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Abstract

Trait or phenotype prediction is one of pivotal tasks in the field of
Genome-Wide Association Studies (GWAS). GWAS involves scanning
genetic markers across genomes in order to find associations of genetic
variants and human phenotypes. Despite numerous ongoing research
in this field, understanding the genetic contribution to complex phe-
notypes still remains an open problem. In our paper, we propose a
transformer model to perform quantitative phenotype prediction. We
also propose a novel embedding method for the categorical data as a
part of our transformer architecture, which can be utilized in other do-
mains as well. Experimental results indicate that our model performs
significantly better than baselines, on yeast dataset, for the traits that
have considerably complex interactions.

1 Introduction

In light of recent advents in genetic sequencing techniques, the amount of
available genomics data is rapidly increasing in the current decade [1]. Tech-
nological advancements in data generation from multiple levels of biologi-
cal systems — including DNA sequence data [2], RNA expression levels [3],
methylation patterns [4], other epigenetic markers [5], and proteomics [6]
— have driven the field of translational bioinformatics in the past decade,
producing huge chunks of data as researchers continually strive to develop
complementary analysis tools [7]. This vast ocean of data can, in turn, help
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in detection of genetic factors that contribute to diseases or improvement of
breeding strategies in animals and plants. An important down-stream task
in this venue is trait (phenotype) prediction. Traits are categorized as either
qualitative (e.g., eye color) or quantitative (e.g., height). Our focus here is
to predict quantitative traits using genotypes.

Models utilized for extracting key information out of genomic data, in-
cluding, but not limited to, genotypes, require strong concepts and tech-
niques of data mining. One underlying cause is that these genetic vari-
ants have linear or non-linear interactions, called additive and epistatic ef-
fects respectively, in determining trait values. Epistatic effects make phe-
notype prediction an exhausting task, since modeling such interactions de-
mand significantly complex models compared to the additive effects. The
other reason is the dimensionality of genomic data, where the cardinality of
features is extremely larger than that of samples, referred to as the curse-of-
dimensionality [8].

In this project, to address quantitative trait prediction problem, we present
a novel deep learning model termed Split Transformer, utilizing transformer
architecture, leveraging self-attention mechanism and embeddings, capable
of capturing complex Single Nucleotide Polymorphism (SNP) interactions,
or so called epistatic effects, towards phenotype changes. In the following,
first, we will review related literature. Next, we present our methodology,
followed by results and discussions.

2 Related Work

In practice, trait prediction is addressed using three different categories of
approaches, namely Linear Midex Models (LMMs), machine learning (ML),
and deep learning (DL) modeling. LMMs mostly assume that effects are
additive and follow a normal distribution. Examples of such approaches
are Best Linear Unbiased Prediction (BLUP) and several extended models
including ridge regression BLUP (rrBLUP) [9], genomic relationship BLUP
(GBLUP) [10], and single-step genomic BLUP (ssGBLUP) [11].

ML models generally struggle with curse-of-dimensionality and need care-
ful feature selection. There are four major approaches to combat this problem
using feature selection: filters, wrappers, embedded, and hybrid approaches.
Filters, such as information gain [12] and Fisher score [13], depend majorly
on statistical metrics in their estimation of correlation between features and
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traits in order to select the best features for the phenotype. Compared with
wrappers, these approaches are generally several times faster but deliver less
optimal results. Wrappers utilize kernels of machine learning models to per-
form Sequential Feature Selection that can either be categorized as forward
selection or backward elimination [14]. Embedded methods, on the other
hand, use an internal mechanism based on techniques such as regularization
or penalty to identify significant features during the training phase [15], such
as Lasso [16], Ridge regression, and Elastic Nets [17]. Additionally, some
embedded methods were specifically modified for applications in genomics.
Some examples are Spike-and-Slab Lasso Generalized Linear Model (ssLasso
GLMs) [18], Empirical Bayesian Elastic Net (EBEN) [19], its parallel version
(parEBEN) [20], Multiple-trait Bayesian Lasso (MBL) [21], Bayesian Ridge
Regression [22], and GPR [23]. The aforementioned methods specialize in
trait prediction but they are designed for classification tasks. Thus, they
cannot be applied to our problem, quantitative trait locus (QTL) prediction,
where the phenotypes are quantitative traits. Hybrid methods depend on a
combination of filters and wrappers in order to overcome the shortcomings
of each of the former three and, in turn, deliver superior results [24, 25].

In recent years, DL models are widely used in down-stream genomics
tasks, such as phenotype prediction. In [26], a denoising auto-encoder is im-
plemented by first pre-training in an unsupervised manner and then utilizing
for trait prediction. DeepGS [27] takes advantage of a deep Convolutional
Neural Network (CNN) in order to learn underlying representation of geno-
type data for phenotype prediction. Another DL model based on dual-stream
CNNs [28] is proposed for phenotype prediction, using saliency maps to assess
an SNP’s contribution to the phenotype.

Our proposed method falls into the DL category. We use a novel trans-
former model to tackle quantitative phenotype prediction. The rationale
behind our choice of architecture is that self-attention used in transformers
can take into account pair-wise feature interactions, requires zero feature en-
gineering, and is currently state-of-the-art in many challenging tasks, such
as computer vision and natural language processing.

3 Methodology

We start our work with our dataset, the Yeast dataset [29], and perform pre-
processing. Then, we build our model, fine-tune its parameters, and perform
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exploratory experiments, including investigating the contribution of our novel
embedding method. In the end, we compare the performance of our model
against baseline models to see how ours fares against them. We describe the
process in more detail in the following sections. An overall diagram of our
workflow is presented in Figure 1.

Figure 1: Workflow Block Diagram

3.1 Dataset Used

The dataset we have used in our work is the Yeast dataset [29]. This dataset
contains sequenced genotype profiles of nearly 4,390 specimen, 28,220 at-
tributes (SNPs), and 20 different quantitative growth traits. The samples in
this dataset are a cross between a laboratory strain (BY) and an isolate form
of vineyard (RM), encoded as -1 and 1, respectively. We use this dataset
because here the phenotypes are quantitative traits and hence allows us to
perform a quantitative trait locus (QTL) analysis.

3.2 Data Pre-processing

In our pre-processing section, among our general data cleaning measures,
we apply min-max scaling to target traits in order to improve model perfor-
mance, since DL models struggle, due to design of activation functions, when
features and/or labels are not in range of [-1, 1]. Also known as min-max
normalization, min-max scaling is a simple method that re-scales the data
into decimals in range of [0, 1]. We also remove records with missing values
for traits. The basic formula for a min-max scaling is given as following,
where x is an original value, and x’ is the normalized value.

x′ =
x−min(x)

max(x)−min(x)
(1)
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3.3 Proposed Model

Following the success of BERT [30] in natural language processing down-
stream tasks and wide usage of this architecture in computer vision tasks,
such as Vision transformer [31] and Swin transformer [32], transformers
gained a tremendous reputation and are applied to different domains, in-
cluding genomics and proteomics. A revolutionary example is AlphaFold2
[33] that is used for protein structure prediction. Here, we present Split
Transformer which comes with two novelties.

First, as the name implies, our model splits the features into chromosomes
at the first level, and then to smaller windows at the second level, as depicted
in Figure 2. In other terms, we form small windows, each containing a limited
set of consecutive features that overlap with neighboring windows around
the edges. Self-attention consumes quadratic memory with respect of data
dimensionality. By splitting the features into windows, we trade off accurate
global interactions for reduced attention memory overhead. To alleviate this
phenomenon, we reduce the number of features at window level via max
pooling, and apply another attention at chromosome level to capture non-
linear chromosome level interaction among the features at reduced resolution.

Figure 2: Split Transformer Architecture

Second, we introduce categorical embedding, an extension of positional
embedding we came up with, which can encode categorical features and rep-
resent each category of each feature using a unique embedding vector. In
natural language processing, we either have a word or we do not have it,
thus we either include its embedding representation or we do not. However,
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Figure 3: Categorical Embedding Workflow

in categorical feature cases, we always have to include respective representa-
tion of a feature, however, we need to distinguish between different value for
it. For instance, if we are analyzing phones sold in 2022 based on features
they have, such as battery capacity and their operating system, which are
all categorically represented, we need to have different embedding vectors
for 3500, 3700, 4000, 4500, and 5000 mA battery capacities and also dif-
ferent values for each of Android and iOS operating systems so that model
can distinguish differences between the phones. In our case, each feature is
binary, and we need two unique embedding vectors to represent different bi-
nary values for each feature. Therefore, in total, we need 2× 28220 = 56440
unique embedding vectors to be able to represent all possible feature value
combinations. In order to do that, we extended positional embedding used
in transformers of natural language processing and computer vision tasks.
The internal working mechanism of our categorical embedding is depicted in
Figure 3, where B is the number of samples, #featuresl is the number of
features in Window l after splitting the chromosome into windows, #values
is maximum number of categorical values that can be found in any feature in
our window, hence 2 in our project, and D is embedding dimensionality, a hy-

6



perparameter of our model. In our case, we used 500, 50, and 32 for window
size, window overlap size, and D parameter, respectively. We used Tensor-
flow [34] and Scikit-learn [35] Python packages and Google Colab platform
to develop and run our models.

4 Results

In order to asses our proposed architecture, we performed extensive evalua-
tions and benchmarked our model against fine-tuned baselines for the task,
using 5 repetitions of random train-test split where 80% of the data was used
for training the models and 20% was held out and used for evaluation of the
model on unseen data. Fixed seeds were used for shuffling the data so that
the same splits are acquired for all models in bechmarking. We examined 3
traits, namely Cobalt Chloride, Copper Sulfate, and Diamide having different
ratios of epistatic to additive effects of quantitative trait loci (QTLs), accord-
ing to the literature. Furthermore, we investigated the epistasis effect in our
model performance and also the contribution of our proposed embedding is
explored in a separate experiment. Our performance metric of choice is mean
squared error (MSE), as it is widely used for regression tasks, such as ours.

4.1 Benchmarking

In order to evaluate how well our proposed model performs, we used 4 well-
known and fine-tuned models as baselines. These model are Random Forest,
Lasso, Elastic Net, and a Deep Neural Network (DNN) with three hidden
fully connected layers of 14110, 7055, and 2822 neurons, respectively. For
Random Forest, its implementation in R is used, where all hyperparameters
are determined automatically from dimensions of the data. For Lasso and
Elastic Net, their hyperparameters are tuned using a grid-search. As for
our model, hyperparameters were fine tuned based on empirical studies we
had on Diamide. As you can see in Figure 4, DNN is performing the worst
among all. The underlying cause could be attributed to the fact that fully
connected layers of DNN struggle with capturing local dependencies among
the loci/features. Lasso is basically a Linear Regression (LR) model with a
L1 regularization term, and Elastic Net is an LR model with both L1 and
L2 terms. We can see that Lasso and Elastic Net perform equally well as
Random Forest on Cobalt Chloride and Copper Sulfate, but exceptionally
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better on Diamide. As for Split Transformer, our proposed model, we ob-
serve improvement in performance, according to Equation (2), compared to
the other models, on Cobalt Chloride and Copper Sulfate by 2% and 22%.
respectively. However, our model performs slightly worse than Elastic Net
and Lasso in case of Diamide.

Improvement =
V2 − V1

V2

(2)

Figure 4: Performance Comparison based on MSE

To investigate the underlying cause for such difference in performance, we
looked into supplementary materials of [29], where discovered quantitative
trait loci were reported, listing additive and epistatic effects per quantitative
trait. We summarized their findings in Table 1. Interestingly, in case of
Diamide, we can see that almost all of the QTLs responsible for trait changes
have additive effect, while the ratio of epistatic to additive traits for Copper
Sulfate is relatively much higher. This entails that linear models, in this
case Lasso and Elastic Net, can predict quantitative traits where almost all
QTLs are additive quite accurately, while our proposed model shines where
epistatic effects are involved to a larger scale and feature-feature interactions
are relatively complex.
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#QTLs
Linear (Additive) Non-Linear (Epistatic) NL/L Ratio

Cobalt Chloride 33 9 0.27
Copper Sulfate 32 23 0.71
Diamide 56 6 0.11

Table 1: QTL contribution based on Bloom et al. (2014) findings

4.2 Embedding Study

As the last experiment, but not the least, we attempted to investigate the
contribution of our categorical embedding layer in Split Transformer. To do
so, we compared our final architecture to two different scenarios where the
target for prediction was Diamide. In our final architecture, embeddings are
placed inside each window, and we term it as local embedding. It entails that
in this schema some features that are repeated in windows as a result of over-
lap between neighbouring windows will have two different embedding vectors,
one per window, after the training is over. In an alternative scenario, called
global embedding, instead of putting embedding inside the windows, we place
them at the beginning of our model, entailing that overlapping features will
still have the same embedding vector. Lastly, we removed embedding layer
in each window, and replaced them with convolutional layers instead, in or-
der to encode the input data. Similar to benchmarking, we repeated the
experiment using 5 random splits with fixed seeds. The final results of this
experiment are reported in Table 2, indicating that using embedding can im-
prove performance compared to not using it, and also local embedding has
a substantial impact on the performance of the model, compared to the two
other scenarios. We speculate that learning several embeddings per feature
in accordance with different features in locality of the SNP is the cause of
such improvement.

Compare to
ST - Global Embedding ST - No Embedding

ST - Local Embedding 3.4% 4.3%
ST - Global Embedding NA 0.8%

Table 2: Improvement comparison in ST model based on MSE performance
of Diamide prediction
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5 Conclusion

In this project, we tackled quantitative trait prediction task on yeast dataset
using a novel transformer model, termed Split Transformer. In our empirical
studies, we observed that our Split Transformer model is able to outperform
other popular Machine Learning models, such as Random Forest, Lasso,
Elastic Net, and DNN, in cases where predictions highly rely on complex
feature interactions. We also observe that our proposed categorical embed-
ding makes it possible to use embedding for any categorical input data. In
such an instance, local (categorical) embedding leads to better performance
compared to global (categorical) embedding or to not using any embedding
at all. We continue working on improving and refining our model and our
future work involves improving the model to better predict the traits where
the effects are mostly additive.
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“Highly accurate protein structure prediction with alphafold,” Nature,
vol. 596, no. 7873, pp. 583–589, 2021.

[34] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
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