NARS-FighterPlane
A game Al based on NARS

Boyang Xu
Spring, 2021

1 Introduction

NARS-FighterPlane is a game in which NARS serves as an Al controlling a
fighter plane to hit enemy planes. In the game, NARS begins with zero expe-
rience and babbles in the game environment. When interacting with the game
environment, NARS needs to learn how to control the fighter plane and hit
enemy planes to gain a higher score. The source code can be downloaded on
github[I].

Non-Axiomatic Reasoning System (NARS) [2], is a general-purpose AT sys-
tem towards Artificial General Intelligence (AGI) which aims at the building of
a “thinking machine” — a computer system with human-like general intelligence
[3]. NARS can work and learn in real-time in the open environment, under
the Assumption of Insufficient Knowledge and Resources (AIKR) as its working
definition of intelligence.

NARS as a developing theoretical model has its open-source implementa-
tion in Java, OpenNARS [4], which is sometimes referred to as “OpenNARS for
Research” to distinguish from “OpenNARS for Applications” (usually referred
to as ONA) [5], which is implemented in C by Patrick Hammer and its control
mechanism is totally different from OpenNARS. In this project, OpenNARS
3.0.4 and ONA are both used to control the fighter plane so they can be com-
pared. For simplicity, NARS will be used in the following to refer to OpenNARS
3.0.4 and ONA.

2 Program Design

The program can be divided into two parts, the game part that is programmed
in Python by using pygame module, and the NARS part that uses either Open-
NARS or ONA implementation. The game is running in the main thread while
NARS is running as a subprocess in a command window and they communicate
with each other asynchronously. The general idea is that the game will give
NARS the objects’ positions (i.e., the sensor information) at set intervals, and
then let NARS infer. There is a thread monitoring NARS in the background



and once NARS gives an operation (i.e., the motor information) the thread
reads the operation and passes it to the game to execute. The overall process
is shown in Figure [1]

NARS

<—sensor info

2.1 Game

NARS

async Game
motor info—

Figure 1: NARS-Game

create
enemy

[<&—sensor info
async
motor info—|

Game

fi

re

{ fighter-enemy
collision

update
positions
display

Figure 2: Main loop

As Figure [2 shows, the main logic of the game is a loop executed once per
frame. In each frame, the game keeps doing five things: handle events, check
collisions, update positions, display, and delay time. The boxes painted in blue
indicate that these function modules will communicate with NARS. The most



important part is the module of handling events, which performs the following
tasks:

1. Check if the game is quit. Once the game is closed, it will call the termi-
nation of NARS and then the game.

2. Create an enemy plane per second.
3. Fire per 0.5 second.

4. Update NARS. The game will pass the position of the fighter plane and
the enemy to NARS (sensor info). However, NARS do not use their co-
ordinates directly. The reason will be further discussed in the section of
Lessons Learned. What passes to NARS is the enemy’s positions relative
to the fighter plane, i.e., enemy on the left, enemy on the right, and enemy
in the face of the fighter plane. Then, NARS will be set a goal of hitting
enemy. Since the event happens at set intervals, the goal is reminded
repeatedly. Finally, add certain inference cycles to NARS.

5. Babble event will be triggered only for OpenNARS and last for a period
of time at the beginning. After that, this event type will be removed. For
ONA, the babbling process is innate.

6. Read the current operations in the “mind” of NARS and execute them.

Events 1-5 will be triggered once in a while according to their timers.

In the “check collisions” module, the game checks if two sprites collide. If
a bullet collides with an enemy plane, it will give NARS a reward (i.e., satisfy
the goal).

“Update positions” module updates all the sprites’ current positions and
check if they are out of bounds. It also updates the text shown on the surface,
like scores, time, FPS, etc. After that, the “display” module will show them.

The module of delaying time is used to complete one frame. It will first
calculate how many milliseconds have passed since its previous call, including
the time spent by other modules. Then, it calculates how much time it needs
to wait and finally delays the time.

2.2 NARS

2.2.1 Preparation

Before using OpenNARS or ONA for this project, operations need to be regis-
tered first. OpenNARS 3.0.4 has already prepared some operations for testing,
such as " left, " right, ~ strike, ~ open, and so on. Here ~ denotes an operation in
Narsese (an internal language in NARS). We can pick “left and " right for the
game and the babbling process will activate them from all of these operations.
To add or delete operations in OpenNARS, someone can modify the code related
to operations in defaultConfig.zml which is located at /src/main/recourses/con-
fig in the source code and then recreate a jar file.



=W N =

N =

[\]

For ONA, though the code in the github [5] already contains some opera-
tions, the operations we do not want to use have to be removed, otherwise all
operations will be invoked during babbling as the babbling process is innate
in ONA and we cannot modify it. To modify operations, check Shell.c and
Config.h located at /src. Register the operations we want and remove the op-
erations we do not want in Shell.c, and set OPERATIONS_MAX in Config.h to
the number of operations we have. Finally, compile ONA through build.sh by
cygwin (gee-g++ needs to be installed) in Windows.

The program will launch OpenNARS by inputting “java -Xmx1024m -jar
opennars.jar” to the command window or launch ONA by inputting “NAR
shell”. Then, for both of them, “*volume=0" should be set to NARS, which
mutes NARS except executable operations and answers to questions, or else
NARS will show almost everything in its mind to the output and heavily slow
down the program because of I/O. There is a thread monitoring the command
window all the time, reading and parsing every sentence spoken out by NARS
to sift out an executable operation.

2.2.2 Learning Mechanism

NARS-FighterPlane mainly utilizes the logic of NAL-7 (temporal inference, in-
cluding Events) and NAL-8 (procedural inference, including Goals and Opera-
tions) [2]. As the “update NARS” module in Figure [2| shows, there are three
steps: update sensor info, remind goals, and add inference cycles. From the sen-
sor info, the program calculates the enemy’s coordinates and derives positions
relative to the fighter plane, and then writes them as Narsese to tell NARS the
following events (“//” denotes comments):

//:]: denotes the sentence is true at present

<{enemy} --> [leftl>. :|: //Now an enemy is on the left
<{enemy} --> [rightl>. :|: //Now an enemy <is on the right
<{enemy} --> [aheadl>. :|: //Now an enemy tis ahead

Then, a goal is set to NARS once in a while:

//! denotes the sentence is a goal.
//It can be read as "I want to feel good."
<{SELF} --> [goodl>! :|:

Finally, add inference cycles to NARS by directly inputting a number, which
helps NARS form its time sense. In the process of babbling, NARS will be
forced to randomly execute operations in it,

“left
“right
“deactivate

so the situation of the fighter plane will be changed accordingly and so as the
sensor info which will be passed to NARS later as the consequences of its actions.
Once “check collisions” module detects a bullet shoot down an enemy, NARS
will instantly get feedback and be “praised”, i.e., satisfying the goal:



1 <{SELF} --> [goodl>. :|: //Now I am feeling good

By interacting with the game environment, NARS gradually gets some clues and
forms expectations: e.g., if I move left, then the enemy on the left will be ahead
of me; if the enemy is ahead, then the bullet will hit it so I can feel good, etc.
It can also come up with wrong expectations. NARS uses backward inference
to reduce the given initial goal into derived goals until the derived goals can
be satisfied by executing operations. Then, NARS uses forward inference to
achieve them one by one in turn until the initial goal is achieved. Thus, NARS
can give operations from time to time while doing reasoning. By constantly
updating and getting feedback, NARS gradually learns which expectations are
more proper and reliable as for the current situation, which finally turns into
its experience.

3 Demo Show

£ pygame window - [u] X 4 pygame window - ] X

Figure 3: Demo 1 Figure 4: Demo?2

e Operation: the current operation, “move left”, “move right”, or “stay
still”

e Babbling: the remaining times of babbling, only for OpenNARS. When it
decreases to zero, the babbling process is finished

e Time(s): the time (seconds) that has passed



Score: the number of the enemy hit by bullets

e FPS: frame per second

Performance: scores divided by time (s)

e opennars: denotes which type of implementation is called, OpenNARS or
ONA

As Figure [3&44] shows, at first NARS behaves poorly and rarely shoots down
an enemy plane. After a while, it can hit almost every enemy. We can see there
is a clear improvement by comparing their performance index.

4 Learn Firing by Itself

In the above talking, the fighter plane fires automatically at set intervals. In
fact, we can let NARS learn when to fire by itself, which will be an improvement.
It has been implemented in NARS-FighterPlane v2.0. The principle is similar
to the above. The difference is that we need to add an operation into NARS
and recompile it, modify the babbling process for OpenNARS, and allow NARS
to control the firing action of the fighter plane in the game. The performance
of NARS-FighterPlane v2.0 is satisfying though it is not as good as NARS-
FighterPlane due to the higher learning costs. Some NARS can finally learn
when to fire and perform very well, while some NARS can hardly master the
skill. It needs some luck.

5 Improvable Points

Though NARS shows its strength on learning ability, there are still a lot of
things that could be improved as for the game:

1. Add punishment when the fighter plane collides with the enemy planes,
which can make the game more interesting. Imagine a situation in which
if NARS moves left it would hit an enemy and be praised but in the
meanwhile it would collide with another enemy plane and be punished,
how NARS will do?

2. Add more sensors to improve the intelligence of NARS. For example, we
can allow NARS to sense the enemies’ positions in the vertical direction.

3. Add more operations to enhance the capabilities of NARS and make the
game more complicated, for example move upward and move downward.
With point 2 and 3, NARS can have more options when coping with the
situation mentioned in point 1.

4. The running performance of the game is limited by the asynchronous I/0
between NARS and the game. In the project, I uses a thread monitoring



the comman window. Maybe the performance can be improved by other
async I/O methods in Python, like asyncio or multiprocessing module. Or
more radically, combine NARS and the game by implementing NARS in
Python or move the game to Java or C, but it would be more difficult.

6 Compare with NARS-Pong

Many ideas of NARS-FighterPlane comes from NARS-Pong in Unity3D by
Christian Hahm [6]. By reading NARS-Pong’s code, I have learned a lot and I
appreciate for the help from Christian and Patrick. Though the main design of
NARS-FighterPlane is similar to NARS-Pong, there are still some differences:

1. The game part is implemented in Python and uses pygame module.

2. The game environment of NARS-FighterPlane is more complicated. NARS-
Pong has only one object, the pong, while NARS-FighterPlane has many
enemy planes. NARS can face a dilemma in which an enemy on the left
and an enemy on the right happen at the same time. Besides, one more op-
eration is added so that NARS can fire by itself in the NARS-FighterPlane
v2.0.

3. The program has good extensibility. As discussed in the previous section,
we can either add more sensors and operations to NARS or make the game
mechanics more complex.

7 Lessons Learned

The hardest part lies in the overall design and how to use NARS in Python.
Even though I was enlightened by NARS-Pong, it still took me a lot of time
to realize the asynchronous communication between NARS and Python. This
is a technical problem I encountered, but I would like to talk more about the
sensors in NARS.

What sensor information should be passed to NARS? This is a big question.
At the beginning I thought it can be simply done by passing the coordinates of
every object to NARS, but later I found it is impossible and does not make any
sense to NARS. The key reason is that NARS does not understand math and
also lacks other background knowledge (concepts like intersection, overlapping,
parallel, etc.), so NARS cannot utilize digits efficiently. Each coordinate to
NARS is a concept, and there are hundreds of thousands of different coordinates.
Performance could be a big issue if NARS does reasoning among such a huge
concept network without knowing any math concepts. Perhaps NARS can learn
some concepts in the end, I am not sure, but it is sure to take a huge amount
of resources to learn. The most common conditions could be that NARS gets
bogged down in number superstition.

To avoid this problem, we need to take advantage of our math knowledge:
calculate the coordinates and pass the positions relative to the fighter plane to



NARS, which boils down to three Narsese sentences eventually. Then, NARS
uses the ruminated information to do reasoning. Maybe in the future NARS
could calculate and derive conclusions by itself after mastering math.

Another important thing is that if we want NARS to satisfy its goals through
learning, it should be equipped with proper sensors and get correct feedback.
Think that if NARS does not know the horizontal positions of the enemy planes,
how can it learn to hit enemies by moving left or right? In fact, it requires us to
first figure out the process, and the logic should make sense to our human. Only
when we can explain the process can NARS achieve its goals. In this sense, the
logic of NARS is similar to human and it is explainable.

References

[1] NARS-FighterPlane. https://github.com/Noctis-Xu/NARS-FighterPlane.

[2] Pei Wang. Non-Aziomatic Logic: A Model of Intelligent Reasoning. World
Scientific, Singapore, 2013.

[3] AGI Society. http://www.agi-society.org/.
[4] OpenNARS. https://github.com/opennars/opennars.

[5] OpenNARS for Applications. https://github.com/opennars/OpenNARS-for-A
pplications.

[6] NARS-Pong in Unity3D. https://github.com/ccrock4t/NARS-Pong.


https://github.com/Noctis-Xu/NARS-FighterPlane
http://www.agi-society.org/
https://github.com/opennars/opennars
https://github.com/opennars/OpenNARS-for-Applications
https://github.com/opennars/OpenNARS-for-Applications
https://github.com/ccrock4t/NARS-Pong

	Introduction
	Program Design
	Game
	NARS
	Preparation
	Learning Mechanism


	Demo Show
	Learn Firing by Itself
	Improvable Points
	Compare with NARS-Pong
	Lessons Learned

