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I. Introduction 
Connect Four is a board game that is played by exactly two players, players 

in it are assigned to different colors and then take turns dropping colored discs 

into the suspended grid. The game’s grid has seven columns and six rows. The 

pieces fall straight down, occupying the lowest available space. Figure 1 

illustrates the game panel. 

 

Figure 1: An illustration of the game panel (Source in [1].) 

The main goal of the game is to be the first player to have either horizontal, 

vertical, or diagonal line of four same-colored discs. It is well known that 

Connect Four is a solved game, i.e. there is a specific known strategy by which 

the first player can always win by playing the correct plays. Hence, in this 

project, we try to play “semi-perfectly” against the AI and observe the results. 

Furthermore, unlike most of the card games, Connect Four does provide 

full information, where when a player at a time plays, all the two players get 

all the information regarding moves that have deterministically already taken 

place and regarding all moves that can take place for the next step, in a given 

game state. This makes implementing an AI player of the game more feasible 

for the purpose of this project. 

The project includes first, implementing the game environment itself in a 

suitable and user-friendly way, and second, an implantation of an AI player 

who we can configure its parameters and hardness. Finally, a general 

evaluation of the AI is presented. 
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II. Theoretical Analysis 
Starting from the standard game, we will have a panel of 6 × 7 = 42 

locations, each location has three possible states that can have; being empty, 

having the disc of the first player, or having the disc of the second player. That 

would directly give a rough upper-bound of 342 ≈ 1.1 × 1020 possible game 

situations that the search space of the game may have. 

However, we can compute a more accurate and tight upper bound of the 

possible situations by evaluating the sequence of possible games corresponding 

to a specific number of discs played so far, and then, just summing up the 

elements of this sequence of numbers. 

This sequence of possible situations after a number of turns will start from 

zero situations after zero turns, then seven situations after one turn (the first 

player has seven possible positions to place their disc on), then 7 × 7 = 49 

positions after the second turn. 

After the second turn, it becomes a little bit trickier, calculating the number 

of possible situations after three turns is not trivial; the number of possible 

situations at that point will be 7 × 7 × 1 + 7 × 6 ×
5

2
+ 7 × 6 × 2 = 238 

situations. Which is derived after considering that in some scenarios, different 

orders of placing the discs of the first player may produce the same situation of 

the game. Here, we consider all the cases. 

The whole sequence of possible situations after a specific number of turns, 

and starting from zero is given by the following sequence: 

1,  7,  49,  238,  1120,  4263,  16422,  54859,  184275,  … [2]. 

After calculating the number of situations after considering all 42 possible 

turns as well as the aero turn, we will end up with a total number of situations 

that is around 4.5 × 1012 situations. 

For a usual board game, an order of trillions of possible states in the search 

space is relatively in too large (like the search space in Chess or Go board 

games), and it is not too low that a simple brute-force algorithm that exhausts 

all the situations is feasible alone to do that. This proves that our choice to 

consider this game specifically was a good choice because implementing an AI 
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agent that does not trivially exhausts all the possible scenarios would be useful 

in order to play against in this game. 

III. Related Work 
Tommy et al. [3] have demonstrated that a suitable optimal AI algorithm is 

still unknown for the Connect Four game, they applied two different AI 

algorithms; one that mainly utilizes the alpha-beta pruning algorithm, and one 

utilizes the MTD(f) Algorithm (Memory-enhanced Test Driver Algorithm). 

They consider in their research the optimality, which is the winning 

percentage in general, the speed, which is related to the execution time, and 

finally the number of leaf nodes. Their results state that their AI models win in 

less than 50% of games with a reasonable execution time. 

Sarhan et al. [4] have presented a design that converts the standard Connect 

Four game into a real-time game by incorporating time restrains. They have 

designed their artificial intelligence model based on influence mapping. In their 

work, a waterfall-based AI software has been developed for the game. Their 

main result was to successfully design their software using C++ programming 

language. 

Finally, Galli [5], who is a prominent online instructive videos maker about 

different topics in computer science has discussed an implementation of an AI 

model for the Connect Four problem and the implementation of the game itself. 

In our project here, we in some instances, use similar techniques that are used 

in his lectures. This is because of their relatively-high efficiency. 

 

IV. The General Employed AI Techniques 
In this section, we demonstrate a brief summary of the theory in of the main 

techniques used in our AI model for this project. 

IV.I The Minimax Algorithm 
We implement an AI that mainly employs the minimax algorithm that we 

have learned in the class. The algorithm is simply implemented by making the 

players try to optimize some utility function that they have. 
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One player will try to maximize their utility function, which we will call the 

maximizing player. And the other player will try to minimize their utility 

function, which we will call the minimizing player. 

We can choose the utility functions for each player to be the complement of 

the other, so that, we would have a zero-sum game that is easier and more 

feasible to be implemented using minimax algorithm. Figure 2 shows the 

algorithm from a game-theoretic perspective. 

 

Figure 2: Game theoretic perspective of the minimax objective function. (Source [6].) 

For the exact way the algorithm works, it is better to illustrate using an 

example; consider the simple example in Figure 3. 
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Figure 3: A simple example for the minimax algorithm (Source [7].) 

 

Here, we consider a simple game with a simple case where there are eight 

possible final situations of the game, where each one is assigned to a utility 

function that the first player (the white player) tried to maximize, and the 

second player (the black player tried to minimize.) 

The algorithm evaluates each leaf node using a heuristic evaluation 

function that we call the utility function, obtaining the values shown. The 

moves where the maximizing player has advantage are assigned with positive 

numbers, while the moves that lead to a situation where the minimizing player 

has advantage are assigned with negative numbers. As much the magnitudes 

of the numbers become larger, as much the advantage prevails towards one 

side. A pseudocode of the algorithm is provided in Figure 4. 
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Figure 4: Pseudocode for the minimax algorithm (Source [7].) 

 

In our Connect Four case, the search tree grows exponentially with a base 

of nearly seven, this makes it very computationally expensive to make our 

algorithm explore the tree until it reaches the last leaf nodes. Hence, the new 

idea in section IV.II is introduced. 

 

IV.II The Alpha-Beta Pruning Algorithm 
As clear from our previous analysis of the minimax algorithm, it would be 

very computationally expensive to search through the whole depth of the tree 

because of the exponentially-increasing number of leafs. Hence a very feasible 

way to reduce the search space is by trimming a part of the tree of the possible 

situations of the game. 

Alpha–Beta Pruning can be considered as a general search algorithm which 

has an objective of minimizing the number of explored nodes that have utility-

function values calculated by the main heuristic function evaluator that is 

employed in the minimax algorithm. 



9 
 

Alpha-Beta Pruning algorithm is an adversarial search algorithm that is 

usually employed to implement an agent playing two-player game, which 

makes it a very great fit for the purpose of implementing and AI for the Connect 

Four board game. 

The idea behind the algorithm is that it terminated the evaluation of the 

utility function values of the nodes when at least one possibility gets found that 

proves that the play in inquiry is not better than a play that has already been 

previously examined. Such plays do not need to have their utility function 

values calculated further. 

When applied the Alpha-Beta Pruning algorithm on a standard minimax 

search tree, it returns a result of the same move as the minimax would return 

without applying the algorithm, but a new trimmed tree will be considered that 

has some branches, which are impossible to possibly affect the final decision of 

the algorithm, cut out. Hence, a more tractable problem will be considered 

rather than the main computationally-expensive original one. Figure 5 depicts 

an example of an application for the Alpha-Beta Pruning algorithm. 

 

Figure 5: A simple example for the alpha-beta pruning algorithm (Source [7].) 

In Figure 5, an example where it is not important to calculate the utility 

function of three possible situations out of eight because, after we have 

evaluated the other five already, we became sure that whatever values those 
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leafs may have, that will not affect the final result of the main minimax 

algorithm in anyway. 

We can easily observe that, when looking at the left subtree, whatever the 

value of the fourth leaf is assigned, the weight node above it will not ever have 

a value less than five. This means surely that the black node above it will inherit 

the value from the left child, which has a value of three, instead of inheriting it 

from the child on the right, which will not have a value less than three, let alone 

five. The same exact principle is applied on the right subtree that gets more 

nodes trimmed at once after the information of the first five leafs have already 

been discovered. 

Figure 6 shows the pseudocode of the standard alpha-beta pruning 

algorithm applied to the minimax algorithm. 

 

Figure 6: Pseudocode for the Alpha-Beta Pruning algorithm (Source [7].) 

IV.III The Utility-Function Heuristic Evaluator 
Determining the utility function, or the function’s value evaluator, is the 

hardest part of the solution for the game because of its heuristic nature. This 
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major hindrance could have been avoided if we can efficiently reach the end 

nodes (i.e., the leafs). In this case, we would just assign the end nodes to either 

+∞ or −∞ depending on who wins on those end leafs. 

However, in our case here, we have to have some kind of heuristic 

evaluation of whose advantage some state of the game is, and in what degree 

roughly it is advantageous (or disadvantageous). Hence, constructing the 

heuristic utility-function has some degree of arbitrariness. 

In the implementation of our AI, I started firstly considering the number of 

discs of each color within a specific domain (a 4 × 4 window in this case here) 

that may end up to form a winning situation, whether by lying down 

horizontally, vertically, or diagonally. 

Furthermore, a very great addition to this heuristic function that I have 

done was made by distinguishing the middle column and giving it more 

advantage over other columns. This addition has another benefit too, which is 

breaking the initial symmetry that we have in the start of the game. That is it, 

whenever the AI starts with the first turn, it chooses the middle column always, 

and it gives the middle column more advantage over other columns. 

Now, consider Figure 7 next: 

 

Figure 7: The primitive heuristic utility function to evaluate the score of a board. 

This is my main chosen way to calculate the utility function. As clear from 

the code, when the count of the number of the player’s discs within a certain 

given domain of spaces to be considered (our certain domain here is the 4 × 4 

grid around the added disc.) 
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Our affecting parts and their degrees are chosen as following: 

 You get +99999 points of utility whenever your disc in your hand 

completes a count of exactly four discs of yours within the considered 

domain, which is 4 × 4 grid in this case (i.e., after performing a 

winning situation.) 

 You get +5 points of utility whenever your disc in your hand 

completes a count of exactly three discs of yours and one empty space 

within the considered domain, which is 4 × 4 grid in this case. 

 You get +2 points of utility whenever your disc in your hand 

completes a count of exactly two discs of yours and two empty spaces 

within the considered domain, which is 4 × 4 grid in this case. 

 You get −999 points of utility whenever your disc in your hand 

leaves behind it a count of exactly three discs of your opponent’s and 

one empty spaces within the considered domain, which is 4 × 4 grid 

in this case. 

The factor in arbitrariness in our choices is apparent in the choice of the 

exact values and in the exact scenarios. However, the experimental results 

shown in section VI verify that they are acceptable to some extent. 

Furthermore, we did not have to consider more involved cases and assign 

values to them, like for example considering 5 × 5 grids of domain with more 

cases so that the heuristic function becomes more sophisticated. 

Our choice to +99999 points of utility is obvious to be happening in case 

that the move is a winning move, and the choice of −999 points of utility is too 

obvious to be happening in case that the move is a losing move (i.e., the 

opponent can win in a single move after it.) In the same time, it is important to 

make the AI prefer playing a winning move over avoiding a losing move. This 

is why we chose |99999| > |999| of utility points in the two cases. 

Now, considering Figure 8: 
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Figure 8: The second piece of code regarding the utility function. 

Here, the practical implementation of the considered domain considering 

all the possible orientations of the discs; the horizontal, vertical, and the two 

diagonals. And a very important part is the one that gives more significance of 

reserving the middle column (I assumed that the number of columns here is 

odd.) 

V. The Implementation 
In this section, we discuss briefly the high level of some parts of our 

implementation of the code, I did write the code heavily commented, and I 

made the names of the variables representative to what they mean. Some ideas 

from the code were inspired or applied from [5 – 9]. 

V.I The Basic Panel and Its User-Friendly Interface 
Starting with a very brief description of the user-friendly interface to build 

the panel itself, we start, by simply and directly applying the straightforward 

instructions in the documentation of the pygame library [10]. Figure 9 shows a 

part from that implementation. 
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Figure 9: A piece of code for the initialization of the panel and the game. 

This part is mainly about defining the simple RGB arrays of each color to 

represent it later in the user-friendly interface. 

Furthermore, as Dr. Wang has suggested, I made my code flexible to accept 

more general cases of choosing whatever number of rows and columns. Figure 

10 shows the user-interface after setting the Number_of_rows variable to 4, and 

the Number_of_columns variable to 5. 

 

Figure 10: A general panel that can be produced by setting the Number_of_rows and Number_of_columns variables. 

It is worth mentioning here, that the AI works very perfectly in different 

settings of the number of columns and rows, because the number of columns 



15 
 

and rows that are set in the initialization designated variables are directly 

linked in the implementation of the AI itself. In addition to that, it is worth to 

be highlighted that the game at the first place was just a command line game 

that just prints the matrix of the occupation of the slots of the panel after each 

step rather than showing our final colored panel. 

V.II The Implementation of the AI Agent and Some 

Other Parts of the Code 
A brief clarification of the implementation of the AI player. Figure 11 shows 

the main part of the AI algorithm which constitutes the main body of the AI. 

 

Figure 11: The main function of the AI agent. 

As clear, the function is recursive, and was taken from the pseudocodes 

implemented in Figure 4 and Figure 6. The adjustable parameters are the depth, 
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which is the variable d. The variables alpha and beta, as stated in the standard 

pseudocode, are +∞ and −∞. 

As obvious in the function, each invoking of it reduces the depth by one (as 

obvious because the algorithm goes up level by level as depicted in Figure 3.) 

Furthermore, when invoking the function itself each time, it alternates between 

two subfunctions within it, one for the maximizing player, which is flagged by 

a true value of the maximizingPlayer variable, and one for the minimizing 

player, which is flagged by a false value of the maximizingPlayer variable. 

Another small piece of code that I would like to state here is the way I chose 

to alternate between the turns of the two players. Figure 12 shows the part of 

code that alternated the Tt variable between 0 and 1 after each time the line in 

the figure is invoked. 

 

Figure 12: How the Tt variable alternates between the two values of 0 and 1. 

The last small part of the code to be highlighted here is from the pygame 

library, which holds the pygame window for 2 seconds after the game ends to 

avoid the sudden diminish of the window right after the last move. Figure 13 

shows this part of the code. 

 

Figure 13: The piece of code that is responsible on holding the pygame window for 2000 milliseconds after the game ends. 

VI. The Efficiency of the AI Model 
This section gives a very brief feedback of the efficiency of our AI model 

considering many criteria: 

 The AI with any depth assigned defeats a random player who chooses 

their next column randomly always. 

 The AI without the Alpha-Beta Pruning needs unreasonable time to 

play when assigned to depth more than 4. 



17 
 

 The AI with the Alpha-Beta Pruning needs unreasonable time to play 

when assigned to depth more than 6. 

 The AI with depth value of 5 was never defeated by rational players. 

 The AI with depth value of 3 was defeated in roughly around one 

game out of ten played against rational players. 

 An AI with higher depth always defeats the AI with lower depth. 

 The AI who starts first always wins against the same AI-modeled 

agent with the same depth. 

 The AI with depth value of 2 was defeated in roughly around two 

times out of ten games played against rational players. 

Figure 14 shows the end of a sample game played against an AI with a 

depth value of four. The screenshot was captured within the two seconds 

freezing after it finishes. 

 

Figure 14: The end of a sample game against the AI with depth value of four. 
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VII. Conclusion, Personal Comments, and Final 

Thoughts 
We have, in this project, explored the Connect Four board game with some 

extension for it, and have built a new AI model to play against after building a 

user-friendly interface for the game. The novelty of our AI model is actually in 

its heuristic utility-function that we have used. 

We have used the minimax algorithm and made it more efficient by 

applying the Alpha-Beta Pruning method on it. Testing the powerfulness of our 

AI model shows that, even without the Alpha-Beta Pruning, is smart in playing 

the game and easily defeats reasonable players. 

Doing this project was a very great experience for me, and took me time all 

throughout the semester, and it is the first time for me to program a game let 

alone an AI agent who plays a code. This has improved my skills and got me 

exposed to a new interesting Python library that has an extensive 

comprehensive documentation. 

I was surprised, at first, to find this game specifically explored by the 

research community even until very recently [3]. Which shows that having a 

game solved does not necessarily mean that there is no usefulness that can be 

extracted from exercising on trying to build an AI player for it. 
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