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Abstract—This is the final report for the course artificial
intelligence. In this project, we investigated the grouped federated
learning and prove its convergence. We mainly include how we
reach the theoretical result. In the meantime, we also show the
experimental data. The code can be found by the link in appendix.
A how-to-run tutorial is included in the comments the of main.py
file. Please be advised that some materials of this report is from
my current research project, which is also the source of some
materials submitted to some other courses. Those materials are
modified from my own work.

I. TEAM MEMBERS

1. Jiyao Liu

II. INTRODUCTION

Federated Learning [1] is proposed to preserve privacy and
reduce communication cost when the data contributors do not
want to share their data to the server, where the training
process happens. The overall training is done in a iterative
manner, each contains three steps: at the beginning of each
iteration, server sends the model to all clients; then the clients
train the model on their devices; finally, all clients upload
the resulting models and server aggregates the models. This
repeats until some preset criteria are met. Figure 1 [2] shows
the typical workflow of a classic federated learning system.

Fig. 1. Federated Learning

In the edge computing scenario, many constraints may
impose negative impact to federated learning. For a typical
edge computing scenario, edge devices may suffer from low
bandwidth, limited connectivity, weak computation ability,
power limitation, etc. When the data contributors are edge
devices, we must design new FL algorithms to avoid the
negative effects. The aforementioned limitations in the edge
computing scenario may pose obstacles in all the three steps of
each training round. In the first step, model distribution, server

may not select all clients to join this training round because of
the limited connectivity: some devices may be unavailable at
this time. Then, the bandwidth limitation requires edge devices
communicate with server as few as possible, which means they
need to do more local training before upload the model. This
may backfire due because more local training means larger
and distortion deviation from the global loss function, thus
lower accuracy of the final model we get. When uploading
the local models, edge devices may not be able to, and very
likely cannot upload their models at the same time: they may
own different number of training data, and have different
computation ability, thus various time needed for each round.
We can see in Figure 2 [3], a lot of time is wasted due to the
asynchronous character of edge devices.

Fig. 2. Speed Discrepancy among Clients

Due to such systematical constraints, Hierarchical Feder-
ated Learning (HFL) is proposed to adjust FL to the edge
environments. Figure 3 [4] shows the HFL structure. In HFL,
local aggregators can be placed to the edge servers, and clients
connected to the same edge server can be assigned to the
same group. This simple method may solve many problems.
for example, by allowing more local communication within an
edge group, the global communication needed can be reduced.

Then, the statistical imbalance, i.e., the non-identical in-
dependent distribution (non-IID) data on clients. This is not
a problem in classic machine learning process as all data
are collected to the training machine. In federated learning,
especially when clients are edge devices, one client may only
possess partial categories of all data, which means that its local



Fig. 3. Hierarchical Federated Learning

loss function is not identical to the global loss function. This
makes the local optimizers have different optimize objectives,
leading to worse result: typically the convergence speed is
lower, sometimes the final testing accuracy also decreases,
and in the worst case, the training may diverge. As we can
see in the Figure 4, compared with the IID situation, when
data distribution is non-IID, the convergence speed is severely
impacted and the final testing accuracy decreases significantly.
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Fig. 4. IID v.s. Non-IID

Through initial experimental data, we find that grouping de-
vices can reduce impact of the non-IID issue, as well as some
systematic problems if properly designed. Further theoretical
analysis is needed to make this project a comprehensive study,
which is the key point of this report. We follow the main idea
of the convergence proof for classic federated learning in [5],
but turn it into a grouped version.

The remainder of this report is organized as the followings.
Firstly, we introduce the common assumptions used in proof
of convergence of federated learning. Then, we show the
two lemmas and how we reach the final result using the
two lemmas. After that, we also show how to prove the two
lemmas. Finally, we give some experimental results to show

that grouped federated learning do out perform the classic
federated learning algorithm. Conclusion is also provided in
the end of this paper.

III. ASSUMPTIONS

For any type of federated learning, either those on IID data
or non-IID data, we always assume all the local loss functions
and the global loss function are smooth. By L-smoothness, we
have

E[f(x̄t)] ≤ E[f(x̄t−1)] + E[⟨∇f(x̄t−1), x̄t − x̄t−1⟩]

+
L

2
E[∥x̄t − x̄t−1∥] (1)

For deep neural networks, they are usually not convex. For
some other machine learning algorithms, like SVM, their loss
function is convex. That means, for the models that have non-
convex loss function, we usually cannot use the convexity as-
sumption. Unfortunately, the most popular model in federated
learning is exactly deep neural networks, which are not convex.
However, because having convexity significantly reduce the
complexity of proof of convergence, so many times we can
still make this assumption if the proof is too hard. After we
proof the convergence under the convexity assumption, we can
next use experimental data to explain that the algorithm also
works well for non-convex models. By µ-convex,

E[f(x̄t)] ≥ E[f(x̄t−1)] + E[⟨∇f(x̄t−1), x̄t − x̄t−1⟩]
µ

2
E[∥x̄t − x̄t−1∥] (2)

Because we do not use the full gradient method today, and
use the mini-batch [6] instead, it introduces variance to the
gradient. Fortunately, the variance is not too large and we can
assume it is always bounded by a constant

Eξ∼Di
[∥∇Fi(x; ξ)−∇fi(x)∥2] ≤ σ2 (3)

where ξ is the training data sampled by mini-batch and Di is
the data distribution on client i. Finally, the assumption about
the non-IID data. If the data on clients are IID, then the local
loss function is identical to the global loss function, and the
gradient norm is bounded by a constant

∥∇fi(x)∥2 ≤ G2

however, when the data are non-IID, the gradient can be
very large, and the above assumption does not apply any
longer. In this case, we use another assumption

∥∇fi(x)−∇f(x)∥2 ≤ ζ2 (4)

That means, although the gradient is not bounded, the devia-
tion of local gradient is still bounded. This is what we adopt
in our proof, instead of the previous one. The main reason is
because that we want to demonstrate that the grouping method
relieve the non-IID issue, so obviously we cannot use the
assumption for the IID situation.



Finally, for grouped clients, within a group, we assume that
their data are IID combined together. Then, by this grouping
strategy,

∥∇fi(x)−∇fg(x)∥2 ≤ κ2,∀x,∀g ∈ G (5)

∥∇fg(x)−∇f(x)∥2 ≤ γ2 (6)

where g is any group, G is the collection of all groups, fg
is the loss function within this group, and f is the global loss
function. Under perfect grouping, κ = ζ and γ = 0.

IV. MAIN RESULT

Recall that we need to prove something like

1

T

T∑
t=1

(f t(x̄)− f(x∗)) ≤ C1

T
+ C2

This means the loss of our trained model is tending to the
optimal loss during the training. The final result we get is

E

[
1

TIE

T∑
t=1

I∑
i=1

E∑
e=1

F (x̄t,i,e)− F (x∗)

]

≤ ∥x̄0,0,0 − x∗∥2

2ηTIE
+

ησ2

N
+ 25I2E2η2L(κ+ γ)2

+ 4IEη2Lσ2 (7)

where T, I, E are the total global, group, and local iteration
numbers separately. N is the number of total clients. All other
letters can be constants related to the training task. Then, we
can see this result is consent to our expectation. It is a sketch
here and latter we will see how we get it and what it means.

A. Lemmas

Lemma 1. Given assumptions 1-4,

E

[
1

TIE

T∑
t=1

I∑
i=1

E∑
e=1

F (x̄t,i,e)− F (x̄∗)

]

≤ 1

2ηTIE
∥x̄(0,0,0) − x∗∥2 + ησ2

N
+

L

NTIE

N∑
j=1

T∑
t=1

I∑
i=1

E∑
e=1

E
[
∥x(t,i,e)

j − x̄(t,i,e)∥2
]

(8)

Lemma 2. Given assumptions 1-4,

E
[
∥x(t,i,e)

j − x̄(t,i,e)∥2
]

≤ 25η2I2E2(κ+ γ)2 + 4IEη2σ2 (9)

B. Final Result

Theorem 1. Replacing lemma 2 back into lemma 1, we get
theorem 1.

V. PROOF OF LEMMAS

A. Proof of Lemma 1

According to the update scheme,

x̄(t,i,e+1) = x̄t,i,e − η
1

N

N∑
j=1

∇Fj(x
t,i,e
j )

then,

1

N

N∑
j=1

〈
∇Fj(x

t,i,e
j ), x̄(t,i,e+1) − x∗

〉
=

1

2η
(∥x̄t,i,e − x∗∥2 − ∥x̄(t,i,e+1) − x̄(t,i,e)∥2

− ∥x̄(t,i,e+1) − x∗∥2) (10)

Here we simply expand the inner production.

Fj(x̄
(t,i,e+1))

≤a Fj(x
(t,i,e)
j ) +

〈
∇Fi(x

(t,i,e)
j ), x̄(t,i,e+1) − x

(t,i,e)
j

〉
+

L

2
∥x̄(t,i,e+1) − x

(t,i,e)
j ∥2

≤b Fj(x
∗) +

〈
∇Fj(x

(t,i,e)
i ), x̄(t,i,e+1) − x

(t,i,e)
j

〉
+

L

2
∥x̄(t,i,e+1) − x

(t,i,e)
j ∥2

≤ Fj(x
∗) +

〈
∇Fj(x

(t,i,e)
j ), x̄(t,i,e+1) − x

(t,i,e)
j

〉
+ L∥x̄(t,i,e+1) − x

(t,i,e)
j ∥2 + L∥x(t,i,e)

j − x̄(t,i,e)∥2
(11)

Step a holds because of the L-smoothness assumption 1;
step b is true simply because the loss at the optimal point
is always smaller; step c keeps because we simply added a
non-negative term.

Combine (10) and (11)

f(x̄(t,i,e+1))− f(x̄∗)

=a
1

N

N∑
j=1

(fj(x̄
(t,i,e+1))− f(x̄∗))

≤b
1

N

N∑
j=1

〈
∇fi(x

(t,i,e)
i )−∇Fi(x

(t,i,e)
i ), x̄(t,i,e+1) − x̄∗))

〉
(12)

Step a follows by the definition of global loss function; step
b keeps because of the L-smoothness assumption (1);



E

 1

N

N∑
j=1

〈
Fj(x

(t,i,e)
j )−∇Fj(x

(t,i,e)
j ), x̄(t,i,e+1) − x∗

〉
=a E

 1

N

N∑
j=1

〈
Fj(x

(t,i,e)
j )−∇Fj(x

(t,i,e)
j ), x̄(t,i,e+1) − x̄(t,i,e)

〉
≤b ηE

 1

N

N∑
j=1

∥Fj(x
(t,i,e)
j )−∇Fj(x

(t,i,e)
j )∥2


+

1

4η
E
[
∥x̄(t,i,e+1) − x̄(t,i,e)∥2

]
≤ ησ2

N
+

1

4η
E
[
∥x̄(t,i,e+1) − x̄(t,i,e)∥2

]
(13)

Step a follows because we know the expectation of the left
hand of the inner production is 0. That means, we can replace
the right hand by anything and the equation always stands;
step b follows by the Y oung’s inequality; step c is true by
introducing the bounded variance assumption (3). More details
about the Y oung’s inequality are available in the appendix.

Plug the last inequality back to 12, we have

f(x̄(t,i,e+1))− f(x̄∗)

≤ ησ2

N
− L

N

N∑
i=1

∥x(t,i,e)
i − x̄(t,i,e)∥2 (14)

Telescoping across all training rounds t, i, e,

E

[
1

TIE

T∑
t=1

I∑
i=1

E∑
e=1

F (x̄t,i,e)− F (x∗)

]
≤ 1

2ηTIE

(
∥x̄t,0,0 − x∗∥2 − E

[
∥x̄(t,i,e) − x∗∥2

])
+

ησ2

N
+

L

NTIE

N∑
j=1

T∑
t=1

I∑
i=1

E∑
e=1

E
[
∥x(t,i,e)

j − x̄(t,i,e)∥2
]

(15)

B. Proof of Lemma 2

Suppose p, q are arbitrary two clients,

E
[
∥x(t,i,e+1)

p − x(t,i,e+1)
q ∥2

]
=a E

[
∥x(t,i,e)

p − x(t,i,e)
q

−η
(
∇Fp(x

(t,i,e)
p )−∇Fq(x

(t,i,e)
q )

)
∥2
]

≤b ∥x(t,i,e)
p − x(t,i,e)

q ∥2

− 2η⟨∇Fp(x
(t,i,e)
p )−∇Fq(x

(t,i,e)
q ),x(t,i,e)

p − x(t,i,e)
q ⟩

+ η2∥∇Fp(x
(t,i,e)
p )−∇Fq(x

(t,i,e)
q )∥2 + 2η2σ2 (16)

Step a follows by the definition of local updates; step
b expands the norm and introduce the bounded variance
assumption (3).

− ⟨∇Fp(x
(t,i,e)
p )−∇Fq(x

(t,i,e)
q ),x(t,i,e)

p − x(t,i,e)
q ⟩

≤a −⟨∇f(x(t,i,e)
p )−∇f(x(t,i,e)

q ),x(t,i,e)
p − x(t,i,e)

q ⟩
+ 2(κ+ γ)∥x(t,i,e)

p − x(t,i,e)
q ∥

≤b −
1

L
∥∇f(x(t,i,e)

p )−∇f(x(t,i,e)
q )∥2

+ 2(κ+ γ)∥x(t,i,e)
p − x(t,i,e)

q ∥

≤c −
1

L
∥∇f(x(t,i,e)

p )−∇f(x(t,i,e)
q )∥2

+
1

2ηIE
∥x(t,i,e)

p − x(t,i,e)
q ∥2 + 2ηIE(κ+ γ)2 (17)

Step a follows by extracting the variance out; b follows by
the smoothness assumption (1); step c follows by the AM-
GM inequality, about which more details can be found in the
appendix.

∥∇Fp(x
(t,i,e)
p )−∇Fq(x

(t,i,e)
q )∥2

=a∥∇Fp(x
(t,i,e)
p )−∇fgp(x

(t,i,e)
p ) +∇fgp(x

(t,i,e)
p )

−∇f(x(t,i,e)
p ) +∇f(x(t,i,e)

p )

−∇Fq(x
(t,i,e)
q ) +∇fgq(x

(t,i,e)
q )−∇fgq(x

(t,i,e)
q )

+∇f(x(t,i,e)
q )−∇f(x(t,i,e)

q )∥2

≤b5(∥∇f(x(t,i,e)
p )−∇f(x(t,i,e)

q )∥2 + 2(κ2 + γ2)) (18)

where fgp and fgq mean the group loss function of the group
where the clients p and q are in. Step a is true because we
simply add and minus some same terms; step b follows by the
”Sum in Norm Expansion” inequality, which can be found in
the appendix.

Take 17 and 18 back to 16,

E
[
∥x(t,i,e+1)

p − x(t,i,e+1)
q ∥2

]
≤a (1 +

1

IE
)∥x(t,i,e)

p − x(t,i,e)
q ∥2

+ (−2η

L
+ 5η2)∥∇f(x(t,i,e)

p )−∇f(x(t,i,e)
q )∥2

+ 4η2IE(κ+ γ)2 + 10η2(κ2 + γ2) + 2η2σ2

≤b (1 +
1

IE
)∥x(t,i,e)

p − x(t,i,e)
q ∥2 + 14η2IE(κ+ γ)2 + 2η2σ2

Step a follows by using the same techniques when proving
18; for step b, we can assume that (− 2η

L + 5η2) is negative
by adjusting the learning rate η to a small value.

Then, for any device j,

E
[
∥x(t,i,e)

j − x̄(t,i,e)∥2
]

≤ (e− 1)IE(14η2IE(κ+ γ)2 + 2η2γ2)

≤ 25I2E2η2L(κ+ γ)2 + 4IEη2Lσ2 (19)

Firstly, it is obvious that the difference between any two
devices is the same as the difference between any device and
the global average. Then, by telescoping across the whole
training process, t, i, e, we can get the first inequality.



VI. EXPERIMENTS

From the following picture, we can see that when in-group
communication is allowed (Grouped in figure 5), the training
process converges faster and the final result (testing loss) is
as good as that of the classic federated learning algorithm
(FedAvg in figure 5).

Fig. 5. Comparison of Classic and grouped federated learning

VII. APPENDIX

A. Equations and Inequalities

All equations and inequalities mentioned in this report can
be found in another file, optimization.pdf.

B. Code

Code can be found in the zip file, as well as here. Please
be adviced that the repository may be updated, but you can
always find the version for this report by the commit tag ”AI
Report”.
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