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Introduction
Cancer is one of the most fatal diseases of human beings. Nowadays, diagnosis of
cancer is usually based on a tissue slide from a site. One problem is that cancer cells
may transfer from one site to another site, which is called metastasis. It is difficult to
distinguish a cancer metastasis region in tumor slides. Building a machine learning
model which can identify the possible cancer cell cluster region could ease the effort
of diagnosis. As deep learning algorithms, especially convolutional neural networks,
have achieved great success in the computer vision field, it should also be functional
to medical images. Slide images are widely provided by multiple data providers,
including The Cancer Genome Atlas (TCGA). By having a thought that the tumor
slides have the potential to distinguish metastasis from sites, we plan to use AI
techniques on processing images to identify cell clusters from primary tumor sites
from cell clusters from other sites. However, the slide image dataset is usually not
large, so we cannot get enough data for a complicated network. Another powerful
material to classify different types of tumors is gene expression material. Employing
gene expression as a heuristic information, we want to combine the gene expression
and the tissue slides together. In this project, we plan to unify the gene expression
data with the slide images by a reasoning system to improve the accuracy of
predicting cancer, and build a machine learning model to mark the cancer region in
slide images.

Related works
As deep learning is rapidly developed on computer vision field, these neural network
methods have been applied to objectively evaluate high-dimensional medical data
and high-resolution images, such as such as computed tomography (CT), positron
emission tomography (PET) and magnetic resonance imaging (MRI) data. Rather
than being chosen by human selection, machine learning and statistical methods
also enable image features to be identified by algorithms. A deep convolutional
neural network (CNN) is employed to predict future cognitive decline in Alzheimer’s
disease based on flurodeoxyglucose and florbetapir positron emission tomography
(PET) [6]. A convolutional neural network with maximum-likelihood is employed to
reconstruct the PET/MRI by a CT-derived attenuation map [7].

Gene expression data has been applied to functional genomics search. Machine
learning methods have been applied to medical data and have shown remarkable
performance in differential diagnosis. A deep learning model indicates some inner
pattern of gene data that the entire gene regulatory structure and specific
combination of regulatory elements define gene expression levels [8]. Based on the
feature selection method, a support vector machine is employed to identify and
analyze blood gene expression for Osteoarthritis [9].

Detection of Cancer Cell Cluster in slide images could be viewed as an imaging
biomarker problem, which is to biologic features relevant to a patient’s diagnosis [4].



A number of biomarkers are frequently used to determine risk of cancer or other
diseases. Interpretable machine learning with biomarker cues is employed for
melanoma detection [5]. Random forest, support vector machine, naive bayes
classifiers identify the gene data, predict the survival of breast cancer and discover
the potential biomarkers which are strongly related to breast cancer survivability and
cancer in general.

Data collection
The data of this project is collected from The Cancer Genome Atlas (TCGA) data
portal, which provides different kinds of data, such as tissue slide image samples,
gene expression quantification, clinical data, RNA sequences, etc., of over 200
cancer types.

In this project, both the tissue slide images and the gene expression quantification
data are collected from The Cancer Genome Atlas (TCGA) data portal [1]. The slide
image data is collected from the category ‘slide image->prostate gland’. The
quantification data is collected from the category ‘gene expression quantification->
HTSeq - FPKM’. From the category ‘gene expression quantification-> HTSeq -
FPKM’, we can also download the corresponding clinical data (includes diagnosis
records which may become the labels), meta data (identity tags for data
combination).

Data preprocessing
The data provided in the TCGA data portal is raw data. We need to process the raw
data and transform them into matrix format, as machine learning models take
matrices as inputs. Generally, the preprocessing part can be divided into three parts:
(1) slide image processing, (2) feature reduction for gene expression quantification,
and (3) pairwise matching. The overview of the data preprocessing is shown as
Figure 1.

Figure 1. Data preprocessing



Slide image preprocessing
As the downloaded data is not well organized as a benchmark dataset, data
preprocessing is needed before the downloaded data sets are fed to machine
learning/deep learning models. Slide images are very large, with an average width of
101,688 pixels and an average height of 73,154 pixels and each slide image has
different shapes. If these images are directly used to model training, it would be
prohibitively computationally expensive. Also, the original images contain useless
information such as background, shadows, water, smudges, and pen marks. Thus,
we need to scale down the slide images, select the informative portions, and crop
them into a fixed size [2]. Finally, as we use python with machine learning toolboxes
to realize our project, we need to further transform the processed images into matrix
format, i.e. numpy arrays.

We use packages in the python environment such as OpenSlide, PIL, pandas,
numpy, glob, etc. to process the slide image. First, we use glob package to traverse
each image in the directory, and extract the unique IDs from their file names with
string comparison technique. Then, we use the OpenSlide package to transform the
slide images from svs format into PIL image format. After we get the slide images of
PIL format, we use PIL package to crop out the main region of the tumor in the slide
image, transform the RGB images into grayscale images (due to computational
resources limitation) and resize the image into 256*256 pixels. Finally, we transform
the PIL images into numpy arrays, and combine each image with its ID as a list. We
also keep copies of processed slide images as png format. Figure 2 shows the
results of slide image processing.

(a) Before processing (b) After processing

Figure 2. An example of slide image processing

Apart from the slide image preprocessing proposed above, we also need to find out
an unique key to combine the slide image with the gene expression quantification
and the label. In this project, unique IDs of each slide image corresponding to the
gene expression quantification and label are stored in the file name of the slide
image. We use string comparison techniques to extract the file IDs from the file
names.

Gene expression quantification (features) and label
As for the gene expression quantification data, the gene data (features) and clinic
data with diagnosis (labels) are in separated data files, we need to merge them into a



grid form matrix by provided ID number. The gene expression quantification is fat
data, with over 60,000 features but only hundreds of samples. Therefore, feature
selection must be performed before data is fed to machine learning/deep learning
models.

In our project on cancer cluster detection, the TCGA data portal provides gene
expression quantification, clinical data, meta data which contain the unique
information of each patient, and supplemental clinical data which contains all of the
unprocessed data related to the patient. The gene expression quantification can be
treated as features, and we can find the corresponding labels in the clinical data. We
can merge the features and label pair-wisely with the help of the meta data file, which
contains the identity information such as sample IDs, file IDs, etc.

In our project, we use pathological state as our label, which isn’t not directly provided
in the clinical data file. We need to generate the pathological stage according to the
diagnosis records in the clinical data file based on the American Joint Committee on
Cancer (AJCC) TNM staging system. We can generate the pathological stages
according to the American Joint Committee on Cancer (AJCC) TNM staging system.
The TNM system for prostate cancer is based on five information shown as belows.
1.The extent of the main (primary) tumor (T category).
2. Whether the cancer has spread to lymph nodes (N category).
3. Whether the cancer has metastasized to other parts of the body (M category).
4. The prostate-specific antigen (PSA) level at the time of diagnosis.
5. The Gleason score. It measures how likely the cancer is to grow and spread.

Feature reduction
In gene expression quantification, the number of features (over 60,000) is far more
than the number of samples (hundreds of samples), which is called fat data. If we
feed fat data directly into a machine learning model, it may lead to many problems
such as computational resources problems, overfitting etc. In order to avoid or
eliminate these problems, we’d better reduce the feature dimension before we train a
machine learning model. In the project, we use two methods for feature reduction,
one is a machine learning method, and the other is based on domain knowledge.

(a)Machine learning method
We use correlation between each feature and label as an indicator to reduce the
dimension of features.. We set a threshold, and select those features having a higher
correlation than the threshold. In this process, we used a wrapper scheme. We
trained baseline models with the selected features by different thresholds, and
compared their performance. We use the performances of baselines and the number
of remaining features as an evaluation of our feature reduction. The correlation
between features and the label shown as Figure 3. We set the threshold to {0.16,
0.18 ,0.20, 0.22, 0.24, 0.26, 0.28, 0.30}, and compare their performances on
baselines.



(a) Correlation (b) Distribution of correlation

Figure 3. Correlation between features and label

Table 1. Number of remaining features with different thresholds

threshold 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.30

#features 3566 2333 1534 969 623 397 238 132

(b)Domain knowledge method
We searched for the gene which played a critical role in the pathological prostate
stage, and manually selected those genes from the whole features. Many factors
increase a person’s chance of developing prostate cancer. Factors including age,
race, location, family history, genetic mutations, exposure, diet etc., raise the risk of
developing prostate cancer. In this project, we consider the gene related to prostate
cancer. The TCGA data portal provides a list of genes which may have a closer
relationship with prostate cancer, such as ALK, SS18L1, RABEP1, etc. We
downloaded this list of gene positions corresponding to the gene expression
quantification, and screened out these listed features from the original gene
expression quantification. We analyze the correlations of each selected gene with the
prostate pathological stage, and use these selected features to train baseline
models.

Figure 3 is the correlations between each feature selected by domain knowledge and
the label. From Figure 3, we surprisingly see that the features selected by domain
knowledge are not necessarily highly related to the label, which displays a different
result from that of feature reduction by machine learning method.



(a) Correlation (b) Distribution of correlation

Figure 3. Correlation between selected features by domain knowledge and label

Table 3. Accuracy of baselines

Selected features by correlations Domain
knowledge

thres. 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 -

#feat. 3566 2333 1534 969 623 397 238 132 315

LR 0.66 0.66 0.6 0.63 0.63 0.6 0.56 0.56 0.66

CNN 0.44 0.43 0.43 0.48 0.48 0.56 0.56 0.56 0.56

LSTM 0.46 0.48 0.48 0.48 0.48 0.53 0.56 0.56 0.56

Pairwise matching
After the preprocessing on the slide images and gene expression quantification, we
use meta data which contains identity information such as sample IDs, file IDs etc., to
merge the gene expression quantification, slide images, and pathological stages
(labels) pairwisely together into numpy arrays.

Normalization
For gene expression quantification, we perform min max normalization to each
column of the features and rescaled them to a range of [0,1]. For slide images, each
pixel is divided by 255, and is rescaled to [0,1].

Method
This project aims to mark the cancer cell cluster regions which are related to tumor in
the tumor tissue slide images by a machine learning/deep learning system. As the
TCGA dataset provides pair-wise image and gene expression data, we combine both
the slide images and the gene expression quantification data to train a machine
learning system to predict the risk of tumor and then use the trained models to mark
cancer clusters in slide images. The overview of our method is shown as Figure 4.



Figure 4. Overview of our method

This machine learning system mainly has three parts, the first is a machine
learning/deep learning algorithm trained by gene expression quantification data, the
second part is a convolutional neural network trained on slide images. The final part
is the neural network, which combines the outputs of the two trained models to make
a prediction on the risk of tumor. Based on the trained convolutional neural network,
we can map the intermediate variables to the original images to mark the cancer
region in the slide image. As you can see in Figure 5, here is our model structure.

Figure 5 . Model structure

(1) Image modeling: A convolutional neural network (CNN) should be built to
capture features from the RGB slide images. As the downloaded images are raw
data, data preprocessing is needed before the images are used as input to the CNN.
As the raw slide images have different sizes, a python based package OpenSlide is
used to downscale the raw slide images, converge them into fixed size. Based on the
fix-sized images, a convolutional neural network (CNN) should be employed to learn



the inner patterns of the images. We built a three layer convolutional neural network
with max pooling layer, which helps us to get the higher level information from the
image.

(2) Genomic data modeling: Information should be extracted from the gene
expression quantification data. In the downloaded file, gene expression data
(features) and clinic data (labels) are in separated files. They need to be merged by
unique ID numbers. As gene data is highly dimensional which has over 60,000
features but only hundreds of samples, feature reduction must be performed before
the data is fed into a machine learning/deep learning model. After we do feature
selection by domain knowledge, we use 1 dense layer with relu activation function to
gain additional information from the Genomic data. Besides, we want to this
additional information to improve the performance of prediction of pathological stage.

(3) Prediction modeling: From the CNN trained by slide images and the machine
learning model trained by gene expression data, we can get two matrices of
high-level information. In this step, we combine these two information matrices to
improve the prediction of the risk of tumor. We concatenate these two matrices and
put them into a 1 layer neural network to make a final prediction on the pathological
stage. Based on the dataset we have, we train this model by the back propagation
with Adam optimization method.

(4) Cancer region prediction: After training, this model could predict the stage of
cancer by the image information and gene expression, the CNN based on slide
images can capture some inner pattern or high level feature from the image, which
could be stored in the hidden units or other intermediate variables. A CNN mapping
method should be used to extract information from the intermediate variables, and
map them to the original slide images. With this mapping method, we can mark the
cancer cell cluster regions in the slide images.

Result
We picked prostate cancer as the target cancer, we downloaded over 200 slide
image data from The Cancer Genome Atlas (TCGA), after data preprocessing and
matching the gene expression, we got 151 samples and their pathological stages.
We split the dataset into 80% training data and 20% validating data. As you can see,
after training we get an overfitting model, due to the size of the dataset being too
small.



Figure 6. Training model result

However, on the other hand, we can see this model performance very well on the
training dataset, which means we could use this model to get the cancer region. So,
we developed a mapping method to predict the region on the image. Example as
follows.

Figure 7. Examples of marked images

Future work
The biggest problem we faced is the insufficient amount of data, even though The
Cancer Genome Atlas (TCGA) has more than 2000 samples of prostate cancer, but
not all of them have a usable slide image. And the raw data is usually very big, the
download time is very long for two people to process it. In the future, since we have
time to process more data and feed it into the model, we might get a more robust
model. On the other hand, the overfitting issue is there. Since the dataset is not
enough and the model is simple enough, we might need to add a dropout layer and
regularization term to reduce overfitting. We believe both problems can be solved or
improved by adding more data into the model. After we got enough data, we might
need to adjust the model structure to create a more powerful model, which can give
us better results.



Reference
[1]https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
[2]https://developer.ibm.com/articles/an-automatic-method-to-identify-tissues-from-big-wh
ole-slide-images-pt1/
[3] https://en.wikipedia.org/wiki/Bayesian_network
[4] https://en.wikipedia.org/wiki/Imaging_biomarker
[5] Gareau DS, Browning J, Correa Da Rosa J, et.al. Deep learning-level melanoma
detection by interpretable machine learning and imaging biomarker cues. J Biomed Opt.
2020 Nov;25(11):112906. doi: 10.1117/1.JBO.25.11.112906. PMID: 33247560; PMCID:
PMC7702097.
[6] Choi H, Jin KH; Alzheimer’s Disease Neuroimaging Initiative. Predicting cognitive
decline with deep learning of brain metabolism and amyloid imaging. Behav Brain Res.
2018 May 15;344:103-109. doi: 10.1016/j.bbr.2018.02.017. Epub 2018 Feb 14. PMID:
29454006.
[7] Hwang D, Kang SK, Kim KY, et al. Generation of PET Attenuation Map for Whole-Body
Time-of-Flight 18F-FDG PET/MRI Using a Deep Neural Network Trained with
Simultaneously Reconstructed Activity and Attenuation Maps. J Nucl Med. 2019
Aug;60(8):1183-1189. doi: 10.2967/jnumed.118.219493. Epub 2019 Jan 25. PMID:
30683763; PMCID: PMC6681691.
[8] Zrimec, J., Börlin, C.S., Buric, F. et al. Deep learning suggests that gene expression is
encoded in all parts of a co-evolving interacting gene regulatory structure. Nat Commun
11, 6141 (2020). https://doi.org/10.1038/s41467-020-19921-4
[9] Li J, Lan CN, Kong Y, Feng SS, Huang T. Identification and Analysis of Blood Gene
Expression Signature for Osteoarthritis With Advanced Feature Selection Methods. Front
Genet. 2018 Aug 30;9:246. doi: 10.3389/fgene.2018.00246. PMID: 30214455; PMCID:
PMC6125376.
[10] Wang L, Audenaert P, Michoel T. High-Dimensional Bayesian Network Inference From
Systems Genetics Data Using Genetic Node Ordering. Front Genet. 2019 Dec 20;10:1196.
doi: 10.3389/fgene.2019.01196. PMID: 31921278; PMCID: PMC6933017.
[11] Agrahari, R., Foroushani, A., Docking, T.R. et al. Applications of Bayesian network
models in predicting types of hematological malignancies. Sci Rep 8, 6951 (2018).
https://doi.org/10.1038/s41598-018-24758-5

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://developer.ibm.com/articles/an-automatic-method-to-identify-tissues-from-big-whole-slide-images-pt1/
https://developer.ibm.com/articles/an-automatic-method-to-identify-tissues-from-big-whole-slide-images-pt1/
https://en.wikipedia.org/wiki/Bayesian_network
https://en.wikipedia.org/wiki/Imaging_biomarker
https://doi.org/10.1038/s41467-020-19921-4

