procedure works well for dungeon or level based games because typically, the geometry
and content of a level are dependent on gameplay requirements, not the other way around
[19]. See figure 2 (b) for examples of gameplay graphs and their generated layouts.

Overall, constructive PCG algorithms present solutions for 3D games, and only one
in recent times supported adaptive generation [20]. So while this work is relevant and
informative to our work, we did not opt to use these approaches in the current iteration of
our project.

3.1.2 Search-based Algorithms

One form of search-based algorithm that has appeared in PCG is genetic algorithms [17].
In general, genetic algorithms encode possible solutions to an optimization problem into
strings, which are then evaluated by a fitness function. The genetic algorithm then goes
through an iterative process of calculating the fitness of solutions then selecting & com-
bining solutions into new strings. A survey of genetic algorithms in PCG found this type
of algorithm applied in multiple fashions.

One such approach uses genetic algorithms to generate a game world that allows linear
progression, using a list of plot points and locations of known types as input [7]. This
approach represents genotypes as a tree data structure where each node represents a portion



of the game environment, see figure 3 (a). It also represents designer-specified probability
for two environment types to be adjacent to each other using an environment transition
graph (see figure 3 (b)). Generations that more closely match the environment transition
graph score highly, while those that diverge from the graph score lower. The fitness function
that this approach uses measures average bridge length, average # of sidepaths, average
# of sidepaths per bridge, total # of sidepaths, total # of nodes, environment transition
probability, and environment transition variance (bridges are areas of the world where
non-plot-specific game play occurs).
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(a) Genetic Space Tree [7] (b) Environment Transition Graph [7]

Figure 3: Genetic Tree Representations

This specific implementation of genetic algorithm applied to PCG is geared towards
2D role playing games, but the authors believe that it could be applied to any other story-
oriented game. We did not end up applying any genetic algorithms in our approach, but
did make use of a modified fitness function for our plot analysis algorithm.

3.1.3 Architectural PCG

PCG for architecture has been used in video games, as well as general digital media. One
recent approach to PCG for architecture uses a declarative (easily steered to intended
typology) and comprehensive (capable of creating multiple typologies) tile-based generator
[1]. This method makes use of architectural profiles (also called tile profiles), which are a
semantic segmentation that characterizes different types of architectural building blocks.
These architectural profiles are then combined, using adjacency conditions that are applied
to each type of architectural profile. A tile solver translates the adjacency conditions into
logic constraints, which then determines tile placement. Examples of tile profiles and their
tile adjacency semantics can be seen in figure 4. This method is capable of producing a
large range of architectural styles, in terms of density (ratio of interior and exterior space)
and repetitiveness (prevalence of patterns in terms of tile placements).

We have not gotten far enough in our current project iteration to tackle building interi-
ors, but this approach looks promising for creating adaptive building interiors & exteriors
in Minecraft. The authors of this work comment that while this approach is game agnostic,
they believe it has potential for generating urban environments in Minecraft [1].
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(a) Tile profiles. From left to right, first row (interior (b) Semantics on tile adjacency
tiles): corner, wall, door, window, interior area, conditions, in two types:
second row (exterior tiles): roof, street, stairs, traversal (in red) and

landing, void tile. [1] construction (in yellow). [1]

Figure 4: Architecture Methods

3.1.4 Reinforcement Learning in PCG

While reinforcement learning has been used to teach an agent how to play a game many
times, using it to teach an agent how to generate a game level has not been explored to the
same extent [10]. This particular application of reinforcement learning has not appeared
in literature until 2020. Khalifa et al. speculate that the reason for it’s absence is that it’s
unclear how to approach the level generation process as a reinforcement learning problem.

To frame this problem as a RL problem, the authors describe PCG as an iterative
task rather than generating all content in one step, which allows them to model PCG as a
markov decision process. To represent the level generation problem as a MDP, they used
three different representations of the state space, action space, and transition function that
are taken from earlier RL approaches. In the first representation which they call ‘Narrow’,
the agent is restricted to a predetermined sequence of build locations. In the second
representation which they call "Turtle’, agents have control over their current location, but
only with respect to their last location. Lastly, in the third representation which they
coined as 'Wide’, the agent has full control over location and tile type. They applied
these three agents to three different 2D level generation problems. To illustrate how their
approach works, we’ll describe one of the problems. In the ’Zelda’ problem, the level must
have exactly one player, one door, and one key, and the player must be able to reach the
key and the door in a set number of steps. The level may have enemies, which cannot
spawn within a certain radius of the player. The goal of the agent in this scenario is to
modify the 2D level [10].

Ultimately the authors found that the agent struggled to design complex levels, but was
still able to generate a large number of playable levels. This approach isn’t easily mappable



to the broad topic of village generation in Minecraft, but is a unique recent approach to
PCG in game design. We aren’t sure of how easily this methodology could be broadly
extended to 3D games, but if possible, then player created villages could be used as the
training materials. This approach could, however, potentially be applied to the specific
problem in our work of generating building floorplans, since a Minecraft building floorplan
can be easily flattened to a 2D space.

3.2 PCG in Minecraft

As described in the introduction, many different AI approaches have been implemented in
Minecraft. In this section we will describe a few of the most closely related recent papers
to our topic of settlement generation in Minecraft.

3.2.1 GDMC

Competition Description One of the existing research areas that piqued our interest in
this topic is the Generative Design in Minecraft Competition. This competition encourages
AT researchers to produce Al agents that are capable of generating functional, aesthetically
appealing, and believable villages / settlements that adapt to a randomly selected location
in Minecraft [13],[11],[12]. The competition evaluates submissions based on adaptability,
functionality, believable narrative, and visual aesthetics. Adaptability measures how well
structures adapt to terrain, whether structures reflect the surrounding environment, and
whether the settlement takes advantage of terrain or compensates with terrain issues.
Functionality measures how accessible the settlement is for players, whether there is easy
access to resources such as food and water, whether it scales well as size increases, and
whether there are protections from danger. Believable narrative measures how well the
settlement tells a story, shows how it was developed, evokes a narrative, and whether
there’s a sense of culture. Visual aesthetics are a measure of how good the settlement
looks (subjective), whether there is a consistent look to the settlement, and whether there
is an appropriate level of variation [13]. While the GDMC competition was our initial
inspiration for this project, we are not set on submitting to the competition at this stage
in the project. We did lean on several of the more concrete evaluation metrics of the
competition when developing our methods, particularly adaptability and functionality.

The GDMC competition has been a yearly occurrence since 2018, but unfortunately
few competitors have released papers discussing their approach and methodology, aside
from a yearly summary report that’s put out by the official competition. It started with
just 4 competitors in 2018, and has risen to 20 by 2021, with many of the teams returning
each year to submit their improved versions. We have found a detailed paper that applies a
multi-agent approach in 2021’s competition, as well as a cellular automata approach taken
in 2019’s competition.



Competition Submissions Esko and Fritiofsson developed a multi-agent system for
PCG in Minecraft for the 2021 GDMC competition [4]. This approach differs from ap-
proaches we’ve seen implemented in code that lack a written report - it is the only approach
so far that’s implemented a multi-agent system where all generative tasks are performed
by an agent in real time, via a NPC (non-player character). The generator sequence de-
scribed by this approach scans and abstracts the selected build area, creates a founding
seed, generates the roads and then lastly generates buildings. Similarly to our approach,
the authors generated a height map of the area (see figure 7 on page 13 for a height map
example), as well as a liquid map. We did not use a liquid map in our implementation - they
created it by taking the height map, and checking the block above for water, and setting
the array value at that position to 1 if water is found, and 0 if no water is found. They used
the combination of these two maps to create a weighted directed graph where each node
represents a coordinate from the height map, and the weight of the edges is dependent on
the height difference between nodes [4]. This approach builds the settlement by expanding
from a center point, which they refer to as a founding seed. They do several depth-first
searches of the height map and liquid map to identify regions of similar height, discarding
nodes that differ too much from the average. This algorithm determines a starting location
with the most space to grow the settlement. Once the founding seed has been identified,
they utilize two sets of agents deemed ’extendor agents’ and ’connector agents’. Extendor
agents are tasked with extending the road network - they perform random walks over the
terrain within the initial given build area. When the agent discovers a node not currently
part of the road network, they use Djikstra’s algorithm to find the closest piece of road to
connect it to. Connector agents are tasked with increasing the connectivity of the road net-
work, ensuring that any two points in the settlement have direct routes. These agents use
a Digital Differential Algorithm to make sure that road intersection opportunities are not
missed. This algorithm runs every time the agent takes a step, and draws lines in random
directions to determine if any other roads are within a given range. Once the roads have
been created, a plotting agent also performs random walks to determine suitable building
locations. Once an agent finds a location that isn’t road and not overlapping an existing
plot, it performs bounded depth-first search to expand the plot to a certain boundary,
which is then built upon [4]. The biggest difference between this approach and our chosen
approach (aside from use of multiple agents) is that this paper builds roads before building
plots, and uses Djikstra’s algorithm instead of A algorithm for road building.

One other methodology paper exists alongside a GDMC submission, which details an
approach to generating floor plans using cellular automata algorithms. This paper by
Green et al. summarizes their approach to both floor plan generation and external wall
generation [6]. They use a constrained growth algorithm to generate each building’s floor
plan, which grows in single block steps. First, they determine the number of rooms by
taking the rounded cubed root of the total building area, which they have restricted to a
rectangular shape. Each room is given a random initial starting location, which is always 2
x 2, then the rooms take turns growing one block at each step until none of the rooms can



grow any larger. Doors are then placed with certain restrictions based on the placement of
rooms. Once the internals of the house are complete, the external walls are generated using
a neighbor summation algorithm taken from cellular automata. This algorithm doesn’t care
about the states of specific neighbors at each cell, but rather the sum of those states. In
this example, state 0 is a solid block, and state 1 is a glass window block. They wanted
to achieve a ratio of 75% solid blocks and 25% glass windows, so they made the rules for
cellular automata that if the sum of neighbors is 2 or 3, the current block is set to be glass,
otherwise it is set to be a solid block. This approach leads to randomized, but functional
walls that lead to a nice variety of looks for buildings. The authors comment that the
modularity of this approach also allows for customization later on, if they want to swap in
a different method for one of the steps, such as a grammar based approach [6]. Overall,
this approach to generating floor plans and walls checks all the boxes that we are focusing
on, namely functionality and adaptability, and is an approach that we are considering for
our floor plan design when we reach that point.

3.2.2 Related Minecraft PCG

There are two other non-GDMC Al approaches in Minecraft that are relevant to our
work and worth discussing. The first approach is a project called World-GAN, which uses
generative adversarial networks to generate arbitrarily sized world chunks from a small
sample size [3]. While many researchers have explored graph grammar and rule-based
algorithms for PCG in games, this project is one of few papers we found in our research
area that uses Machine Learning techniques for PCG in games, and the only one using
Machine Learning for PCG in Minecraft. This project contributes a 3D GAN architecture
for PCG in Minecraft, and uses a block2vec technique that is inspired by word2vec. The
training pipeline for WorldGAN can be seen in figure 5. They tested this approach on
biomes in Minecraft, and were able to sucessfully change the styles of one biome to another
(i.e. change the style of a generated forest biome to a desert biome).

Fake Real
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(a) Pipeline (b) 3D Convolution

Figure 5: World-GAN training pipeline [3]



This approach is very interesting, but for our desired use it didn’t seem like the correct
fit. This approach is very good for altering the biome in a given area, but is not able
to transfer structures. It would be possible to train the GAN on a sample that contains
houses and other structures, but there isn’t any type of semantic enforcement of ’structural
correctness’ within the current methodology. The authors confirm that models trained on
samples containing structures result in non-functional and non-sensical structures. While
we chose not to pursue this methodology, this is a project to keep an eye on, as the authors
commented their interest in GDMC and plans to continue researching this topic.

The last related approach we’d like to discuss is another cellular automata based
methodology. While other researchers we’ve mentioned have explored the use of cellular
automata for level generation and floorplan generation, Sudhakaran et al. have developed a
Neural Cellular Automata (NCA) model which is capable of generating entire structures in
Minecraft [15]. This model is capable of higher dimensionality than similar previous work
(3D vs 2D), capable of using more types of constructive units than previous models, and
capable of evaluating all surrounding cells of a given cell using 3D convolutions, compared
to just four immediate neighbors. The model works by training on target structures, then
generating copies of the target structures over a series of epochs. Overall, this model is
capable of generating small structures quickly and with high accuracy, but struggles with
larger structures - taking large amounts of time and encountering random artifacts [15].
This approach was also interesting, but not easily applicable to our problem. Down the
road an approach like this seems like it could be useful for generating buildings, but it
would require training on many different sizes and styles of buildings in order to be used
adaptively.

4 Methodology

4.1 Interface Mod and Python Client

We chose to implement our various algorithms & methodologies using Python, but we still
needed some way of communicating with Minecraft. To do this we chose to make use of the
Generative Design in Minecraft Challenge (GDMC) HTTP Interface Mod and correspond-
ing Generative Design Python Client (GDPC). As mentioned before, GDMC is a yearly
competition for researchers and students to submit their procedural generation algorithms
for Minecraft. In order to allow competitors to focus more on the algorithms themselves
as well as to foster more consistency between how the submissions communicated with
Minecraft, some members of GDMC developed these tools & made them open source for
all to use.

The GDMC HTTP Interface Mod, is, as it sounds, a mod for Minecraft. A Minecraft
mod, or modification, is a user made piece of additional software that adds onto the core
source code of Minecraft. Countless mods exist for Minecraft, most of which are for the
purpose of enhancing the game’s performance/visuals or adding new content to the game,
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but many functional mods such as this interface mod also exist. In order to make addi-
tional software work with Minecraft, however, an API needs to be in place that will make
Minecraft recognize and properly implement the mod’s code (since Minecraft’s code itself
is closed & not directly modifiable). The most popular of which is Minecraft Forge, so we
had to set up Forge for our machines. With Forge set up, we simply installed the GDMC
HTTP Interface Mod and that was that.

The mod itself does one simple yet vital thing within Minecraft: whenever a world is
opened a corresponding HTTP server is launched on localhost port 9000. Thus, with the
mod set up on our machines, as long as we had a Minecraft world open, we could com-
municate to it through this HT'TP server via basic HI'TP requests to certain endpoints.
For example, if we wanted to know what block was at a certain (x, y, z) coordinate in
the world, we could make a GET request to the server at the blocks endpoint (i.e., ”lo-
calhost:9000/blocks”) with the coordinates as parameters and it would return information
about the block at those coordinates. On the other side of things, if we wanted to place
a block, we could perform the same request but as a PUT rather than GET request as
well as provide a block ID as a parameter, and the corresponding block would be placed
at those coordinates in the world. There are multiple other endpoints which serve multiple
other purposes, all of which can be found in the GDMC documentation.

Technically the mod alone is enough for us to communicate with Minecraft, although
having to write the HT'TP requests ourselves is tedious. Luckily the mod’s developers also
thought of this and created the GDPC, which we will refer to simply as the Python client,
to alleviate this tediousness. The Python client is a framework strictly to be used alongside
the GDMC HTTP Interface Mod in order to make sending the necessary HT'TP requests
much easier. It can essentially be thought of as a wrapper, which allows us to simply call
functions to communicate with Minecraft rather than write the HTTP requests ourselves.
For example, rather than writing GET & PUT requests to get & place blocks manually,
the Python client defines two functions to do exactly that, getBlock & placeBlock. It even
goes beyond the basic operations and defines functions such as placeCuboid & placeCen-
teredCylinder to make building larger more involved structures easier. The Python client
also makes obtaining information about the world substantially easier. For example, in one
line of code the Python client allows us to obtain a world slice, which, in short, contains
all of the information about a certain section of the Minecraft world that we could ever
need & puts it in a nicely packaged data structure for us. The rest of the functionality
provided by the Python client can again be found in the GDMC documentation, however,
the functionality described here is largely all that was needed for this project.

4.2 Terraforming

When testing our program, we quickly encountered an issue specific to Minecraft for this
type of procedural village generation, trees. Trees in Minecraft can appear in almost any
biome, & can be densely populated or sparsely populated. Trying to place a building on
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an patch of land that already contains trees leads to various undesirable results, as seen in
figure 6. Building on top of preexisting trees can lead to houses being filled with trees, trees
poking out the tops of houses, & sometimes even houses being placed on top of trees. Since
our goal is to build a settlement in any randomized location within Minecraft, handling
the presence of trees is a key factor of an adaptable village generator.

This problem of adapting to existing structures is one unique to our project. As dis-
cussed previously, procedural content generation most typically operates on a clean slate.
Since this problem is somewhat unique to our project, there is not an accepted methodol-
ogy for handling preexisting tree structures. While this is a problem that any teams who
submit or have submitted work to the GDMC competition would have to address, few
teams have produced written work detailing their methodology.

To solve this problem, we used our knowledge of trees & the data structures that are
accessible via the Python client to devise an algorithm that can efficiently locate & remove
trees that are present in a randomly selected build area. Trees in Minecraft have the same
attributes as real-life trees; they grow straight up from the ground, are made of wood,
& typically have leaves surrounding the canopy. Trees in Minecraft are made specifically
from wood blocks, which are solely found in the form of trees. With this knowledge, we
could create an algorithm that searches the 3-dimensional space until it finds a wood block,
then searches the y-coordinate space up & down from that block until wood isn’t found
any more in either direction. This was our first approach, but it was computationally
expensive. The typical build area size we tested on is 128 x 128 x 128 blocks, so at worst
this algorithm would explore roughly 2 million blocks. To come up with a more efficient
algorithm, we needed to find a better way to search the 3D space - this was quite difficult
as there is no maximum number or minimum number of trees in any given x,y,z boundaries
within Minecraft.

(a) Trees in house (b) Trees on house

Figure 6: Building on trees examples

In order to restrict the search space, we extracted a height map of the given build area
using the GDMC Python client - which is a 2D array the size of the the x,z coordinate
space that contains the highest y coordinate value (not containing air or leaves) at each
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x,z coordinate combination. See figure 7 for an example of a height map for an 8 x 8 area.
Instead of searching potentially the entire 3D space, we could search the 2D height map
for the presence of wood blocks instead, which would give us a starting node for each tree
- the top block of each tree. Since the height map is the highest y coordinate in each x,z
coordinate combination, we can assume that any given coordinate in a height map is the
top of a tree if the coordinate contains a wood block.

Once the height map has been searched for the presence of wood blocks, the 3D space
can be searched, using the tree top coordinates obtained from the height map search as
starting nodes. Each node is expanded downwards until wood blocks are not found, giving
us the full coordinate map of trees in the build area. An inverted conical buffer is applied to
each tree’s coordinate space to ensure the removal of leaves, and then the tree coordinates
and buffer space are replaced with blank space. This search algorithm is much more efficient
than the first search algorithm used, & at worst searches roughly 16,000 blocks in a 128 x
128 x 128 build area.

Figure 7: Example of an 8 x 8 heightmap [4]

4.3 Plot Analysis

After clearing the designated build area of trees, it was necessary to compute how buildings
and structures should be distributed across the build area. The distribution of buildings is
a key piece of the problem that we want to solve, which is determining how a procedurally
generated village should adapt to various randomly selected terrain. For this problem we
also applied a search-based approach, as well as adopting the use of a fitness function from
genetic approaches, which grades the suitability of different locations in the build area for
the purpose of house building.

Our plot analysis algorithm divides the randomly selected build area into subdivisions
that are based on the size of the total build area. For each subdivision, it generates a
height map & calculates the standard deviation of height within each respective subdivision.
From here, the fitness function uses the standard deviations of height to evaluate which
subdivisions are suitable for building houses on, with a preference for locations with low
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standard deviation of heights.

This algorithm could be further improved by adding additional vectors to the fitness
function. Some vectors which we think could be useful to include are the percentage of
water present in subdivision & distance to the nearest body of water from subdivision
centroid. These vectors could help the fitness function to avoid building in areas with
small patches of water & also be set to build either near or far from water sources such as
rivers or ponds. Another problem that our current algorithm runs into is that sometimes
it will unnaturally place one building far away from the main grouping of buildings - this
can happen if there’s a hill that has a small flat area on top of it, while the rest of the area
is relatively flat. This could be solved by calculating the height gradient of the entire build
area & tuning the fitness function to prefer placing buildings in the same gradient of the
build area.

4.4 House Building

With land cleared & plot locations determined, the next step was to build a structure
at each plot. To start off we chose to implement arguably the most common structure
in Minecraft, something that is a must for any settlement, a house. There are different
methods out there that other researchers have developed which make use of various Al
techniques to build a house which changes based on different factors, but as our focus was
more on the settlement as a whole and making the layout adapt to the land around it, we
chose to implement a basic house building procedure. This allowed us to put more time
into plot analysis & path building, which were both more important to our overall goal
than each individual house.

In the end, we developed one main function which takes in six parameters: a set of
starting x, y, & z coordinates, and a set of ending x, y, & z coordinates. The starting x
& 7z coordinates determine the bottom left most point of the house & the ending x & z
coordinates determine the top right most point of the house. The starting y coordinate
determines floor level & the ending y coordinate determines ceiling level (this does not ac-
count for the roof, which goes about five blocks above ceiling level). With these parameters
set up & some predetermined materials in place (i.e., oak planks for the floor, cobblestone
for the wall, etc.), the function iterates through the different dimensions, placing the floor
& some support pillars, followed by the walls & windows, followed by the roof, and finishes
off with a door.

Finally. as one last step, we added one supplementary function on top of the main
house building function. This function takes in an array of coordinates to build houses at
(i.e., the result of our plot analysis) and calls the build house function with a slight random
adjustment to each of the parameters. This not only made sense from a code organization
perspective, but allowed us to add some random naturalness to our houses rather than
have them be all the same size.
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4.5 Path Building

With the all of the houses placed, our settlement is nearly completely built, save for one
final piece: the paths. Every settlement has paths connecting the different structures, even
in real life, so we had to come up with a methodology to generate paths between each of
our structures in a natural looking yet still functional way. The immediate choice that
comes to mind, which also turned out to be the best choice for our situation, was A*.

This is not the place to be reviewing the exact details of what A* is, but in short it
is a state space searching technique popular in the field of Al. The reason it is popular
within AI, and considered an Al technique itself, is because it takes into account the cost
of the path (i.e., cost(p)) as well as a heuristic evaluation of the path (i.e., h(p)), rather
than simply calculating the exact optimal path outright. This means we had to determine
how to evaluate the cost of our path so far as well as how to heuristically evaluate it in
such a way that led to a natural looking yet functional path within Minecraft. As it turns
out, the most typical cost & heuristic functions used in standard grid search problems
worked incredibly well in Minecraft. In short, the cost function was simply equal to how
many blocks the path had stretched so far, and the heuristic function was equal to the
Manhattan distance from the end of the path to the goal destination. More specifically, we
calculated the Manhattan distance as |z’ — x| + |2/ — z|, where (z, z) are the coordinates
for the end of the current path & (z/,2') are the coordinates for the goal destination. One
might understandably ask why the vertical y coordinate is excluded, and the simple answer
is that the resulting paths were better without it. This is most likely because we did not
ultimately want to traverse vertically all that often, and all that really mattered was the
horizontal traversal of the path.

With the cost & heuristic functions set up, there is only one thing left to determine:
the boundaries of our path. More specifically, where can A* look when determining where
to place the path, or even more accurately, where can it not look? This is where our imple-
mentation of A* had to become slightly modified from most. See, most implementations
of A* are concerned with two dimensional grids/planes of some sort, and they do not have
to worry about a third, vertical dimension. Simply ignoring the third dimension would not
work though, as if we ran it normally it would lead to massive, immediate vertical jumps
in the path which not only do not look natural, but are also non-functional. Also, simply
restricting the path to only work in two dimensions is not only does not make sense theo-
retically since the player is entirely capable of moving vertically, but almost never works in
practice since the land in Minecraft is rarely perfectly flat. Thus, this led us to determine
that the path should be able to move vertically, but only by one block at a time because
any more and the player would not be able to traverse it. This, unsurprisingly, worked
very well and led to natural looking & functional paths.

There was still one problem, however, and that was the horizontal boundaries at which
A* was able to place paths. If A* is unable to reach its destination in a relatively direct way,
it will start trying increasingly indirect ways to reach its destination. In fact, by default,
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it will exhaustively search the entire possible set of paths within the grid it is searching to
determine if there is a possible path. This does not work in Minecraft, however, because
the world of Minecraft is, for all intensive purposes, infinitely large. Thus, if there was no
immediate direct path, or even a relatively indirect one, A* would continue for as long as
possible before terminating. Not only did this lead to ridiculously long run times, but it
also led to extremely inefficient paths. To solve this, we simply put in a restriction that
said A* cannot go outside a certain border that was predefined along with the settlement
itself. If it was not possible to reach the destination within these boundaries it would
simply place the best path it could before terminating.

With all of these parameters & rules in place, we simply had A* run and then place
a chunk of blocks at each point along its determined path (as one block did not look
natural enough). Then, we set up a simple function which took in the coordinates of
the front of each house & built paths between each of the houses such that everything
was interconnected. All said & done, this implementation of A* led to relatively natural
looking & functional paths.

5 Discussion

5.1 Results

In the end, we were able to implement everything as described in the previous section within
the allocated time frame. There were definite issues faced during the implementation and
not everything worked perfectly in the end, but that will be discussed later. First off, let
us examine two settlements generated from our program.

Here is a settlement generated on relatively flat terrain in a dense forest.
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Figure 8: Flat Dense Forest Settlement

There are multiple noteworthy aspects of this first settlement that can be taken away
& examined. First of all, it is clear to see that the terraforming methodology worked
perfectly. The area in which the settlement was built (marked by the perimeter fence) was
completely cleared of trees. The next thing worth noting is the house placement. This
is much more subtle, but the plots at which the houses were placed make sense. Notice
how no house was placed near the hill towards the left of the image. That is because it
would not make sense to place a house on hilly terrain, and our program handled that as
intended. The next step of our program was building the houses, and there is not much
to talk about here aside from the fact that the houses were built as expected. Finally, we
can take note of the paths. In terms of hard requirements for a usable path, the paths our
program generated meet all of them. They reach the front door of every house, they are
relatively flat, and they are efficient (i.e., they generally take the most direct path possible).
On top of that, the paths also look natural. If you asked a random player if they thought
another player built these paths, it would be reasonable of them to say yes, and that was
what we were aiming for.

Next, here is a settlement generated on much more uneven land near a mountain &
river.
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Figure 9: Mountainous River Village

This environment is clearly a much tougher one to build a settlement in, so let us
examine how the same aspects from the previous settlement were handled in this one. First
off, terraforming was less of an issue here, but as you can see, it was still handled perfectly
as there are no trees in the build area. Secondly, the house placement was probably the
biggest issue here. It is almost impossible to perfectly place houses on this piece of land
without completely tearing the land apart, so our program did the best it could to pick
relatively flat pieces of land to place the houses. With that in mind, the program did fairly
well. It did not place any houses on the river, it did not place any houses in the middle
strip of land which was too hilly, and it did not place any houses in the far back piece of
land which was far too hilly. Moving onto the houses themselves, they were again built
exactly as expected, so let us examine the paths. This piece of land was much more of
a test for our path methodology as it is far more hilly, but, as you can see, our program
generated fairly natural looking & functional paths yet again. The paths clearly navigate
the hills relatively easily, which is what we were aiming for with our implementation of
A*. There are two notable problems, however, and those are that one of the paths did not
finish (in the top left of the image), and some of the paths reached the house but were
multiple blocks below the front door of the house (making the house inaccessible).
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5.2 Issues & Limitations

Having seen the results of our final program, let us examine the issues & limitations faced
along the way. First we will start by discussing issues with the interface mod & Python
client, then move on to issues with our implementation of plot analysis & how it connects
with house building, and finally finish with issues regarding our implementation of path
building. Terraforming & house building were implemented using simple yet fairly efficient
& accurate techniques, so there is not much to be discussed there (aside from how they
could be improved, which will be discussed in next steps).

The first major issue we faced had to do with the nature of the framework we used
to communicate with Minecraft, the interface mod & Python client. As described earlier
in this paper, this framework allows us to communicate with Minecraft through the use
of HTTP requests (i.e., if we wanted to place a block in the world, we have to send a
corresponding HTTP request for that to happen). This is all great & works perfectly in
moderation, but it does not scale well as you start to perform more & more operations.
More specifically, when we were just testing out the framework and building small struc-
tures like simple small houses, there were no issues. However, as we progressed to building
entire settlements containing multiple houses, it required many more HTTP requests to
be sent back to back. This led to one major problem: when too many HTTP requests
were sent back to back, many of them would just be dropped leading to the corresponding
operation not being completed. In short, this meant that builds would just look incom-
plete (i.e., some trees would not be fully destroyed, there would be holes in some of the
houses, etc.). The natural solution for most developers would just be to make the requests
synchronous and if one returned with a bad or incomplete status, just repeat it. We would
agree, and we would have done this had we written the requests ourselves, but the Python
client is not directly editable and does not handle the requests in this way. In fact, the
Python client does not directly allow for callbacks in any sense, you simply call a function
such as placeBlock and hope it works. Considering the Python client worked perfectly in
every other aspect & writing our own requests would be a fairly large task, we decided to
go with a more temporary solution: simply making as few requests as possible and blocking
the program very briefly between large batches of requests. This solved the problem to a
sufficient enough degree for us to finish, but if we were to have more time it would be ideal
for us to write our own framework for sending the HT'TP requests.

Moving on, we will point out all notable issues with our implementation of plot analysis
& how it connects with house building. The first notable issue is the lack of randomness
& naturalness to the plots. More specifically, if run in the same area twice (or just run on
perfectly flat land multiple times), it will pick the same pieces of land to put houses on.
This is obviously not an issue for pieces of land where there are only so many places to nat-
urally put a house (like in the examples above), but on flat land this leads to ”suburban”
looking houses (i.e., houses lined up in a row & column type layout). Ideally, we would
most likely add a hint of randomness to make the house placements look more natural in
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environments where houses could viably be placed anywhere, but seeing as our implemen-
tation handled natural, hilly environments very well it was not a big issue. Another issue
we faced had to do with when there were no pieces of flat land large enough to place a
house on. More specifically, the issue was our lack of handling this. In its current version,
our implementation will simply aim to put the houses on the flattest land possible, even
if that land is not actually flat relative to the player. Then, it would simply build the
house on top of the highest point of that land. If the part of the land in front of the door
was lower than the highest point, then this would lead to the door being too high off the
ground (as can be seen in the examples above). On the other hand, if the land in front of
the door was the highest point and the other land was lower, it would look like the house
was only supported in the front (which is unnatural looking). Ideally, we would have fixed
this by having an additional terraforming step which further flattened plots which needed
it. Lastly, our house building methodology simply needed to be more diverse & random.
At the moment, our program often led to nearly identical houses, all facing the same way.
This is not a huge issue & has nothing to do with our main goal of adapting to the land
as naturally as possible, but it is simply not very appealing.

Finally, we will discuss all notable issues with our implementation of path building.
The most notable issue has to do with the order of the paths. To be more specific, the
way each path is placed in the current version of this project is that the program connects
house 1 & 2, then 2 & 3, then 3 & 4, and so on. This often times leads to fairly natural
and efficient looking paths, so it is not an issue most of the time. However, the problem
is that sometimes it leads to interweaving networks of paths that do not look natural
and simply do not make sense from a functional perspective. Ideally, the paths should
not just directly go between each house, but connect to each additional path in the most
natural way possible. Additionally, it should be possible for there to be a center point or
intersection for the paths where ever it would make sense. The next issue with our paths,
which is much less noticeable in any of the settlements generated, has to do with the lack of
terraforming. More specifically, sometimes it would just make more sense to simply destroy
or place some blocks in the land when there is a vertical gap rather than try and go around
it. The main limitation we faced regarding this was not knowing when it was better to
destroy or place a block rather than going around, so we did not get to implementing this.
The only other main issue we had regarding path building was the possible search space for
a path and how to handle when no possible path was found. Regarding the search space,
it was hard to determine what was too big and what was too small. Too big and you
would almost always find a possible path, but the run time would be terrible as it might
try an absurd number of possibilities before picking a path (even after implementing the
most efficient tie breaking method for A*). Too small and, while the run time would not
be bad, it might not find a possible path even if there was one obvious to the player. To
solve this, the current version of the program simply uses the build area (marked by the
perimeter fence) as the boundaries to the path builder, although this still led to issues on
occasion. Regarding when a possible path is not found, we chose to simply build the final
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state A* was in after terminating, but this led to wildly inefficient paths. This is because
our implementation of A* will not always necessarily terminate on the closest to optimal
path it found if it could not find a complete path. Luckily this did not occur all too often
with our boundaries set to the entire build area, although it is still an issue in the current
version.

5.3 Next Steps

Having examined the results of our project & discussed the issues and limitations regarding
our implementation, let us finish by discussing next steps. There are countless things that
could be done to improve this project, but instead of trying to exhaustively list those things
we will focus on only the most notable improvements that we would believe noticeably
make our project better. We will be excluding any strict technical improvements as well
& focus only on improvements to the generated settlement (i.e., recreating the Python
client to solve the issue of dropping HTTP requests is an obvious next step, but will not
be discussed here as it does not improve the resulting settlement).

Firstly, it would greatly improve the look of our settlements if we added more random-
ness to the plot analysis. This was briefly touched upon earlier, but in short the current
implementation of plot analysis will lead to grid style houses if run on perfectly flat land.
This is not inherently bad, and it could even be argued that the suburban look of this grid
layout makes sense in some cases, but it frequently leads to unnatural looking settlements.
Given our goal of naturally adapting to the land, this is not ideal. Thus, to improve this,
we could add a hint of randomness to the plot analysis. We would most likely do this by
adding a sort of randomized tie breaking method between plots of equal flatness. This
would most likely solve the issue entirely, but if it did not we could even further randomize
the plot analysis by having it run this tie breaking method between plots of similar flatness
rather than just equal flatness. Another aspect of plot analysis worth mentioning is the
possibility of handling it using deep learning. Building a neural network which takes in the
height map of the build area as well as some other factors of the environment & returns
plot locations would not be out of the realm of possibility. In fact, many would argue it
would lead to better results. We decided to explore other aspects of Al aside from machine
learning for our project, but applying deep learning to plot analysis is a clear alternative
worth trying out.

The next improvement would be regarding terraforming. More specifically, it would lead
to much better looking settlements if we applied our terraforming method to more than just
clearing trees. As was seen in the resulting settlements, our terraforming implementation
works perfectly. It clears all of the trees in the build area leaving space to place houses
& paths, so there is no need to change the existing implementation. Instead, we would
most likely add a terraforming step to house building & path building. Regarding house
building, we faced a big issue regarding houses being placed on uneven land. Our plot
analysis implementation would always pick the flattest land possible, but sometimes the
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flattest land was still very hilly or bumpy. This would sometimes lead to houses which
looked like they were partially floating or simply on land they should not be on. To fix
this, we could apply a slight terraforming step before placing each house: find the median
height of the land under where the house is going to be, place & destroy blocks in order
to create a flat foundation for the house equal to this median height, and then place the
house. This would most likely fix our issue of semi-floating houses. However, this could
possibly lead to some land around the house coming up above floor level. If this were
to occur we could alleviate it by taking into account the land around the house when
calculating the median height. Regarding the paths, we faced an issue with not knowing
when to terraform the land to create a path & when to just find a way around. In our
current implementation we simply chose to always go around, but it would most likely lead
to more natural looking paths if we were to apply some terraforming to our path building.
Considering the only occasion in which we would need to terraform would be when there is
a steep incline or decline (steep referring to any difference in height greater than 1 block),
it would most likely be best to decide whether or not to terraform based on the height
of the incline/decline. Finding the exact cutoff at which we should terraform vs. when
we should go around would require testing, but for example we could start by choosing to
terraform if there is only a 3 block difference in height or smaller and anything greater we
could just choose to go around. We could also simply choose to place blocks in front of
us if there is a decline (i.e., create a downward ramp in front of the decline), and destroy
blocks in front of us if there is an incline (i.e., mold an upward ramp out of the incline).
This would be the most simple implementation to start with, and we would be able to
improve upon it after testing & examining the results.

Moving on, another thing we would like to improve upon is the house building. Our
current implementation of house building is fairly primitive because we chose to focus more
on how the overall settlement was organized & tied together (we did not care much about
how each individual house looked). However, having implemented all the pieces necessary
to tie a settlement together, it would make the overall settlement look much nicer & more
natural if each house had more detail to it. Rather than just hardcode a prettier looking
house, it would be best to implement a so-called smart house building method. There
are countless ways this could be done, so it is near impossible to just pick one, but we
could attempt a cellular automata approach (i.e., a modified dungeon generator), a deep
learning approach, a reinforcement learning approach, or even just a simple reasoning
approach which takes into account numerous factors about the land and picks how to
build the house based off of probabilities tied to those factors. On top of improving the
building methodology of the houses themselves, it would greatly improve the look of the
resulting settlements if there were simply more types of structures to be built. Even normal
Minecraft villages have different types of houses, churches, farms, blacksmiths, etc., so it
would only make sense for us to diversify the structures in our settlement. At a minimum
we would most likely start with implementing the same type of structures that Minecraft
villages contain and then go from there. One last thing we would need to handle, however,
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is when to place which type of settlement. Just picking by random is not a terrible solution,
but at the same time is not very intelligent and could lead to a settlement containing just
farms. Instead, we would most likely use some sort of reasoning system which takes in
numerous factors of the environment to decide what type of structure to place on each
plot. For example, if the plot is on grass very close to a river in a plains biome, it would
make sense to put a farm there. We could also take into account the existing settlement
elements so far when placing more structures. For example, if there is already a church
and a blacksmith, there is most likely no need for a second church or a second blacksmith,
so it would be a good bet to just place a new house.

Finally, we will wrap up by discussing possible improvements to our paths. The main
issue with our paths, which was introduced earlier, is that they sometimes create an unnat-
ural looking, inefficient, interweaving network. The goal here would be to create some sort
of overall structure or set of guidelines for the paths to follow so that they connect nicely
with each other rather than just connect each house without caring about the overall pic-
ture. The immediate fix to this would be to construct a center point of the settlement (i.e.,
a little town center with a fountain, bench, etc.), and connect each house to that center
point via a path. This would be a good starting point, but it would not solve the problem
in its entirety. To further fix the issue, we could iterate through each structure, performing
a distance calculation to determine the closest structure to build a path to. For example,
while there is some structure not connected to the network of paths, calculate another
structure closest to the first structure and build a path between them. Building the town
center & implementing this distance calculation would most likely solve the issue of paths
that look unnatural & inefficient. If the problem is not entirely solved, however, there is
one last thing we could implement. Instead of only connecting structures to structures, we
could connect paths to other paths. For example, if there are two completely disconnected
paths which connect two different pairs of structures, but there is a point where the two
paths are closer than any of the structures are to each other, it would make the most sense
to connect the paths via a subpath. This exact problem has been explored by a previous
submission to GDMC, and that team used a fairly promising approach [4]. In short, they
would have multiple agents traverse their existing paths and as each agent went down the
path they would pick a random direction to draw a line in. If this line intersected with
another path within a certain distance & the intersection point was not already easily
reachable by the existing network of paths, they would connect the two paths [4]. Their
entire framework was vastly different from ours, but the general idea behind their solution
is viable and worth trying out.
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