CIS 5603 Project Report

Rover Maneuvering Al Logic

Anku Aravind and Arnab Dey
Temple University
May 2021

Abstract—The intent of this project work is
to emulate the behavior of autonomous planetary
rovers by using machine learning algorithms for
evaluating terraneous surfaces both from satellite
images and from on-board camera images, and then
applying Al based search algorithms to facilitate
movement of rovers over the surface based on
different constraints — just in the similar way a robot
navigates. It is simply an academic evaluation of
these algorithms that may be applied for different
sub-tasks in the navigational process, rather than a
deep-dive into the technical complexities dealt with
by space agencies, and is based out of publicly
available images and research papers.

I. INTRODUCTION

In a number of instances different Mars rovers
like Spirit, Opportunity and Curiosity have been ob-
served to get stuck in the sandy dunes while maneu-
vering over the terraneous surfaces, which resulted
in significant loss of energy and navigation time
[20]. Specifically, Spirit had to end its mission thus.
Each rover has limited lifespan in terms of Sols or
Martian days and there is a limited communication
bandwidth (80MB / Sol) between the control center
on earth and the rover. Since these rovers are solar
powered the time of the Sol at which the navigation
happens and the extent of exposure to sunlight also
matters. Hence it is crucial for the rovers to use
ML / AI algorithms to navigate autonomously for
capturing more information at the optimal usage
of energy. Worthwhile mentioning here SPOC-Lite
[217 [22] and VeeGer [23] are publicly available
projects from NASA’s Jet Propulsion Laboratory for
terrain classification and terrain-based navigation
(driven by solar power) respectively. Athena [27]

is a test rover from JPL using similar maneuvering
techniques.

We have attempted to use Deeplab algorithms for
the image classification tasks — both from sample
satellite images for global planning of the navigation
process as well as from on-board camera images
for local planning during the movement. Search
algorithms like A* and D*-lite are evaluated later
in order to find the path of the rover over different
terrains.

II. SEMANTIC SEGMENTATION OF MARTIAN
TERRAIN

The rover utilizes two planners - a global planner
and a local planner to navigate from the source to
it’s destination. Global planner is designed to obtain
the initial heuristics and produce a coarse path from
a segmented(terrain classified) satellite(in our case
HiRISE) image. The local planner segments the
image produced by rover’s on-board camera to avoid
unfavorable terrain for navigation, which fine tunes
the path. Semantic segmentation is at the heart of
terrain classification.

A. Data for Global Planner

Global planner require satellite or top view im-
ages of the terrain. Figures 1 and 2 are sample
images obtained by HiRISE [1] on Mars Reconnais-
sance Orbiter [3]. NASA uses a deep learning model
SPOC(Soil Property and Object Classification) [4]
to classify the terrain on these images. NASA has
used thousands of HiRISE images to train SPOC.
The challenge to build and train a deep learning
model from HiRISE images is as follows.

e Pre-processing: Actual HiRISE images are

very huge(hundreds of MB, depending on the
location) and requires a lot of pre-processing

to even begin labelling. Cropped images are
available, but that pose other challenges.

o Understanding HiRISE images: Consider Fig-
ures 1 and 2. We found it very difficult to
understand and identify the features in these
image. Besides identifying Figurel as a crater,
it’s difficult to identify features such as sand
dunes, plain, rocks and other terrain features
in these images.

e Labelling the image: Since understanding the
image itself is difficult, it is impossible to label
HiRISE images. Besides, from my experience
I find it confusing and erroneous.

e Lack of labelled data: NASA hasn’t released
any labelled Martian terrain data which would
be useful for training ML(machine learning) or
DL(deep learning) models.

e Model constraints: We used DeepLabv3+ [6]
for semantic segmentation and it requires color
images for training [5]. HIRISE images are
gray scale and the available color images are
artistic renderings.

Because of these challenges, we proceeded with the
assumption that terrain classified HiRISE images are
readily available instead of developing a DL model
to train and classify them.

DTEEC_013578_1505_030984_1505_UO1

NASA/JPL/University of Arizona/USGS

MRO/HIRISE

Source: NASA/JPL/University of Arizona
Fig. 1: Sample HiRISE Image

ESP_039370_1520_RED_D_01_ORTH

MRO/HIRISE

Source: NASA/JPL/University of Arizona
Fig. 2: Sample HiRISE Image

B. Data for Local Planner

Local planner uses images obtained by the rover.
Figure 3 is a sample image taken by Mastcam [&]
of Mars Curiosity Rover [?9]. 110 Mastcam images
[7] [10] from Mars Curiosity Rover were used to
train a DL model for semantic segmentation. Lack
of labelled data was the only reason to limit just 110
images for training and validation - all 110 images
were labelled manually in Adobe Photoshop [11] for
training. The training : validation split is 101 : 9.
All the images were obtained from Curiosity MSL
Analyst’s Notebook [7] - sols 2926 through 2933.
The reason to use Photoshop for labelling are:

o Noise reduction: We’re labelling landforms
that has contours which would be difficult
with regular labelling tools. This was under
the assumption that reduced noise would bring
better performance.

e Lack of domain knowledge: We’re new to
semantic segmentation and wasn’t aware of
labelling tools. Our prior experience with Pho-
toshop was the motivation to use it.

e Open source tools: While open source tools
are great for community, it doesn’t provide any

guarantee. Besides, installation and resolving
dependencies could be difficult.

1) Labels: We divided the Martian terrain into 5
sub-terrains based on the navigational convenience
of rover.

o Terrain 1: Best traction, mostly plain and has
a few to no obstacles.

e Terrain 2: Traction is good and has some small
stones.

e Terrain 3: Traction is sufficient, mostly ridges
and rocks.

e Terrain 4: Traction is low to none, fine sand.

e Terrain 5: No traction, sand dunes.

Terrain 1 is the best and Terrain 3 is the least favor-
able for navigation. Terrain 4 and 5 are unfavorable.
Figure 5 shows the labels color map of labels.
Note: The terrain was classified based on our
understanding of the images used for training. This
classification may not match scientific classification.

Source: MSL - Curiosity
Fig. 3: Original image

C. DL Model

We used Xception(Xception65) backbone in
DeepLabv3+ [6] to train and produce semantic
segmentation of Mastcam images for local planner.
We had 6 classes to segment - 5 classes(terrain 1
through 5) and background(sky).

DeepLabv3+: DeeplLab is a computer vision
project with the goal of segmenting every pixel in
an image [0]. DeepLabv3+ is the fourth version of

Fig. 4: Label for Figure 3

Terrain 1 Terrain 3 Terrain 5

Terrain 2 Terrain 4

Background

Fig. 5: Label color map

this project. It uses Atrous Spatial Pyramid Pool-
ing(ASPP) along with an encoder and a decoder to
segment images, as shown in Figure 6. The reasons
to use DeepLabv3+ are:

o NASA’s SPOC is based on DeepLab [18].

o Accuracy is great - 89% on PASCAL VOC
2012 dataset [14] and 82.1% on Citiscapes
dataset [24].

o Approach 1 failed.

We tried three approaches to produce semantic
segmentation.

1) Approach I - Build a model: The original plan
was to build and develop a new model for semantic
segmentation. This was challenging because of the
lack of expertise in developing ML and DL models
for image processing. Besides, training data was
very less. So, this approach was discarded.

2) Approach 2 - Use DeepLabv3+ to train a new
model: DeepLabv3—+ can be used to train a network
from scratch. We tried this approach and failed.
We attribute this failure to our configuration of
DeepLabv3+. Unfortunately, DeepLabv3+ doesn’t
have proper documentation and search for support
and clarifications proved futile.

{Encoder ‘
. (" [1xL Conv) —»
[3x3 Conv
Image DCNN —

Atrous Conv

[3x3Conv) __
rate 12)
[3x3 Conv| __
rate 18
[reana)
_ |_Pooling | —*

{ Decoder

A

%DD
A A KA b\ﬁ.ﬂ

SENESENSN

-~ e

Low-Level
Features

("Upsample | _
[b;4 }_‘ ;
| B
1x1 Conv| —» —-—-

Prediction

—+[3x3 Comy|—+{ P2

Source: DeepLabV3+ [6]
Fig. 6: DeepLabV3+ architecture

Figure 7 shows the initial labels of image from
Mastcam shown in Figure 3. This color map was
designed to be used in this approach. These initial
labels were converted to the label color map in
Figure 5 to be used in Approach 3.

Fig. 7: Planned label for Figure 3 to be used with
Approach 2

3) Approach 3 - Transfer Learning: This is
the approach implemented in this project. We
used the checkpoint of pretrained Xception65
backbone(zception65_coco_voc_trainaug [15]
trained on PASCAL VOC [14], COCO [13] and

ImageNet [12] datasets) to initialize our training of
Mastcam images.

We were skeptical of this approach because PAS-
CAL VOC, COCO nor ImageNet datasets didn’t
include any landforms(terrains). Besides, this pre-
trained model has 21 classes(we only have 6), which
could cause imbalance. So we began cautiously
with a few iterations(epochs). Once there was some
promising results, we gradually increased the it-
erations to 1800, 4000 and 10000. Computation
was another reason to proceed with this stepped
approach to training. On average, each iteration
takes about 4 — 6 seconds depending on the host.

All the training and validation images had to be
converted from the initial color map as given in the
labelled image in Figure 7 to the new color map
shown in Figure 5. Besides, the mapping between
the colors and associated classes had to be corrected
to align with the pretrained model. No weights were
modified.

Xception ~ backbone is optimised for
CPUs and that was the motivation to
choose it. Initially, we tried to use
xceptionbd_cityscapes_train fine(trained on
Cityscapes Dataset [16]) checkpoint [15]. But, we

ran into errors with it. So, we proceeded with
xception65_coco_voc_trainaug checkpoint.

Even though it might seem simple to use
DeepLabv3+, there are a lot of challenges asso-
ciated with it.

e Lack of documentation: Even though
DeepLabv3+ is part of tensorflow models
[15], it’s poorly documented. The installation
instructions are outdated and it takes time to
resolve dependencies.

o Computation: The model requires substantial
computation. Our home or work PC isn’t suf-
ficient.

o Configuration: Since DeepLabv3+ doesn’t
have official documentation, it’s difficult to
configure it to suit our needs. It takes a lot of
effort to fix issues and configure it.

e Usage: The input is not just the original and
labelled images, it also requires conversion of
labelled image into single-channeled gray scale
images. We created a custom script [5] to do
it.

D. Training Infrastructure

We used DeepLabv3+ [6] [15] [17] built on
TensorFlow and Python for training. The models
were executed on 2 separate machines - Machine
1 and Machine 2 on Chameleon Cloud [19]. The
configuration of these machines are given below.

Machine 1
oS Ubuntu 18.04.5 LTS
TensorFlow 1.14.0
Python 3.6.9
Processor 2 x Intel(R) Xeon(R) Gold
6240R
Cores/threads 48/96
RAM 192 GB
Avg. training time/step 4 seconds
Machine 2
(0N} Ubuntu 18.04.5 LTS
TensorFlow 1.14.0
Python 3.6.9
Processor 2 x Intel(R) Xeon(R) CPU E5-
2670 v3
Cores/threads 24/48
RAM 128 GB
Avg. training time/step 6 seconds

It takes approximately 11.25 - 16.75 hours to train
a model for 10000 iterations.

TABLE I: mIOU of validation dataset

Class mIOU

Terrain 1 71.44%
Terrain 2 21.27%
Terrain 3 54.46%
Terrain 4 39.55%
Terrain 5 94.1%

Background 93.61%
Average 62.41%

E. Results
Table 1 shows mean Intersection Over

Union(mIOU) metric(accuracy) of the segmentation
classes on validation data. Our validation contained
just 9 images. It should be noted that this has
pretrained model has a mIOU of 82.2% [15] on
PASCAL VOC dataset [14]. After 10000 iterations,
the cross-entropy loss was 0.2593. Figure 9 shows
the trend of loss function as training progressed.

Figure 8 shows the comparison of an image,
it’s given label and predicted label by our trained
model. For us, that prediction is fairly accurate.
This is because, there are small labelling errors in
our training set. From our experience of labelling
terrains, sometimes we found difficult to distinguish
terrains and clearly define a boundary.

1) Inferences:

e Accuracy: mIOU of the classes is proportional
to the training data. There were only a few
images for Terrains 2 and 4 when compared
to the rest of the terrains.

e Dataset has bias: Majority of the dataset had
images of Terrain 1, 5 and background. We
should have had better judgement while prepar-
ing the dataset.

o Labelling errors could have influenced train-
ing: In Figure 8, the prediction is accurate than
our label. It’s a tedious task and sometimes
we found it difficult to distinguish between
terrains. Besides, these labels were converted
from the initial labels created for Approach 2,
which added noise.

o Lack of fine tuning: The model isn’t fine tuned
specifically to suit our needs. We haven’t mod-
ified the wights to counter class imbalances
which could have contributed to the results.

Fig. 8: Original image, our label and predicted label (from left to right)

Loss vs. Epochs

nnnnn

Epochs

Fig. 9: Cross-entropy loss as training progressed

e Need more training time: Our model is
trained for only 10000 iteration. From my
understanding, most transfer training involving
DeepLabV 3+ has been trained for 30000 iter-
ations. In our case, that’s almost 34 - 50 hours
of nonstop training, which was difficult.

Nevertheless, this results give us some insights.
Besides, this can be considered as a successful
experiment. In our case, the preferred terrain(Terrain
1) has over 70% accuracy and most unfavorable
terrain(Terrain 5) has over 94% accuracy.

ITII. NAVIGATION ALGORITHMS

Having covered the methodologies for terrain
classification both from satellite images (which we
could not completely achieve) for global planning
as well as from on-board camera images for local
planning, the next step is to assign weight/cost
functions to the terraneous area in which the rover
moves from a source to a target, and then apply
search algorithms based on heuristics to evaluate
traversal costs calculated by them. The VeeGer

project from NASA’s Jet Propulsion Laboratory,
uses similar methodology as shown in Figure 10.
It also factors in availability of solar energy in cost
considerations.

10am

Source: VeeGer [23]
Fig. 10: Vision-based Estimation of Expending and
Generating Energy for Rovers

Flat areas are associated with lower costs, while
elevations are associated with higher costs. There
are topographical images available from agencies
like NASA [25] and ESA [26] which can be lever-
aged for the weight assignment to the image patches
obtained as output from the DeepLab algorithms
described above based on the image inputs it pro-
cesses. For sandy dunes(as demonstrated in [27]),
the weights associated to them may be calculated
based on the relative time it takes to travel certain
some distance on the sandy surface vs the hard
surface. Since we could not complete the global
planning part, we have created a random terraneous
surface with assumed costs to show how the search

algorithms work in the attached python notebook.
However, this should ideally be from the DeepLab
outputs and assigned automatically as described.

There are multiple state space search algorithms
like Dijkstra’s algorithm, heuristic algorithms like
A*-algorithm and incremental heuristic search al-
gorithms like LPA* and D*-lite used for this pur-
pose. Dijkstra’s algorithm is more of an uninformed
search since the target node is not known be-
forehand. However, in case of informed searches,
heuristic algorithms like A are optimal and com-
plete [28]. Optimal means that algorithms are sure to
find the least cost from the source to the destination
and Complete means that they are going to find all
the paths that are available to us from the source to
the destination.

A* algorithm forms the basis of the heuristic
algorithm. We will discuss A* algorithm first and
go over to its incremental search variants like LPA*,
D* and D*-lite (which is more applicable to our
use case). In the attached python notebook, we
have shown functioning of both A* and D*-lite
algorithms for calculating the path from source to
destination over a terrain.

A. A* Algorithm

While traversing a path A* algorithm calculates
the priority values(f) for each node it explores for
reaching to the destination, using the cost value(g)
it has travelled so far from the source to reach a
specific point or state and a heuristic value(h) which
is a lower estimate of the cost remaining to reach
the destination. Mostly the heuristics are calculated
based on the Euclidean distance, Manhattan distance
or diagonal distance of the specific state to the
destination state. Here we have used Euclidean
distance. The pseudo-code for the algorithm [28]
is shown in Figure 11.

But A*-algorithm is slow and the space it requires
is higher, since it saves all the possible paths that
are available to us. This leads to more efficient
deliberative control of the rover while working with
the global planning as discussed. The local planning
needs dynamic adjustments to the cost functions, for
which A* algorithm may not be efficient. We need
incremental heuristic state space search algorithms
as below. These algorithms reuse information from
previous searches unlike A* which discards them.

let the openlist equal empty list of nodes
let the closedlist equal empty list of nodes
put the startWode on the openlist (leave it's f at zsro)
whils the openlist is not empty
let the currentNods squal the node with the least f valus
remove the currentNode from the openlist
add the currentNods to the closedList
if currentNods is the goal
You've found the end!
let the children of the currentNods equal the adjacent nodes
for each child in the children
if child is in the closedlist
continue to heginning of for loop
child.q = currentNode.q + distance between child and current
child.h = distance from child to end
child.f = child.g + child.h
if child.position is in the openlist's nodes positions
if the child.g is highsr than the openlist node's g
continue to beginning of for locp
add the child to the openlist

Source: Edureka [28]
Fig. 11: A* Algorithm

Hence given a dynamic change in cost function in
rover’s observable space, A* needs re-computation
from scratch. As noted, the priority functions are
handled through Priority Queue data structure.

B. Lifelong Planning A* (LPA*)

An incremental version of A* which determines
how to efficiently update a shortest path under
changing edge costs when the start and end posi-
tions are static. The efficiency is achieved by only
updating the values that need to be updated to find
the shortest path [29].

C. D* Algorithm

D* algorithm resembles A* algorithm, except
for the fact that the arc costs, may change during
the traverse of the solution path. Provided that
the traverse is properly coupled to the replanning
process, it is guaranteed to be optimal. It was
proposed by Anthony Stentz [30]. Like Dijkstra’s
and A* algorithms, D* too maintains an open list
for the nodes to be iteratively evaluated, but works
backwards from goal to start.

D. D*-lite algorithm

This appeared in 2002 AAAI paper [31] by Sven
Koenig and Maxim Likhachev. D*-Lite is substan-
tially light-weight than D*, since it uses only one
tie-breaking criterion when comparing priorities,
which simplifies the maintenance of the priorities,
and does not need nested if-statements with complex
conditions, which simplifies the analysis of the
program flow. These properties also allow one to
extend it easily, for example, to use inadmissible
heuristics and different tie-breaking criteria to gain
efficiency.

It is similar to LPA* except for the fact that
here the start position is dynamic and equal to the
present state [29] and cost function is calculated
backwards from the target to the current position,
in place from the start position, so g-values are
actually the goal distances. The heuristic on the
other hand is with respect to the source. This is
also shown in the Python notebook attached. D*-
lite shows significant performance improvements if
there are lot of adjustments to the cost functions
along the path. The pseudo-code for the algorithm
[32] is shown in Figure 12.

E. Implementation

This is indicated step by step in the attached
python notebook. The output representation of the
terraneous surface in 400x400 pixel bmp format is
imported into the python notebook and OpenCV is
used to convert the image into a 2x2 numpy matrix.
Weights are computed based on the colors. In order
to reduce computational costs, the matrix is divided
into 80x80 grid with each window of 5x5 pixel
to form a reduced matrix. Source and destination
coordinates are entered and the respective A* and
D* algorithms are able to compute the paths. The
paths are also shown over the actual image. We have
tried to insert weight variations in the path as well
for the D*-lite algorithm to demonstrate its dynamic
nature.

IV. CHALLENGES

Every project has its own challenges and we
thought that it’s better to share it rather than hide it.
We’ve already mentioned a few of them. However,
we decided to highlight a few.

CalculateRey(s)
return [min(g(s), rhs(s))+h(sstart, s)+km; min(g(s), rhs(s))]
Initialize(
U+«0
km o~ 0
for (s & 8) do rhs(s)e gls)e
rhs(sgoal)« 0
U.Insert(sgoal, CalculateKey(sgoal)
UpdateVertex (u)
if (u <> sgoal) then rhs(u)« minseSucc(u) (c(u, s)+g(s)
if (u 0 U) then U.Remove (u)
if (g(u) <> rhs{u)) then U.Insert(u, CalculateKey(u)
ComputeShortestPath()
while (U.TopKey < CalculateKey(sstart) or rhs(sstart) <> g(sstart)) do
kold « U.TopKey()
u « U.Papl)
if (kold < CalculateKey(u)) then
U.Insert(u, CalculateKey(u))

else
if (g(u)>rhs(u)) then
g(u)erhs (u)
for (s O Pred(u)) do UpdateVertex(s)
else
glu)e =

for (s e Pred(u) v {u}) do UpdateVertex(s)

Main()
slast = sstart
Initialize(
ComputeShortestPath()
while (sstart <> sgoal) do
// if (g(sstart)= @) then there is no known path
sstart « arg minseSucc(sstart) (c(sstart, s)+g(s)
Move to sstart
Scan the graph for changed edge costs
if (any edge costs changed) then
km = kmth(slast, sstart)
slast = sstart
for (all directed edges (u, v) with changed costs) do
Update the edge cost cf(u, v)
UpdateVertex (u)
ComputeShortestPath(

Source: David Mackay [32]
Fig. 12: D*-lite Algorithm

o Labelled data: When we began working on this
project, we were confident that data wouldn’t
be an issue. But, it was not the case. Even
though there was a lot of work done in au-
tonomous vehicle navigation and related com-
puter vision problems, there was absolutely no
labelled data that suited our needs. This pre-
sented a huge challenge. It took considerable
amount of time and effort to label the images.

e Lack of exposure: ML and DL domains are
fairly new to us and we lacked insights. This
was evident in the segmentation results. We
didn’t consider the ratio of classes while de-
ciding on training data. Besides, fine tuning

models requires some insights in ML and DL.

o Use of open source: Open source is definitely
beneficial. But, it brings its own problem. Lack
of documentation haunted us. We spend con-
siderable time in setting up DeepLabV 3+.

o Feasibility: Initially, we thought that this
project was manageable. This was under cer-
tain assumptions(data, previous related work,
infrastructure etc). But, the moment we realised
that our assumptions are wrong, the work load
piled up. We were lucky that still things worked
in our favor.

Nevertheless, we gained some valuable knowledge.

V. CONCLUSION

We consider this project as an exploration into Al
technologies that we thought could be implemented.
We have showed that entirely different Al domains
can be combined to solve some complex problems.
Rover maneuvering is a unique problem which has
many constraints and it would be impossible to
achieve it without these powerful solutions.

This was a great learning opportunity. When we
learned Ax algorithm for state space search, we
assumed that heuristics was available. In reality,
obtaining the initial heuristics itself is a problem.
Initially, we thought that rover required to perform
only object classification for navigation. But, during
the modelling of Ax algorithm, it was clear that we
require semantic segmentation to classify the terrain.

We’re aware that there are inherent assumptions
in the modelling of the problem. But, it should be
noted that the process of modelling begins with a
simple problem.

VI. FUTURE SCOPE

There are areas of improvement in this project. To
begin with, we should definitely implement seman-
tic segmentation for global planner. The X ception
model has to be fine tuned for class imbalances
and our terrain specific features. D % [ite needs
to be refined to improve path planning. Besides, the
semantic segmentation has to be integrated with the
navigation algorithms.

Future work could focus to develop a new model
or to train this model without initial checkpoints.
Current rovers doesn’t have the computation capa-
bility to perform on-board learning. Instead, they

use the trained models to classify terrain. We could
attempt to develop a lite DL model suitable for on-
board learning which would materialize the idea of
lifelong learning. This would be very beneficial for
space agencies because the rover could be repur-
posed for unplanned missions.

VII. ACKNOWLEDGEMENT

We thank Dr. Pei Wang for his support. His words
“push the project as much as you can” was the
motivation when faced with challenges. We also
express our gratitude towards Dr. Justin Shi, for his
kind act of sharing his HPC infrastructure to run our
experiments. Last but not least, we thank all the
fellow netizens for their valuable suggestions and
solutions. Without their help, this project wouldn’t
have materialized.

VIII. ARTEFACTS

All the artefacts related to the project are shared
on Google Drive.

o Navigation algorithms are in Google
Drive/navigation_package
« Semantic segmentation package is in Google
Drive/semantic_segmentation_package
Google Drive link in text:
//drive.google.com/drive/folders/
183Ix3LEi-Kw7S5FyZ23agQ91GdyegL0y?usp=

sharing

https:

REFERENCES

[1] "MARS Reconnaissance Orbiter—HiRISE.” Accessed May 1,
2021. https://mars.nasa.gov/mro/mission/instruments/hirise/.

[2] “HiRISE - Digital Terrain Models.” Accessed May 1, 2021.
https://www.uahirise.org/dtm/.

[3] “Mars Reconnaissance Orbiter”” Accessed May 1, 2021.
https://mars.nasa.gov/mro/.

[4] Rothrock, Brandon, Ryan Kennedy, Chris Cunningham, Jeremie
Papon, Matthew Heverly, and Masahiro Ono. “SPOC: Deep
Learning-Based Terrain Classification for Mars Rover Mis-
sions.” In AIAA SPACE 2016. Long Beach, California:
American Institute of Aeronautics and Astronautics, 2016.
https://doi.org/10.2514/6.2016-5539.

[5] Sahu, Beeren. “How to Use DeepLab in TensorFlow for Object
Segmentation Using Deep Learning.” Medium, September 24,
2018. https://medium.com/free-code-camp/how-to-use-deeplab-
in-tensorflow-for-object-segmentation-using-deep-learning-
a5777290ab6b.

[6] Chen, Liang-Chieh, Yukun Zhu, George Papandreou,
Florian Schroff, and Hartwig Adam. “Encoder-Decoder
with Atrous Separable Convolution for Semantic Image
Segmentation.” ArXiv:1802.02611 [Cs], August 22, 2018.
http://arxiv.org/abs/1802.02611.

https://drive.google.com/drive/folders/183Ix3LEi-Kw7S5FyZ23agQ9IGdyegL0y?usp=sharing
https://drive.google.com/drive/folders/11mo4po0Wtd6MK8_8Nj6WQ16nN2o0ui2x?usp=sharing
https://drive.google.com/drive/folders/11mo4po0Wtd6MK8_8Nj6WQ16nN2o0ui2x?usp=sharing
https://drive.google.com/drive/folders/15nsXA11C4-DWG6BPiOTnfTxuT6BvtDKi?usp=sharing
https://drive.google.com/drive/folders/15nsXA11C4-DWG6BPiOTnfTxuT6BvtDKi?usp=sharing

(71
(8]

(9]
(10]

(1]

[12]
[13]

[14]
(15]
(16]

(171

(18]

(19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

“Analyst’s Notebook.” Accessed May 1, 2021.
https://an.rsl.wustl.edu/.

“Mastcam - Instruments.” NASA’s Mars Ex-
ploration Program. Accessed May 1, 2021.

https://mars.nasa.gov/msl/spacecraft/instruments/mastcam.
“Home - Curiosity.” NASA’s Mars Exploration Program. Ac-
cessed May 1, 2021. https://mars.nasa.gov/msl/home.
“Kaggle: Your Machine Learning and Data Science Commu-
nity.” Accessed May 1, 2021. https://www.kaggle.com/.
Wikipedia contributors, ”Adobe Photo-
shop,” Wikipedia, The Free Encyclopedia,
https://en.wikipedia.org/w/index.php?title=Adobe_Photoshop&
0ldid=1020552344 (accessed May 4, 2021).

“ImageNet.” Accessed May 2, 2021. https://image-net.org/.
“COCO - Common Objects in Context.” Accessed May 2, 2021.
https://cocodataset.org’/home.

“The PASCAL Visual Object Classes Homepage.” Accessed
May 2, 2021. http://host.robots.ox.ac.uk/pascal/VOC/.

GitHub. “Tensorflow/Models.” Accessed May 2, 2021.
https://github.com/tensorflow/models.

“Detailed Results — Cityscapes Dataset.” Accessed May 2,
2021. https://www.cityscapes-dataset.com/detailed-results/.
Adam, Hartwig, Florian Schroff, George Papandreou, Yukun
Zhu, and Liang-Chieh Chen. DeepLabV3+ (version com-
mit 8c169ea4b7911854c986933126409c4757f579f1). Tensor-
Flow Models, 2018.

Rothrock, Brandon, Ryan Kennedy, Chris Cunningham, Jeremie
Papon, Matthew Heverly, and Masahiro Ono. “SPOC: Deep
Learning-Based Terrain Classification for Mars Rover Mis-
sions.” In AIAA SPACE 2016. Long Beach, California:
American Institute of Aeronautics and Astronautics, 2016.
https://doi.org/10.2514/6.2016-5539.

“About Chameleon - Chameleon.” Accessed May 3, 2021.
https://chameleoncloud.org/about/chameleon/.
“Zooniverse.” Accessed May 5,
https://www.zooniverse.org/projects/hiro-ono/ai4mars.
”Nasa-Jpl/Spoc_lite.” 2020. Reprint, NASA Jet Propulsion Lab-
oratory, 2021. https://github.com/nasa-jpl/spoc_lite.

Ono, Masahiro, Brandon Rothrock, Kyohei Otsu, Shoya Higa,
Yumi Iwashita, Annie Didier, Tanvir Islam et al. "M AARS: Ma-
chine learning-based Analytics for Automated Rover Systems.”
In 2020 IEEE Aerospace Conference, pp. 1-17. IEEE, 2020.
”VeeGer: Vision-Based Estimation of Expending and Gen-
erating Energy for Rovers.” Accessed May 5, 2021.
https://www.youtube.com/watch?v=0sGqkfV1q3k.

“Cityscapes Dataset — Semantic Understanding of Urban
Street Scenes.” Accessed May 5, 2021. https://www.cityscapes-
dataset.com/.

2021.

“Mars Terrain.” Accessed May 5, 2021.
https://www.msss.com/http/ps/dtm/marsterrain.html.
ESA. “The First Hiking Maps of Mars,” n.d.

http://www.esa.int/Science_Exploration/Space_Science/
Mars_Express/The_first_hiking_maps_of_Mars.

Space Showcase. “Future Rovers May Walk Too
- See A Prototype.” Accessed May 5, 2021.
http://videos.space.com/m/AW2uzBeR/future-rovers-may-
walk-too-see-a-prototype.

Edureka. “A* Algorithm — Introduction to the A* Seach
Algorithm,” December 4, 2019. https://www.edureka.co/blog/a-
search-algorithm/.
Stephens, Sam.
ences between

Differ-
n.d.

the
Lite,”

“Understanding
LPA* and D*

(30]

(31]

(32]

https://github.com/samdjstephens/pydstarlite/wiki/Understanding-
the-differences-between-LPA*-and-D*-Lite.

Stentz, Anthony. The D* Algorithm for Real-Time Planning
of Optimal Traverses. CARNEGIE-MELLON UNIV PITTS-
BURGH PA ROBOTICS INST, 1994.

Koenig, Sven, and Maxim Likhachev. ”D* lite.” Aaai/iaai 15
(2002).

Mackay, David. ”Path planning with d*-lite.” DRDC Suffield
TM 242 (2005).

	Introduction
	Semantic Segmentation of Martian Terrain
	Data for Global Planner
	Data for Local Planner
	Labels

	DL Model
	Approach 1 - Build a model
	Approach 2 - Use DeepLabv3+ to train a new model
	Approach 3 - Transfer Learning

	Training Infrastructure
	Results
	Inferences

	Navigation Algorithms
	A* Algorithm
	Lifelong Planning A* (LPA*)
	D* Algorithm
	D*-lite algorithm
	Implementation

	Challenges
	Conclusion
	Future Scope
	Acknowledgement
	Artefacts
	References

