
1

AI Course Project Document:

Artificial Intelligence-Based

Connect 4 Player Using Python

Done by: Abdalaziz Sawwan

May. 05. 2021

Supervised by: Dr. Pei Wang

2

Contents
I. Introduction ... 3

II. Theoretical Analysis ... 4

III. Related Work ... 5

IV. The General Employed AI Techniques .. 5

IV.I The Minimax Algorithm .. 5

IV.II The Alpha-Beta Pruning Algorithm .. 8

IV.III The Utility-Function Heuristic Evaluator 10

V. The Implementation ... 13

V.I The Basic Panel and Its User-Friendly Interface 13

V.II The Implementation of the AI Agent and Some Other Parts of

the Code 15

VI. The Efficiency of the AI Model ... 16

VII. Conclusion, Personal Comments, and Final Thoughts 18

VIII. References ... 18

3

I. Introduction
Connect Four is a board game that is played by exactly two players, players

in it are assigned to different colors and then take turns dropping colored discs

into the suspended grid. The game’s grid has seven columns and six rows. The

pieces fall straight down, occupying the lowest available space. Figure 1

illustrates the game panel.

Figure 1: An illustration of the game panel (Source in [1].)

The main goal of the game is to be the first player to have either horizontal,

vertical, or diagonal line of four same-colored discs. It is well known that

Connect Four is a solved game, i.e. there is a specific known strategy by which

the first player can always win by playing the correct plays. Hence, in this

project, we try to play “semi-perfectly” against the AI and observe the results.

Furthermore, unlike most of the card games, Connect Four does provide

full information, where when a player at a time plays, all the two players get

all the information regarding moves that have deterministically already taken

place and regarding all moves that can take place for the next step, in a given

game state. This makes implementing an AI player of the game more feasible

for the purpose of this project.

The project includes first, implementing the game environment itself in a

suitable and user-friendly way, and second, an implantation of an AI player

who we can configure its parameters and hardness. Finally, a general

evaluation of the AI is presented.

4

II. Theoretical Analysis
Starting from the standard game, we will have a panel of 6 × 7 = 42

locations, each location has three possible states that can have; being empty,

having the disc of the first player, or having the disc of the second player. That

would directly give a rough upper-bound of 342 ≈ 1.1 × 1020 possible game

situations that the search space of the game may have.

However, we can compute a more accurate and tight upper bound of the

possible situations by evaluating the sequence of possible games corresponding

to a specific number of discs played so far, and then, just summing up the

elements of this sequence of numbers.

This sequence of possible situations after a number of turns will start from

zero situations after zero turns, then seven situations after one turn (the first

player has seven possible positions to place their disc on), then 7 × 7 = 49

positions after the second turn.

After the second turn, it becomes a little bit trickier, calculating the number

of possible situations after three turns is not trivial; the number of possible

situations at that point will be 7 × 7 × 1 + 7 × 6 ×
5

2
+ 7 × 6 × 2 = 238

situations. Which is derived after considering that in some scenarios, different

orders of placing the discs of the first player may produce the same situation of

the game. Here, we consider all the cases.

The whole sequence of possible situations after a specific number of turns,

and starting from zero is given by the following sequence:

1, 7, 49, 238, 1120, 4263, 16422, 54859, 184275, … [2].

After calculating the number of situations after considering all 42 possible

turns as well as the aero turn, we will end up with a total number of situations

that is around 4.5 × 1012 situations.

For a usual board game, an order of trillions of possible states in the search

space is relatively in too large (like the search space in Chess or Go board

games), and it is not too low that a simple brute-force algorithm that exhausts

all the situations is feasible alone to do that. This proves that our choice to

consider this game specifically was a good choice because implementing an AI

5

agent that does not trivially exhausts all the possible scenarios would be useful

in order to play against in this game.

III. Related Work
Tommy et al. [3] have demonstrated that a suitable optimal AI algorithm is

still unknown for the Connect Four game, they applied two different AI

algorithms; one that mainly utilizes the alpha-beta pruning algorithm, and one

utilizes the MTD(f) Algorithm (Memory-enhanced Test Driver Algorithm).

They consider in their research the optimality, which is the winning

percentage in general, the speed, which is related to the execution time, and

finally the number of leaf nodes. Their results state that their AI models win in

less than 50% of games with a reasonable execution time.

Sarhan et al. [4] have presented a design that converts the standard Connect

Four game into a real-time game by incorporating time restrains. They have

designed their artificial intelligence model based on influence mapping. In their

work, a waterfall-based AI software has been developed for the game. Their

main result was to successfully design their software using C++ programming

language.

Finally, Galli [5], who is a prominent online instructive videos maker about

different topics in computer science has discussed an implementation of an AI

model for the Connect Four problem and the implementation of the game itself.

In our project here, we in some instances, use similar techniques that are used

in his lectures. This is because of their relatively-high efficiency.

IV. The General Employed AI Techniques
In this section, we demonstrate a brief summary of the theory in of the main

techniques used in our AI model for this project.

IV.I The Minimax Algorithm
We implement an AI that mainly employs the minimax algorithm that we

have learned in the class. The algorithm is simply implemented by making the

players try to optimize some utility function that they have.

6

One player will try to maximize their utility function, which we will call the

maximizing player. And the other player will try to minimize their utility

function, which we will call the minimizing player.

We can choose the utility functions for each player to be the complement of

the other, so that, we would have a zero-sum game that is easier and more

feasible to be implemented using minimax algorithm. Figure 2 shows the

algorithm from a game-theoretic perspective.

Figure 2: Game theoretic perspective of the minimax objective function. (Source [6].)

For the exact way the algorithm works, it is better to illustrate using an

example; consider the simple example in Figure 3.

7

Figure 3: A simple example for the minimax algorithm (Source [7].)

Here, we consider a simple game with a simple case where there are eight

possible final situations of the game, where each one is assigned to a utility

function that the first player (the white player) tried to maximize, and the

second player (the black player tried to minimize.)

The algorithm evaluates each leaf node using a heuristic evaluation

function that we call the utility function, obtaining the values shown. The

moves where the maximizing player has advantage are assigned with positive

numbers, while the moves that lead to a situation where the minimizing player

has advantage are assigned with negative numbers. As much the magnitudes

of the numbers become larger, as much the advantage prevails towards one

side. A pseudocode of the algorithm is provided in Figure 4.

8

Figure 4: Pseudocode for the minimax algorithm (Source [7].)

In our Connect Four case, the search tree grows exponentially with a base

of nearly seven, this makes it very computationally expensive to make our

algorithm explore the tree until it reaches the last leaf nodes. Hence, the new

idea in section IV.II is introduced.

IV.II The Alpha-Beta Pruning Algorithm
As clear from our previous analysis of the minimax algorithm, it would be

very computationally expensive to search through the whole depth of the tree

because of the exponentially-increasing number of leafs. Hence a very feasible

way to reduce the search space is by trimming a part of the tree of the possible

situations of the game.

Alpha–Beta Pruning can be considered as a general search algorithm which

has an objective of minimizing the number of explored nodes that have utility-

function values calculated by the main heuristic function evaluator that is

employed in the minimax algorithm.

9

Alpha-Beta Pruning algorithm is an adversarial search algorithm that is

usually employed to implement an agent playing two-player game, which

makes it a very great fit for the purpose of implementing and AI for the Connect

Four board game.

The idea behind the algorithm is that it terminated the evaluation of the

utility function values of the nodes when at least one possibility gets found that

proves that the play in inquiry is not better than a play that has already been

previously examined. Such plays do not need to have their utility function

values calculated further.

When applied the Alpha-Beta Pruning algorithm on a standard minimax

search tree, it returns a result of the same move as the minimax would return

without applying the algorithm, but a new trimmed tree will be considered that

has some branches, which are impossible to possibly affect the final decision of

the algorithm, cut out. Hence, a more tractable problem will be considered

rather than the main computationally-expensive original one. Figure 5 depicts

an example of an application for the Alpha-Beta Pruning algorithm.

Figure 5: A simple example for the alpha-beta pruning algorithm (Source [7].)

In Figure 5, an example where it is not important to calculate the utility

function of three possible situations out of eight because, after we have

evaluated the other five already, we became sure that whatever values those

10

leafs may have, that will not affect the final result of the main minimax

algorithm in anyway.

We can easily observe that, when looking at the left subtree, whatever the

value of the fourth leaf is assigned, the weight node above it will not ever have

a value less than five. This means surely that the black node above it will inherit

the value from the left child, which has a value of three, instead of inheriting it

from the child on the right, which will not have a value less than three, let alone

five. The same exact principle is applied on the right subtree that gets more

nodes trimmed at once after the information of the first five leafs have already

been discovered.

Figure 6 shows the pseudocode of the standard alpha-beta pruning

algorithm applied to the minimax algorithm.

Figure 6: Pseudocode for the Alpha-Beta Pruning algorithm (Source [7].)

IV.III The Utility-Function Heuristic Evaluator
Determining the utility function, or the function’s value evaluator, is the

hardest part of the solution for the game because of its heuristic nature. This

11

major hindrance could have been avoided if we can efficiently reach the end

nodes (i.e., the leafs). In this case, we would just assign the end nodes to either

+∞ or −∞ depending on who wins on those end leafs.

However, in our case here, we have to have some kind of heuristic

evaluation of whose advantage some state of the game is, and in what degree

roughly it is advantageous (or disadvantageous). Hence, constructing the

heuristic utility-function has some degree of arbitrariness.

In the implementation of our AI, I started firstly considering the number of

discs of each color within a specific domain (a 4 × 4 window in this case here)

that may end up to form a winning situation, whether by lying down

horizontally, vertically, or diagonally.

Furthermore, a very great addition to this heuristic function that I have

done was made by distinguishing the middle column and giving it more

advantage over other columns. This addition has another benefit too, which is

breaking the initial symmetry that we have in the start of the game. That is it,

whenever the AI starts with the first turn, it chooses the middle column always,

and it gives the middle column more advantage over other columns.

Now, consider Figure 7 next:

Figure 7: The primitive heuristic utility function to evaluate the score of a board.

This is my main chosen way to calculate the utility function. As clear from

the code, when the count of the number of the player’s discs within a certain

given domain of spaces to be considered (our certain domain here is the 4 × 4

grid around the added disc.)

12

Our affecting parts and their degrees are chosen as following:

 You get +99999 points of utility whenever your disc in your hand

completes a count of exactly four discs of yours within the considered

domain, which is 4 × 4 grid in this case (i.e., after performing a

winning situation.)

 You get +5 points of utility whenever your disc in your hand

completes a count of exactly three discs of yours and one empty space

within the considered domain, which is 4 × 4 grid in this case.

 You get +2 points of utility whenever your disc in your hand

completes a count of exactly two discs of yours and two empty spaces

within the considered domain, which is 4 × 4 grid in this case.

 You get −999 points of utility whenever your disc in your hand

leaves behind it a count of exactly three discs of your opponent’s and

one empty spaces within the considered domain, which is 4 × 4 grid

in this case.

The factor in arbitrariness in our choices is apparent in the choice of the

exact values and in the exact scenarios. However, the experimental results

shown in section VI verify that they are acceptable to some extent.

Furthermore, we did not have to consider more involved cases and assign

values to them, like for example considering 5 × 5 grids of domain with more

cases so that the heuristic function becomes more sophisticated.

Our choice to +99999 points of utility is obvious to be happening in case

that the move is a winning move, and the choice of −999 points of utility is too

obvious to be happening in case that the move is a losing move (i.e., the

opponent can win in a single move after it.) In the same time, it is important to

make the AI prefer playing a winning move over avoiding a losing move. This

is why we chose |99999| > |999| of utility points in the two cases.

Now, considering Figure 8:

13

Figure 8: The second piece of code regarding the utility function.

Here, the practical implementation of the considered domain considering

all the possible orientations of the discs; the horizontal, vertical, and the two

diagonals. And a very important part is the one that gives more significance of

reserving the middle column (I assumed that the number of columns here is

odd.)

V. The Implementation
In this section, we discuss briefly the high level of some parts of our

implementation of the code, I did write the code heavily commented, and I

made the names of the variables representative to what they mean. Some ideas

from the code were inspired or applied from [5 – 9].

V.I The Basic Panel and Its User-Friendly Interface
Starting with a very brief description of the user-friendly interface to build

the panel itself, we start, by simply and directly applying the straightforward

instructions in the documentation of the pygame library [10]. Figure 9 shows a

part from that implementation.

14

Figure 9: A piece of code for the initialization of the panel and the game.

This part is mainly about defining the simple RGB arrays of each color to

represent it later in the user-friendly interface.

Furthermore, as Dr. Wang has suggested, I made my code flexible to accept

more general cases of choosing whatever number of rows and columns. Figure

10 shows the user-interface after setting the Number_of_rows variable to 4, and

the Number_of_columns variable to 5.

Figure 10: A general panel that can be produced by setting the Number_of_rows and Number_of_columns variables.

It is worth mentioning here, that the AI works very perfectly in different

settings of the number of columns and rows, because the number of columns

15

and rows that are set in the initialization designated variables are directly

linked in the implementation of the AI itself. In addition to that, it is worth to

be highlighted that the game at the first place was just a command line game

that just prints the matrix of the occupation of the slots of the panel after each

step rather than showing our final colored panel.

V.II The Implementation of the AI Agent and Some

Other Parts of the Code
A brief clarification of the implementation of the AI player. Figure 11 shows

the main part of the AI algorithm which constitutes the main body of the AI.

Figure 11: The main function of the AI agent.

As clear, the function is recursive, and was taken from the pseudocodes

implemented in Figure 4 and Figure 6. The adjustable parameters are the depth,

16

which is the variable d. The variables alpha and beta, as stated in the standard

pseudocode, are +∞ and −∞.

As obvious in the function, each invoking of it reduces the depth by one (as

obvious because the algorithm goes up level by level as depicted in Figure 3.)

Furthermore, when invoking the function itself each time, it alternates between

two subfunctions within it, one for the maximizing player, which is flagged by

a true value of the maximizingPlayer variable, and one for the minimizing

player, which is flagged by a false value of the maximizingPlayer variable.

Another small piece of code that I would like to state here is the way I chose

to alternate between the turns of the two players. Figure 12 shows the part of

code that alternated the Tt variable between 0 and 1 after each time the line in

the figure is invoked.

Figure 12: How the Tt variable alternates between the two values of 0 and 1.

The last small part of the code to be highlighted here is from the pygame

library, which holds the pygame window for 2 seconds after the game ends to

avoid the sudden diminish of the window right after the last move. Figure 13

shows this part of the code.

Figure 13: The piece of code that is responsible on holding the pygame window for 2000 milliseconds after the game ends.

VI. The Efficiency of the AI Model
This section gives a very brief feedback of the efficiency of our AI model

considering many criteria:

 The AI with any depth assigned defeats a random player who chooses

their next column randomly always.

 The AI without the Alpha-Beta Pruning needs unreasonable time to

play when assigned to depth more than 4.

17

 The AI with the Alpha-Beta Pruning needs unreasonable time to play

when assigned to depth more than 6.

 The AI with depth value of 5 was never defeated by rational players.

 The AI with depth value of 3 was defeated in roughly around one

game out of ten played against rational players.

 An AI with higher depth always defeats the AI with lower depth.

 The AI who starts first always wins against the same AI-modeled

agent with the same depth.

 The AI with depth value of 2 was defeated in roughly around two

times out of ten games played against rational players.

Figure 14 shows the end of a sample game played against an AI with a

depth value of four. The screenshot was captured within the two seconds

freezing after it finishes.

Figure 14: The end of a sample game against the AI with depth value of four.

18

VII. Conclusion, Personal Comments, and Final

Thoughts
We have, in this project, explored the Connect Four board game with some

extension for it, and have built a new AI model to play against after building a

user-friendly interface for the game. The novelty of our AI model is actually in

its heuristic utility-function that we have used.

We have used the minimax algorithm and made it more efficient by

applying the Alpha-Beta Pruning method on it. Testing the powerfulness of our

AI model shows that, even without the Alpha-Beta Pruning, is smart in playing

the game and easily defeats reasonable players.

Doing this project was a very great experience for me, and took me time all

throughout the semester, and it is the first time for me to program a game let

alone an AI agent who plays a code. This has improved my skills and got me

exposed to a new interesting Python library that has an extensive

comprehensive documentation.

I was surprised, at first, to find this game specifically explored by the

research community even until very recently [3]. Which shows that having a

game solved does not necessarily mean that there is no usefulness that can be

extracted from exercising on trying to build an AI player for it.

VIII. References
[1]https://en.wikipedia.org/wiki/Connect_Four#/media/File:Connect_F

our.gif

[2]https://oeis.org/A212693

[3] Tommy, L.; Hardjianto, M.;Agani, N. (2017). “The Analysis of Alpha

Beta Pruning and MTD(f) Algorithm to Determine the Best Algorithm to be

Implemented at Connect Four Prototype.” IOP Conf. Ser.: Mater. Sci. Eng. 190

012044

[4] Sarhan, A.; Shaout, A.; Michele, S. (2009). “Real-Time Connect 4 Game

Using Artificial Intelligence.” Journal of Computer Science. 5.

10.3844/jcs.2009.283.289.

19

[5] https://www.youtube.com/channel/UCq6XkhO5SZ66N04IcPbqNcw

[6] https://en.wikipedia.org/wiki/Minimax

[7] https://www.youtube.com/watch?v=l-hh51ncgDI&t=37s

[8] https://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning

[9] https://www.pygame.org/docs/

[10] Yamaguchi, Y.; K. Yamaguchi; T. Tanaka; T. Kaneko (2012). "Infinite

Connect-Four is solved: Draw". Advances in Computer Games, ACG 2011.

LNCS 7168: 208–219.

[11] https://archive.org/details/isbn_9781402756214

[12]https://tsdr.uspto.gov/#caseNumber=73019915&caseType=SERIAL_

NO&searchType=statusSearch

https://www.youtube.com/channel/UCq6XkhO5SZ66N04IcPbqNcw
https://en.wikipedia.org/wiki/Minimax
https://www.youtube.com/watch?v=l-hh51ncgDI&t=37s
https://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning
https://www.pygame.org/docs/
https://archive.org/details/isbn_9781402756214

