
Jack Amend, Cameron Zach
CIS5603
5/4/2021

Final Report: Oh, Hell! Card Playing AI Bot
Introduction

AI programs designed to play games have seen a large amount of publicity in recent
years. The program from DeepMinds, AlphaGo, gained notoriety after defeating the Go World
Champion, Ke Jie. This program utilized machine learning to beat the champion and used moves
that other players described as “alien” [2]. Additionally, in late 2019, Facebook showed off an AI
that was capable of playing the game Hanabi [7]. This card game involves human collaboration
to get a hand that maximizes the player’s points. Their AI was able to significantly outperform
human players [9]. Based on the success of other AI game bots in other games, we created an AI
program to play the card game, “Oh, Hell!”.

The objective of the game “Oh, Hell!” is to earn the most points by taking tricks. At the
beginning of each round, the dealer passes out the cards to each player. The number of cards
dealt begins at one for the first round, two the second, and continues to increase for every round
until the max number of cards have been dealt. Afterwards, the number of cards decreases by one
every round.

Once all players have been dealt their hands, the next card on the deck is flipped and is
used to set the trump suit. As in other card games, the trump suit sets the value of any card of the
same suit higher than every other card of a different suit. For example, if the trump suit is spades,
then every card whose suit is spades is higher than any card with a suit of either hearts, clubs, or
diamonds.

After the reveal of the trump suit, players then bid on the number of tricks they believe
they can take this round based on the cards in their hand. The player to the left of the dealer lays
down one card first and then the players follow in a circular fashion. When going around, players
must follow the leading card’s suit, but if they do not have any cards of that suit, they may play a
card of any suit. The player who laid down the highest card takes the trick and then lays down
the first card for the next trick. Once all the cards have been played, points are counted; each
trick is worth one point, and if a player meets their bid they receive a bonus 10 points.

Background
Recent research has shown success in AI playing games better than humans. There are

some intuitions that we believe explains why AIs have the potential to play this game better than
humans. Firstly, the AI has an ability to perform more complex computations than the human
players. This can potentially be leveraged to make highly accurate predictions on the number of
tricks the AI expects to take. This can be seen in a similar AI, designed to play poker. In [1], they
designed an AI to play Texas Hold’em Showdown, and their AI outperformed all the human
players. Additionally, an AI for the game “Oh Hell!” can keep a better log of what cards have
already been played in the round to make informed decisions on which cards to lay down during



each trick. While the rules of the game are somewhat straightforward, we thought the
probabilistic reasoning required would pose an interesting challenge. The environment is only
partially known to the AI at the start of the round; the AI knows what is in its hand and what the
suit and value for the trump card is. As more tricks are played, the AI gets to observe more of the
environment by seeing what cards are being played to then make better decisions about what
card to play next.

A similar application for an AI program is presented in [8], where the author created a
program to play the German card game, “Skat”. Like “Oh, Hell”, this is a trick-taking game.
“Skat” is played amongst three people and a 32-card deck. The authors of this paper proposed a
new way of sampling to boost the performance of their search algorithm. That is, they use the
history of moves in order to sample more realistic potential future states.

In this project, we implemented two different state search algorithms, a simple tree tree
search algorithm and the Monte Carlo Tree Search algorithm, the latter being one of the driving
engines behind AlphaGo [4]. These techniques have been used in other AI game applications. In
the paper, [3], the authors use a neural network to learn how to search better using Monte Carlo
Tree Search. As is similar to [8], the focus of their work is to capitalize on the power of Monte
Carlo Tree Search by improving the future state searching. This differs from our project since we
are looking to compare search algorithms, rather than just focus on improving Monte Carlo Tree
Search.

Another paper also looks at using neural networks for card games. The authors of [6] use
two types of frameworks to create an AI card playing program. The first used temporal
difference learning and self-play to create a competitive neural network that could perform well
against human players. The other used an evolutionary approach – they put two networks against
each other and whichever network won, the other network had its weights adjusted 5% towards
the winner. They found that this simple algorithm ended up out performing the other approach.
Their methodology focused on deep learning and reinforcement learning.

For our work, we implemented a simple tree search algorithm and Monte Carlo Tree
Search algorithm and compared them in order to see which performs best. We also created a
simple agent that randomly selects valid cards to play. Our objective in this project was to
determine which of these algorithms works best and then to evaluate their performance against
human players.

Methodology
The simple tree search (STS) was originally intended to be similar to the Alpha Beta

search, but ended up being closer to the Minimax algorithm. On the agent’s turn, the AI
calculates the probability of winning the trick by playing each card in its hand. It makes a very
rough approximation of this probability, simply taking the probability that any random card in
the deck will be higher than it. To continue down the tree and calculate probabilities for future
tricks, the AI needs to know the lead suit for each of those future tricks. Since those suits cannot
be known with certainty, we take each of the four suits into account and consider them all to be
equally likely. For each potential leading suit, we run the same probabilistic analysis. When we
have reached either the bottom of the tree or the max depth parameter, we sum each branch of



the tree from bottom to top. By treating each node in the tree as an indicator variable, we can see
that the probability value represents the expected number of tricks won by playing the given
card, and by extension, the branch total represents the expected number of tricks the AI can take
by playing all of the cards along this branch. This AI will always bid its entire hand size, so
maximizing the tricks taken is an optimal goal.

The Monte Carlo Tree Search is an efficient state space searching algorithm. It comprises
4 different steps: selection, expansion, simulation, and backpropagation. To begin, possible states
are represented as nodes in a tree. A card being played transitions represents a link from one
node to another. Each node contains information on the current game state as well as two other
variables. One variable counts the number of wins the given node is involved and the other
variable counts the number of times the node has been used in simulations.

To begin the MCTS algorithm, the selection algorithm is performed in which the node
with the most potential is identified to explore. This is implemented following the proposed
heuristic in [5]. The Upper Confidence Bounds algorithm is adapted for trees (UCT) and
balances between exploitation and exploration when deciding the best node to explore. Once a
node is selected, the expansion phase begins. In our implementation, a single possible action is
expanded from the selected node and appended to its list of children. After this, the simulation
phase runs until a final state is found. During the simulation, we implemented a random policy
for making moves. During this stage, no new states are added into memory, but instead are used
to reach a terminal state. The backpropagation stage then begins by updating the tracking
variable for each node in memory that is on the path from the found final state to the root node.
Every node in the path has its variable that tracks the number of simulations increased by one. If
the final state resulted in a win for the agent, then the variable corresponding to the number of
wins is also increased.

To interact with the agents, we developed an interactive web interface where users can
play the game against our AI. This application allowed us to visualize the game play and make it
easier for people to interact with, while also providing a much friendlier interface than just
numerical outputs. The web app is written with React, and communicates with a backend Python
script via running socket-io. Upon connecting, users can configure the settings for the three AI
players, and then can play a full game of Oh, Hell! Both the frontend and backend are hosted on
Heroku, and are publicly accessible at oh-hell-frontend.herokuapp.com.

Results
To test the AI agents, we ran 5 experiments. For the two search-based AI agents, we

experimented with all four players using the same algorithm with different parameters. We then
also put two players using the same search algorithm against two players playing randomly. In
the last experiment, we used two MCTS players and two STS players. Each experiment ran 500
games and then average points obtained were calculated and recorded.

The STS AI performed quite poorly. The experiment with four STS AI showed that
exploring beyond one node deep in the game tree only reduces performance. This was a
surprising result, but it was likely due to the fact that so much of the information in the game is
hidden. We hypothesize that by exploring the tree too far, the AI is giving too much
consideration to game states that are impossible given the current hidden information. We
originally thought that the AI would be able to overcome the problem of hidden information

http://oh-hell-frontend.herokuapp.com/


based upon it making probabilistic decisions, but ultimately it seems that the AI agent became
trapped in looking at bad and unlikely future states.

When matched against players who make completely random decisions, the failings of
the STS agent become apparent. On average, the best performing STS AI managed to score just
17 points per game, while the AIs making completely random choices managed to earn 44 points
each. This evidence leads us to believe that the algorithm implemented for the STS AI is not
sufficient to play the game at any level of human proficiency.

The MCTS algorithm fared much better. Interestingly, it saw a similar decrease in
performance as the search time increased. This is likely due to the same issue as before; it is
impossible to accurately predict the next game state with most of the state information being
hidden. Thus, compounding too many uncertain predictions results in a substantial decrease in
performance. When playing against the random AI agent, the results were somewhat surprising.
The MCTS players scored an average of 46 points, but the random players also scored an
average of 42. The MCTS algorithm is used in many applications, but we found that it only
slightly outperformed a completely random agent. We believe this occurred because the decision
making policy was random, unlike previously discussed research that heavily relied on machine
learning. Unlike other implementations of MCTS for games, we did not use any reinforcement
learning. This could be why this algorithm did not perform as well as expected.

In the final experiment, the MCTS algorithm easily beat out the STS algorithm, earning
an average of 47 points per game compared to the 17 points earned by the STS agent. Since the
STS AI proved to be so terrible at this game, this experiment did not lead to as much insight as
we originally expected. The margin by the MCTS algorithm beat the AlphaBeta algorithm is
similar to that of the random player, but based on average scores alone it is hard to say why that
happened.

To gain a more in depth insight into the AI agents’ behaviors, we each played several
games against each opponent. Cameron found that the completely random agent performs
surprisingly well, because it reliably scores 0 points and can get the free 10 points for betting 0.
Playing a random strategy himself proved to be extremely effective. This explains why the
random AI performed so well when paired with MCTS. The better AI was able to take tricks
more reliably, allowing the random player to more frequently hit its most common bid of 0. STS
performs poorly in this scenario because the random AI will occasionally take a trick, which
ruins the STS bid of its entire hand. This trivial strategy wasn’t taken into account when
designing the AI.

Cameron - game 1 Cameron - game 2

Round

North
(MCTS
1s)

South
(Human
)

East
(STS 1)

West
(Rando
m) Round

North
(MCTS
1s)

South
(Human
)

East
(STS 1)

West
(Rando
m)

1 1 10 0 10 1 11 10 0 10

2 2 21 0 20 2 12 20 1 20

3 3 22 0 31 3 13 30 3 20

4 13 24 2 41 4 13 40 17 20



5 14 24 3 44 5 24 42 19 20

6 15 27 4 55 6 24 45 20 22

7 18 30 5 55 7 26 55 23 24

8 19 33 5 57 8 28 56 26 34

9 20 35 6 68 9 28 66 28 37

10 32 47 6 68 10 31 67 28 37

11 42 47 7 80 11 33 68 28 47

12 52 47 19 80 12 34 78 29 57

13 62 57 30 90 13 34 79 29 67
Table 1: Scoreboard from two matches of Cameron playing against the AI agents.

Jack played against the AI agents with an aggressive strategy. During these trials, the
MCTS and Random agents performed fairly well but STS was unable to match their
performance. During his first match, he was in the lead for the entire game. At one point, the
MCTS algorithm was only two points behind, but ultimately failed to surpass him, as can be seen
in the left sub-table of Table 2. We believe this is due to how the MCTS defines success and thus
prioritizes which states to look for. MCTS is rewarded for reaching a success state in which the
number of tricks it has taken is equal to the number it originally bid. However, if the agent
begins where this is already impossible (for example, the agent bids 0 but has 1 trick), then no
matter what search path they take, it will result in a failure. This means the agent will consider all
the options to be equally bad and randomly pick one. A different strategy, when in this situation,
could be to attempt to take as many tricks as possible to get more points since the 10 point bonus
is unattainable. In Jack’s second match, the AI agents began with a steady lead. It was not until
the third-to-last round that he was able to gain a lead over the AI agents. While ultimately
winning again, it was surprising to see that the agents were able to perform decently well against
a more experienced player.

Jack - game 1 Jack - game 2

Round

North
(MCTS
1s)

South
(Human
)

East
(STS 1)

West
(Rando
m) Round

North
(MCTS
1s)

South
(Human
)

East
(STS 1)

West
(Rando
m)

1 1 10 0 10 1 10 0 11 10

2 1 11 1 10 2 21 1 11 20

3 4 21 1 10 3 31 11 12 22

4 14 33 1 12 4 42 13 12 23

5 26 35 2 22 5 42 25 14 34

6 38 47 4 32 6 42 36 16 47



7 40 49 6 43 7 44 36 18 50

8 41 52 8 43 8 46 39 18 51

9 42 53 11 43 9 47 41 18 53

10 52 63 12 46 10 58 52 19 54

11 62 64 12 48 11 58 63 20 55

12 63 74 12 59 12 59 73 21 65

13 64 84 12 69 13 69 83 32 75
Table 2: Scoreboard from two matches of Jack playing against the AI agents.

Conclusion
Our results present some interesting findings. Firstly, the trend that deeper and longer

searches result in worse performance for both AI agents. When increasing the STS depth, the
performance decreases. The same phenomenon occurs when increasing the search time allowed
for the MCTS. It seems counterintuitive that searching more would cause a decrease in
performance. We postulate that this occurs because the game only has a limited amount of
information available. Looking too far into the future allows for the consideration of too many
options and the decisions become closer to random, if not worse. We also attribute this to the
agent decision policy. We did not implement any reinforcement learning so the model is limited
to simply searching for any possible outcomes. MCTS seems to perform better than STS since it
is able to prioritize better nodes to explore.

We found implementing the web application was invaluable to the project. Firstly, it
made interacting with the agents much easier. We were able to see the decisions being made by
the agents in real time to gain a better understanding of how they are performing. Secondly, it
increased the enjoyability of playing this game. The interface made it more like actually playing
this card game.

Our human experiments using the web application were some of the most valuable pieces
of our analysis. We were able to see how the AI would respond to different styles of play, and
closely examine their round-to-round performance. Ultimately, we concluded that even our best
AI, the MCTS player, still needs improvements before it is able to reliably defeat human players.
Though it is able to perform close to a human level in some cases, during all four tests, there
were games where the random strategy defeated the MCTS agent.A stronger AI would recognize
this random player’s frequent zero-bidding and attempt to thwart it by intentionally losing a trick.
Performing these calculations would explode the search tree very rapidly, so in order to improve
the AI in this area we believe that some form of reinforcement learning would be necessary.

In future works, we would like to experiment with other ways to improve our AIs.
Specifically, we would like to use reinforcement learning to create AI agents that can outperform
any other player, be them AI or human. Additionally, we would like to see if there is a way to fix
the problem of decreasing quality when increasing the searching. Potentially, for the simple tree
search, a different heuristic could be implemented. For MCTS, a different way of simulating the
games could be beneficial. Currently, the policy in the simulation step of the MCTS algorithm is
a random card is chosen to play until an end state is reached. We would like to add in some
additional logic for making decisions during the simulations. This could potentially improve the
quality of longer searches to make them more usable.



References:

[1] A. Blair, A. Saffidine, AI surpasses humans at six-player poker, Science Magazine, Aug 2019.
[2] D. Chan, The AI That Has Nothing to Learn From Humans. The Atlantic, October 2017.
https://www.theatlantic.com/technology/archive/2017/10/alphago-zero-the-ai-that-taught-itself-go/543450/
[3] A. Guez, T. Weber, I. Antonoglou, K. Simonyan, O. Vinyals, D. Wierstra, R. Munos, D. Silver, “Learning to
Search with MCTSnets”, ICML 2018.
[4] M. C. Fu, AlphaGo and Monte Carlo tree search: The simulation optimization perspective, 2016 Winter
Simulation Conference (WSC), 2016.
[5] L. Kocsis and C.Szepesvári, Bandit based Monte-Carlo Planning, European conference on machine learning,
2006.
[6] C. Kotnik, J. Kalita, The Significance of Temporal-Difference Learning in Self-Play Training TD-rummy versus
EVO-rummy, ICML 2003.
[7] A. Lerer, H. Hu, J. Foerster, and N. Brown, Improving Policies via Search in Cooperative Partially Observable
Games, AAAI 2020.
[8] C. Solinas, D. Rebstock, M. Buro, Improving Search with Supervised Learning in Trick-Based Card Games, AAI
2019.
[9] Q. Wong. Facebook's new card-playing bot shows AI can work with others. CNET, December 2019.
https://www.theatlantic.com/technology/archive/2017/10/alphago-zero-the-ai-that-taught-itself-go/543450/

https://science-sciencemag-org.libproxy.temple.edu/content/365/6456/864/tab-pdf
https://www.theatlantic.com/technology/archive/2017/10/alphago-zero-the-ai-that-taught-itself-go/543450/
http://proceedings.mlr.press/v80/guez18a.html
http://proceedings.mlr.press/v80/guez18a.html
https://www.informs-sim.org/wsc16papers/059.pdf
https://sites.ualberta.ca/~szepesva/papers/ecml06.pdf
https://www.aaai.org/Papers/ICML/2003/ICML03-050.pdf
https://www.aaai.org/Papers/ICML/2003/ICML03-050.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/6208
https://ojs.aaai.org/index.php/AAAI/article/view/6208
https://ojs.aaai.org/index.php/AAAI/article/view/3909
https://www.theatlantic.com/technology/archive/2017/10/alphago-zero-the-ai-that-taught-itself-go/543450/

