
Oh, Hell! Card Playing AI Bot

Jack Amend and Cameron Zach
CIS5603 Final Project
Spring 2021



Outline ● Rules for the game Oh, Hell!
● Methodology

○ Use of state searching algorithms
● Web Application
● Experiments and Results



Oh, Hell! Gameplay

1. Players are dealt their hands. 
2. Trump card revealed.
3. Players bid number of tricks they will take.
4. Play for all tricks.
5. Record points.
6. Shift dealer over and begin again.



Can an AI play this game 
sufficiently well?



Methodology 1. Implement game logic in 
Python

2. Implement two different AI 
algorithms
a. MCTS and STS

3. Compare algorithms against 
each other

4. Create a web app to interact 
with the game

5. Test agents against human 
players



Simple Tree Search ● Uses a probabilistic method to 
evaluate game state
○ Each node on the tree 

represents one trick
○ The value of the node is the 

probability of winning the trick
○ The AI takes the path down the 

tree with the highest expected 
score (most tricks taken)

● Always bids maximum hand size



Monte Carlo Tree 
Search

4 stages:

● Selection
○ Chose best node

● Expansion
○ Add child state

● Simulation
○ Find end state

● Backpropagation
○ Update values



Web Application

● Frontend written with 
React

● Backend written with 
python and socket-io

● Allows configuration to 
decide which AI agent to 
use

http://oh-hell-frontend.herokuapp.com/

http://oh-hell-frontend.herokuapp.com/
http://oh-hell-frontend.herokuapp.com/
http://oh-hell-frontend.herokuapp.com/


Experimental Results



Simple Tree Search ● Found diminishing results as 
depth of search increased
○ Simulating further hands gives 

too much weight to outcomes 
that can’t happen (cards already 
played, etc.)

● Easily beaten by the random player
○ Scored an average of 18 points in 

a 9-round game
○ Random player averaged 44 

points



Monte Carlo Tree 
Search

● Better performance than the STS 
algorithm

● Similar decrease in performance as 
search time increased

● Strangely, the presence of the MCTS 
AI improved the performance of the 
Random player
○ MCTS averaged 46 points per game
○ Random averaged 42 points, 

compared to 13 points in an 
all-random control game

○ Likely because the random player 
could score 0 tricks more easily



MCTS vs STS ● MCTS completely outperformed STS
○ MCTS averaged 47 points per game
○ STS only averaged 17 points

● The diminishing returns of search 
depth held true in this test as well



Human 
experiments - 
Cameron

● The Random player performed best 
in manual testing
○ When playing against more 

competent players, it’s easy for the 
random AI to successfully make a 
bid of 0

○ This was confirmed by manually 
playing the random strategy, easily 
beating all 3 AI players

● MCTS was able to beat me slightly in 
the first game



Human 
experiments - Jack

● Random and MCTS performed best
○ STS performed very poorly
○ Both nearly won during second trial

● MCTS only rewards for states that 
result in bids equaling tricks taken
○ Can begin in state where goal is 

impossible



Conclusions 1. Hidden information is much harder 
to account for than we initially 
thought

2. The ability for the random strategy to 
win so effectively is hard to account 
for with simple AI

3. These algorithms can easily be 
enhanced with smarter heuristics, 
but to fully understand the game we 
would want to use reinforcement 
learning



Thank you!


