
Sign Sight: A Real Time ASL Recognition

System

Abbey Liu, Dalvir Singh

May 3, 2022

1 Abstract

Sign language is a complete, natural system which uses movements of the hand
and face to communicate, rather than with spoken words. Those who are mute,
deaf, or hard of hearing make up the largest group of sign language speakers.
There is a large communication barrier between those who use spoken language
and those who use sign language, in which most daily activities and tasks assume
that a person is able to communicate with spoken language. In addition, there is
a general lack of awareness and shortage of available interpreters, which further
emphasizes this barrier. In this project, we aim to use artificial intelligence and
machine learning methods to break the communication barrier by creating an
image classifier than can predict the meaning of various hand gestures. We focus
on American Sign, a variety of sign language used in in the United States and
in English speaking areas of Canada. After training and testing various model
architectures, we implement one of the models into a web application so that it
is easy to use and access for the general public.

2 Introduction

Human language is a powerful tool that allows us to communicate our ideas,
share our thoughts and feelings, and express our viewpoints. However, most
of our daily activities assume that a person is able to use spoken language,
which plays a critical role in almost all human interactions. Therefore, it is
easy to overlook the struggles of people with hearing disabilities such as the
mute, deaf, or hard of hearing, who cannot use spoken language. Instead, these
individuals use sign language, which utilizes movements of the hands and face to
communicate. However, this causes them to face a large communication barrier
between signed and spoken language. This results in sign language speakers
becoming a segregated minority in society. Moreover, there is an overwhelming
lack of general awareness for sign language, which further increases the language
barrier dividing spoken and signed language.

1



For this project, we focused on American Sign Language (ASL), which is the
variety of sign language commonly used in the United States and English speak-
ing areas of Canada. There is a limited amount of laypeople who are proficient
in ASL, so typically those with hearing disabilities may utilize an interpreter.
However, there is a large gap between the number of interpreters and the pop-
ulation with a hearing impairment. Although the use of interpreters can help
facilitate communication, it often makes them overly reliant or dependent on
the interpreter. In this project, we aimed to create a ASL Recognition System
that can be used as a tool to bridge the gap between hearing-impaired commu-
nity and those untrained in ASL. Ultimately, we hope our project can empower
hearing impaired population to be more independent and improve the comfort
and ease in everyday human interactions.

3 Related Works

We are not the first to recognize the potential benefits of a sign language recogni-
tion system to people with hearing disabilities. Previous literature has tackled
the problem of sign recognition in dynamic videos and static images using a
variety of machine learning methods and algorithms.

A popular approach to solve this problem is to use a Hidden Markov Model
(HMM), a probabilistic model that is based on the statistical Markov model to
recognize the relationship between observable events that depend on internal
factors. Previous literature has shown success with using an HMM model to
recognize sign languages. Thad Starner and Alex Pentland [1] created a real
time system that interpreted ASL using Hidden Markov Models. The system
tracked a person’s hand by their shape, orientation, and gesture which served as
the input to the HMM model to recognize the signed gesture. The research group
employed two experiments. The first experiment tracked hands wearing colored
gloves while the second experiment used hands without gloves. Ultimately, they
found their system achieved a higher accuracy when tracking hands with gloves.

With the rising popularity of neural networks and deep learning, more re-
cent works explore how deep learning approaches compare to those of the past.
The most traditional approach to solve computer vision related problems are
convolutional neural networks (CNN) which utilize the features of an image to
aid in classification. Machine learning models with CNN-like architectures have
shown much success in this topic.

Simming He [2] proposed a deep learning approach which consisted of using
a combination of methods. He used Faster R-CNN, which has an embedded re-
gion proposal network (RPN) module to locate the hands in the images. These
location results are fed into a 3D CNN feature extraction network and sign lan-
guage recognition framework based on long- and short- term memory (LSTM)
coding and decoding network.

Rabeet Fatmi et al. [3] created a system that utilized wearable motion
sensors and Artificial Neural Networks (ANN) and Support Vector Machines
(SVM) models to recognize words in ASL. The research showed high accuracy

2



in ANN compared other machine learning approaches.
Lionel Pigou et al. [4] built a real time system to recognize 20 Italian gestures

using Microsoft Kinect, CNN, and GPU acceleration. The system utilized a
CNN model to extract features from the frames and an Artificial Neural Network
for classification.

4 Methodology

Solving machine learning problems can be categorized into the following steps:
task definition, data collection, exploratory data analysis (EDA), machine learn-
ing modeling, model testing, and deployment.

Task Definition: We wanted to create a ASL Recognition System that can
accurately classify American Sign Language gestures in real time and on static
images. To achieve this objective, we decided to train multiple machine learning
models and pick the best model as the engine for our recognition system. Given
an image of American Sign Language gesture, our system should classify the
gesture into one of 24 alphabetical letters. Thus, we can define our task as a
mutually exclusive, multiclass classification problem, where each image can only
be classified as one letter. Note that in ASL, the gestures for J and Z contain
movement. So, we did not include these in our classification task definition.

Data Collection: To train a robust machine learning model that works
well in practical applications, it is important to collect a large dataset that
is representative of the general problem you are trying to solve. Due to the
limited time of the assignment and the lack of expertise in ASL, we could not
create our own comprehensive dataset. Instead, we had to make the best out
of the publicly available datasets for this problem. We used the popular Sign
Language MNIST dataset [5] that consisted of 27,455 training and 7,172 testing
gray-scale images of size 28 x 28. Each labeled image represents an American
alphabet letters except for J and Z, which require moving gestures that cannot
be captured in static images.

Exploratory Data Analysis: EDA is an important step when creating
machine learning models because it provides insight into the raw data and al-
lows you recognize the relevant and irrelevant features. The Sign Language
MNIST dataset comes from originally colored images of the alphabetical char-
acter gestures in ASL, made by different people against various backgrounds.
This resulted in 1,704 original images. Synthetic data augmentation was applied
to each original image with ImageMagick, creating a larger quantity of image
data. Some examples of augmentation used are various filters and changes in
brightness, pixelation, and rotation. The images were then converted to gray-
scale, cropped to only contain the hand gesture, and then resized to 28 x 28
pixels in size. Lastly, the full dataset was split into 27,455 images for training
and 7,172 images for testing. We accessed the dataset through Kaggle, where
the images are saved as pixel values in CSV files. Figure 1 provides an image
set of the 24 alphabetical characters with the original color. Figure 2 shows the

3



same image set in Figure 1, but after data augmentation and preprocessing. So,
Figure 2 is a visual sample of what is actually in our dataset.

Figure 1: Sample of ASL image set, with original colors

Figure 2: Sample of ASL image set, after gray-scaling and resizing

When we further analyzed our dataset, we found that each alphabetical
character had roughly 1,000 samples in the training split. So, our training data
is roughly balanced since each class has about the same amount of presence
and representation. We found the distribution of the classes to be similar in
the testing split. Figure 3 shows a bar chart of the alphabetical character
frequencies. Note that the index numbers 0-25 correspond to the letters A-Z,
where indexes 9 and 25 have no images because they are the letters J and Z.

4



Figure 3: Bar chart of alphabetical character frequencies in training split

Upon further visual analysis, we found that our dataset is extremely clean.
Although the creators of the dataset had different people make ASL gestures and
used varying backgrounds, the variety between the images was minimal. All the
pictures feature the hand gestures at the same viewpoint and orientation, and
there were no objects obstructing the view of the hand. Moreover, the images
were cropped to only feature the hand, so there was no body or face present
in the images. When two people are communicating through sign language,
often times they can see at least each other’s upper body. This is because
some gestures in ASL include movement or facial expressions. Since our dataset
does not contain these elements, the ASL hand gestures in this dataset have
been taken out of their real world context. In addition, gestures for words or
phrases are more commonly used in American Sign Language where alphabetical
characters are only used when a gesture for a particular word doesn’t exist, such
as spelling out someone’s name. We tried to find ASL image datasets that had
more real world context, but were unable to find any.

Thus, our dataset is very clean, to the point that it can be considered a bit
of a limitation. The provided images only show the gestures out of context,
and have very minimal backgrounds. Although the dataset creators altered the
original images, this synthetic data augmentation will not create the same level
of diversity as a dataset made of completely different original images. Despite
the usual case of messy data, our dataset is so clean that our machine learning
models may suffer when they try to predict on images outside of the dataset.
However, we believed that there is still some value in this dataset, and decided
to continue using this dataset for the project. In future work, we hope to search
for or curate an ASL dataset that contains images of the upper body of a ASL
user and features gestures of words and phrases rather than only alphabetical
characters. This dataset would fit our task better, since it would show ASL
gestures in a real world context.

Machine Learning Modeling: To find the best model, we employed various
supervised machine learning techniques such as CNN, ResNet50, InceptionV3,
and YoloV3 to find the one that works best for this problem. All models for
this project were implemented using Keras and Tensorflow Python libraries, and

5



were trained using Google Colab. Note that for all models, we use the training
and testing splits provided in the raw dataset.

CNN: Convolutional neural networks are a classical approach used to solve com-
puter vision problems. CNN is a neural network model that consists of multiple
convolutional layers, flatten layers, dense layers, and finally a softmax activation
function that provides the classification. CNN is a powerful because its convolu-
tional layers perform dimensionality reduction, which can automatically detect
and learn the important features to classify an image without any human super-
vision. Additionally, they can detect features anywhere in the image, whereas
its predecessors had difficulties learning features that were in spatially different
locations [6]. For this project, we built a small CNN from scratch. It includes
three convolutional layers, followed by one layer for flattening, two dense layers,
and finally a softmax activation function. Compared to the other models we
trained and tested, our CNN is the simplest and smallest model architecture.

ResNet50: Deep learning uses large machine learning models to solve more com-
plex problems than with simpler or more traditional models. However, a large
problem in deep learning architectures is the vanishing gradient problem. In
traditional or vanilla models, the output of each model layer is fed directly into
the next consecutive layer. By passing through so many layers during back-
propagation, the gradient may become too small for effective model training.
Residual Networks, also known as ResNets, are a particular type of CNN that
use residual network mapping blocks in their architectures to avoid the vanish-
ing gradient problem. These mappings contain skip connections, which allow
the model to skip layers when needed. This protects deep learning models from
encountering the vanishing gradient problem. ResNets were first proposed by
Microsoft researchers in 2015 [7]. There are several different deep architectures
that utilize the general idea of ResNets, but vary in the amount of residual blocks
used. We implemented ResNet50, which features 50 residual blocks in its archi-
tecture. Due to its sheer size, the model is much larger and more complex than
our initial CNN model. In addition to this, another difference is in the initial
weights used for the ResNet50 model. The Keras implementation of ResNet50
has pretrained weights, which were originally trained on the ImageNet, a well-
known computer vision dataset. In 2015, it contained about 1 million training
images to classify into 1,000 classes (Now, the dataset has expanded around 14
million images). We used these pretrained weights to fine-tune our model for
our ASL classification task. The use of pretrained weights is known as Transfer
Learning, which provides many benefits. Transfer Learning lets us take weights
from one problem and reuse them for a similar problem. It can also help the
model converse faster than if it had started training on initially randomized
weights.

InceptionV3: Similar to ResNet50, Inception is another type of deep learning
CNN architecture. However, instead of focusing on avoiding the vanishing gra-
dient problem. Inception’s main goal is to be more computationally efficient

6



by allowing for deeper networks without increasing the number of parameters.
InceptionV3 [8] was introduced in 2015 as the third documented version of the
Inception architecture. It boasts that it uses less than 25 million parameters.
While this may seem like an enormous number, other models have well over
60 million parameters, so compared to other models InceptionV3 has much less
parameters. Some details about InceptionV3’s architecture is its use of Label
Smoothing, which is a regularization technique that puts some noise into the
labels to account for possibly mistakes in the dataset. The architecture also
features an auxiliary classifier and batch normalization to improve convergence
speed. Like ResNet50, the Keras implementation of InceptionV3 also has pre-
trained weights. It was pretrained on the same version of ImageNet as ResNet50,
with 1 million training images to classify into 1,000 classes.

YoloV3: Yolo is one of the most popular real-time object detection algorithms
that uses the concept of you only look once (yolo) to perform object detection
[9]. The named was coined for its ability to detect multiple objects in only one
pass. Traditional object detection systems pipeline multiple neural networks to
classify images that contains a specific object, and then use another network to
create the bounding boxes. Unlike its predecessors, Yolo uses a single neural
network to classify and predict the bounded boxes for the detected object. This
makes it much faster than other traditional approaches, and suitable for real-
time detection. Yolo splits the images into a square grid, each cell is responsible
for detecting whether the cell belongs to one of the objects so each cell needs to
predict B bounding boxes and confidence score for each box. The classification
score ranges from 0.0 to 1.0 with 0 being the lowest confidence level and 1
being the highest. The bounding boxes are made up of 5 components, x and y
coordinates (location of the center of the predicted box), confidence level, width,
and height. In this project, we attempted to train a YoloV3 [10] model from
2018, since we found a Keras implementation and dataset of ASL alphabetical
characters that were more in-context (images that include the arm and messier
backgrounds) than our current dataset. In addition, the YoloV3 comes with
pretrained weights, which were originally trained on Darknet. Darknet is an
open-source neural network for object detection. However, we ultimately faced
several issues with when implementing YoloV3 and were not able to successfully
train and test the model. Specifically, we ran into dependency issues between
Keras and Tensorflow. YoloV3 required downgraded versions of Keras to run,
but then this required a downgrade of Tensorflow as well. It was difficult to
achieve a combination of the correct versions to get the model training. Even
when we were able to train the model, the resulting metrics and loss values were
much worse compared to the other three models we had already implemented.
Eventually, we decided to discontinue our progress on YoloV3 so we could focus
on analyzing the other three models and deploying the web application and
real-time detection software.

Model Evaluation: In this phase of the development, we trained and tested
the different model to find the model that works the best for this task. We

7



used four metrics to evaluate a model: accuracy, recall, precision, and F1 score.
In most tasks in supervised learning, accuracy alone does not provide enough
information about a model’s performance. Precision is a proportion of how
many samples for a class are accurately predicted versus the total number of
samples the model has predicted as that class. Recall is a bit different, and is a
proportion of how many samples for a class are accurately predicted versus the
total number of samples in that class. F1 score is the harmonic mean between
precision and recall, and represents the two metrics as one value. Thus, to get a
more informative results, in the Results section we report the accuracy, recall,
precision, and F1 score of the CNN, ResNet50, and InceptionV3 models. For
each metric’s equation, consider a confusion matrix M , where Mij is the number
of play sequences with the ground truth label i that is predicted as class j.

precisioni =
Mii∑
j Mji

(1)

recalli =
Mii∑
j Mij

(2)

F1scorei =
precisioni ∗ recalli
precisioni + recalli

(3)

Model Deployment In practical applications, it is best to deploy trained ma-
chine learning models into user facing interfaces. We created two user interfaces
for the user to leverage our AI engine to make predictions. One is predicts based
on static images, while the other predicts with real-time input.
We first developed a simple web application that can use our AI engine to clas-
sify ASL hand signs from static images. We designed a simple web application
using Django, Bootstrap, CSS, and HTML. Through the web application, the
user can upload a static image of a ASL hand sign. The application will then
preprocess the image and forward it to the AI engine to make the classifica-
tion. The results are returned to the user in the form of a predicted label and
probability/confidence of the predicted sign.

Additionally, we utilized OpenCV to create a real-time system. OpenCV ac-
cesses a laptop camera and processes each frame one at a time. For each frame,
we resized the image into a 28 x 28 image, converted into a gray-scale, and then
transform it into an array that can be processed by our AI engine. Initially, our
model underachieved when evaluating the ASL signs in real time.

To achieve better performance, we used OpenCV to first crop the inputted
image, so only the user’s hand would be processed for the prediction. We created
a fixed green box in the frame to mark the region in that will be used by the
model to make the prediction. By limiting the ASL hand gestures to this box,
we can make the real-time input more like the training and testing data from
our dataset. The image in the cropped box is then preprocessed as previously
stated, with resizing, converting to gray-scale, and then transforming into an
array. Finally, the preprocessed image is fed into the model for the classification.

8



5 Results

We evaluated the models on the accuracy, recall, precision, and F1 score
on the test set. Figure 4 shows the testing results for each model. All the
models performed well on the test set achieving almost perfect values. We
acknowledge that this is probably due to our training data, which is very clean
(See Exploratory Data Analysis and Discussion sections for further details).
From these metrics, it appeared that all three models were good candidates
to serve as the AI Engine. We ultimately chose CNN as the model that
would be deployed and integrated into the OpenCV real-time system and web
application. We chose CNN because it is the simplest model. Based on our
results, it achieves similar metrics to the deep learning models so there is no
need to use a larger, more computationally expensive model.

Figure 4: Resulting metrics for each model on testing split data

After looking at the resulting metrics, we then observed some concrete examples
from the testing split. Since our dataset is so clean and uniform, we found that
all models do very well on ASL gestures with shapes that distinctly distinguish it
from all other gestures. Figure 5 shows two visualized examples from the testing
split, with predicted and ground truth labels. Predictions for both images were
done by our ResNet50 model. On the left, we can see that our model correctly
predicted the label B. The ASL gesture for B is very distinct from other gestures
because it is the only hand sign that shows the palm with four straightened
fingers, which makes it easier for the model to identify (Refer to Figure 1 for a
clearer image of the gesture). Meanwhile, all other gestures are in the general
shape of a fist or place the hand in a different shape. Either way, all other
gestures are distinctly different in shape compared to B, so our model is able to
accurately identify it.

Despite our high metrics, our model can still make mistakes. From analyzing
the visual testing results, we can see that most of the mistakes are on gestures
whose general shape is a fist. While there are details between the gestures that
would help a human viewer distinguish them apart from one another. The
images in this dataset contains are very small, with only 28 x 28 pixels. From
Figure 5, we can see that the pictures are rather pixelated due to the resizing.
This blurs the details that would help distinguish one sign from another. While
some gestures have a distinct hand shape, like B, W, V, and F, others like A,
E, M, N, and S all have a general fist shape. With less distinct details, the

9



mistakes our models make tend to involve these four letters. Figure 5’s right
image gives a concrete example of this, where the model predicted the letter
to be S, but the ground truth label is actually N. Humans can have trouble
distinguishing between these hand signs in the dataset as well, which makes
it reasonable to assume that a machine learning model would face a similar
challenge.

Figure 5: Sample images from testing split, with predictions made by ResNet50.
Left: correct prediction of B. Right: Incorrect prediction of S on ASL gestures for N

Figure 6 shows the home page (left) and classification result page (right) of
the developed web application that can be used by users to predict ASL hand
signs on static images. A user can take a picture of their hand making a ASL
gesture, and upload it to the web application to see if the AI engine correctly
classifies their sign. The classification result page shows the predicted label and
the model’s probability/confidence of the classification for the uploaded image.
The example shown in Figure 6 uses an image from our testing split. We can
see that the model is very confident about its prediction, giving a confidence
score of nearly 100%. In addition, this is a correct prediction, where the ground
truth label from the data is the letter B.

10



Figure 6: Static Images Web Page, home (left) and classification result (right)

To evaluate the web application on real use cases, we compared the perfor-
mance between images from the test set with images of our own hand signs.
Observe in Figure 7 how the model’s confidence score for our hand sign (left)
is significantly less than image from the test set (right). Both images in Figure
7 give a correct prediction, however the model is much less confident when
predicting our image versus predicting images from the test set. Moreover, to
get the results in the figure, we had to make many modifications to how we
took the picture to achieve a correct prediction. Some modifications include
placing a white piece of paper to prevent any noise in the background from
appearing in the image, zooming in on our hand, and making sure we took
the picture in a similar orientation to the dataset’s hand orientation. This low
confidence score on our inputted static image is likely due to our dataset being
too clean and out of real world context for our model to make a confident
prediction on slightly different data.

11



Figure 7: Static Images Web Page, testing on real cases

Figure 8 demonstrates the OpenCV Real-Time System that utilizes the user’s
laptop camera and creates a video panel that so the user can make real-time
ASL hand signs and the system will predict the signs one at a time. We
observed the real time system worked well for the following signs: W, V, T,
L, and F but did not work as well for other signs. One possible reason for
this is that these particular hand gestures are very distinct, and there are
no other gestures in our dataset that closely resemble them. On the other
hand, other gestures such as A and S look very similar to each other. Thus,
the model is often unsure of which letter to predict. Additionally, we noticed
that we had to make similar modifications to our real-time input. The model
would pick up on subtle changes in hand orientation, shape, and movements
impacted the predicted sign from the model. Thus, to achieve the correct
prediction, we had to fine-tune how we put our hands in front of the camera for
results. This is not ideal for this application, which should be user friendly and
easy to use. We hope to improve our models and web application in future work.

Figure 8: OpenCV Real Time System

12



6 Discussion

From our results, we believe that our dataset is too clean and out of context to
produce reliable results for our application. Our data features small gray-scale
images that only show the ASL hand gesture. Unlike in the real world, the
rest of the person’s body is not shown and there are no background objects
that are noisy or obstructing the hand. This puts the hand gestures out of
context, and causes our models to be very sensitive to noise. Our models
only give confident predictions on images within the dataset, while suffering
when given other images to predict on. This is seen in the web application
for static images, where our CNN model performs well unseen images from
the testing split. However, its performance drops greatly when predicting on
unseen images outside of the dataset. In addition to this, the web application
for real-time input is also very sensitive. The model would change its prediction
with subtle changes in hand orientation, shape, and slight movements. These
results show that there is a large gap between the dataset used for training
and real world input. Despite the dataset’s creators augmenting their original
images, synthetic data augmentation is not a replacement for gathering more
original images. Although the creators boast over 30,000 images in total, these
all still come from 1,704 original images. Changing them synthetically does
not give the same diversity of 30,000 distinctly original images, especially since
they mainly focused on filters and changing the brightness or contrast of the
images. This means that other aspects like the camera’s viewpoint of each
hand gesture and the size of the hand in the images is same as the original
images. These aspects are greatly variable when we try to provide our own
images, which caused the model to become less confident in its predictions.
Furthermore, our images from the dataset are so small that they can appear
pixelated and less detailed. This can hide the distinguishing features of some
gestures and make it hard for the model to accurately predict on some dataset
images. However, this problem is further amplified when using our images.
This pixelation, combined with the noise from our own pictures causes the
model to become even less confident when predicting on our own images.

One possible solution to this would be find a dataset that is more robust and
in-context to the real world application of American Sign Language. However,
we were unable to find an available dataset of this kind during the duration of
this project. Since neither of us are fluent in ASL, it would great to gather
expert domain knowledge from ASL interpreters. By taking pictures of multiple
ASL interpreters signing, we could potentially create the dataset needed for this
project. The pictures can feature the upper body so that the sign is in-context
with the real world. Moreover, pictures of the same signs could be taken at
different angles and with varying backgrounds to further increase the diversity
of the dataset. Another detail is that the dataset should contain gestures
for common words and phrases, so that the labels used in the dataset more
appropriately match everyday ASL conversations rather than only alphabetical
characters. The dataset should also contain as many original images as we can

13



obtain, so that the dataset is truly diverse.

To take the dataset discussion even further, perhaps image is not the most ideal
representation of American Sign Language since there are multiple gestures
that require movement. Hence, maybe a video dataset would be even more
suited for this problem in the long-term. However, this would probably be
more costly (both in data collection and computational data processing) than
an image set. We would also need to find and train models for object detection
and tracking. So, the short-term improvement on data would be to find a
dataset that is more robust and features gestures in context. The long-term
improvement would be to find a dataset that can also capture movement.

Despite the many limitations of the dataset used, we believe that our results
shows that there is potential in further pursuing this project. While the web
applications and their backend models have much room for improvement, the
basic idea of creating an easily accessible application to bridge the gap between
signed and spoken language with machine learning is within reach with today’s
technology. However, for this to be possible, there is a need for a ASL dataset
that shows gestures in context and is more robust than our current dataset.

7 Future Works

In the future, we hope to work finding or creating a dataset to better fit our
classification task. Specifically, a dataset that shows the gestures in-context of
the real world and shows the gestures at different angles or camera viewpoints. If
possible, a dataset that also contains words or phrases is preferable, since those
gestures are used more often in common ASL conversations. While searching for
more applicable data, we can also try other models besides the neural networks
trained and tested in this project. For example, we can try traditional machine
learning models like K Nearest Neighbors, Logistic Regression, Decision Trees
(and Random Forest), and Support Vector Machines. Furthermore, we can also
return to our Yolo model, and try to find a different version and implementation.
The literature makes this model seem very suitable for our classification task, so
it would be great to implement it and compare the results to the other models
we have used so far.

14



References

[1] Starner, Thad and Alex Pentland. “Real-time American Sign Language
recognition from video using hidden Markov models.” (1995).

[2] He, Siming. “Research of a Sign Language Translation System Based on
Deep Learning.” 2019 International Conference on Artificial Intelligence and
Advanced Manufacturing (AIAM) (2019): 392-396.

[3] Fatmi, Rabeet et al. “American Sign Language Recognition using Hidden
Markov Models and Wearable Motion Sensors.” Trans. Mach. Learn. Data
Min. 10 (2017): 41-55.

[4] Pigou, Lionel et al. “Sign Language Recognition Using Convolutional Neural
Networks.” ECCV Workshops (2014).

[5] Tecperson. “Sign Language MNIST.” Kaggle, 20 Oct. 2017,
https://www.kaggle.com/datasets/datamunge/sign-language-mnist.

[6] Tatan, Vincent. “Understanding CNN (Convolutional Neu-
ral Network).” Medium, Towards Data Science, 23 Dec. 2019,
https://towardsdatascience.com/understanding-cnn-convolutional-neural-
network-69fd626ee7d4.

[7] He, Kaiming et al. “Deep Residual Learning for Image Recognition.” 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2016): 770-778.

[8] Szegedy, Christian et al. “Rethinking the Inception Architecture for Com-
puter Vision.” 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2016): 2818-2826.

[9] Aggarwal, Ani. “Yolo Explained.” Medium, Analytics Vidhya, 7 Jan. 2021,
https://medium.com/analytics-vidhya/yolo-explained-5b6f4564f31.

[10] Redmon, Joseph and Ali Farhadi. “YOLOv3: An Incremental Improve-
ment.” ArXiv abs/1804.02767 (2018): n. pag.

15



Links to Code References/Materials

We referenced and modified the code from the following links.

1. CNN

• https://www.kaggle.com/code/madz2000/cnn-using-keras-100-
accuracy

2. ResNet50

• https://www.kaggle.com/code/lordkun/go-deeper-with-resnet-sign-
language-99-acc

3. InceptionV3

• https://www.kaggle.com/code/mfaaris/transfer-learning-for-sign-
language-mnist

4. YoloV3

• https://blog.roboflow.com/training-a-yolov3-object-detection-
model-with-a-custom-dataset/

16


