

SUDOKU SOLVER
Study and Implementation

Qizhong Mao, Baiyi Tao, Arif Aziz
{qzmao, tud46571, arif.aziz}@temple.edu

Abstract
In this project we studied two algorithms to solve a Sudoku game and implemented a playable

application for all major operating systems.

CIS 5603 Project Report Qizhong Mao, Baiyi Tao, Arif Aziz

 2

Table of Contents

Introduction .. 3

Variants .. 3
Standard Sudoku ...3
Small Sudoku ...4
Mini Sudoku ..4
Jigsaw Sudoku ...4
Hyper Sudoku ..5
Dodeka Sudoku ..5
Number Place Challenger ...5
Giant Sudoku ...6
Killer Sudoku (Not Supported) ..6
Greater Than Sudoku (Not Supported) ..7

Sudoku Solving Algorithm .. 7
Brute Force Search ...7
Heuristic Search ...8
Filling Empty Grid ...9
Comparison between Brute Force Search and Heuristic Search ..9

Experiments .. 10
Filling Empty Grid (Worst Scenario) .. 10
Solving Standard Sudoku .. 10

Optimization ... 11
Concurrently Processing ... 11
Stochastic Value Selection .. 11

Application .. 11
Screenshots ... 12
Add a New Board Variant ... 14
Create a Preset File .. 14

Summary ... 15

References .. 15

CIS 5603 Project Report Qizhong Mao, Baiyi Tao, Arif Aziz

 3

Introduction
Sudoku (数独) is a logic-based, combinatorial number placement puzzle game. The objective of

this game is to fill a 𝑁 × 𝑁 grid with digits so that every row, column and inner box is filled with
number from 1 to 𝑁 without duplicates. The shape of inner boxes may vary, but all must have
exactly 𝑁 blocks. In most situations, a Sudoku game should have a unique solution. However,
there can be cases that a Sudoku game has multiple solutions. Usually a game with multiple
solution is considered to be more difficult than the one that has a unique solution.

Sudoku was originated in the late 16th century. La France developed the embryonic form of the
modern Sudoku of 9 by 9 grid with 9 3 × 3 inner boxes, and later, it was believed that the
modern Sudoku was mostly designed anonymously by Howard Garns in 1979. However, this
game became a worldwide phenomenon not until Nikoli introduced it to Japan in 1984 and

named it as 数字は独身に限る. The name was later abbreviated to 数独 (Sudoku) by Maki Kaji.

Sudoku is a trademark in Japan and the puzzle is generally referred to as Number Place, or
NumPla in short.

Variants
Though the 9 × 9 grid with 3 × 3 inner boxes is by far the most common Sudoku game, many
other variants exist. Our program natively implemented 8 variants including the standard one. In
the following variants, different inner boxes are represented by different colors. In general, 2
colors are needed to mark all inner boxes. Also the number of inner boxes is 𝑁 in a 𝑁 × 𝑁 game
for most variants, there can be exceptions.

Standard Sudoku
 Grid size: 9 × 9

 Number of inner boxes: 9

 Inner box shape: 3 × 3 Square

 Number range: 1 to 9

CIS 5603 Project Report Qizhong Mao, Baiyi Tao, Arif Aziz

 4

Small Sudoku
Small Sudoku is probably the smallest and easiest
Sudoku variant.

 Grid size: 4 × 4

 Number of inner boxes: 4

 Inner box shape: Square

 Number range: 1 to 4

Mini Sudoku
Mini Sudoku is a relatively easy variant with non-
square inner boxes.

 Grid size: 6 × 6

 Number of inner boxes: 6

 Inner box shape: 3 × 2 Rectangle

 Number range: 1 to 6

Jigsaw Sudoku
Jigsaw Sudoku (or Nonomino Sudoku) is almost the
same as the standard Sudoku. The only difference
to the standard Sudoku is the shape of the inner
blocks. The difficulty is considered to be the same
as the standard Sudoku. There are also several
other variants like the Jigsaw Sudoku, where the
inner boxes are not rectangles. These variants
usually use multiple colors to distinguish different
inner boxes.

 Grid size: 9 × 9

 Number of inner boxes: 9

 Inner box shape: Nonomino (polyomino of
order 9)

 Number range: 1 to 9

CIS 5603 Project Report Qizhong Mao, Baiyi Tao, Arif Aziz

 5

Hyper Sudoku
Hyper Sudoku is one of the most popular variant.
It is very similar to the standard Sudoku, but with
4 extra interior squares. There are some overlaps,
which can logically reduce the number of values
for those blocks. In general, all inner boxes can be
represented by 2 colors, where the overlapping
blocks will use an average color of 2 colors.

 Grid size: 9 × 9

 Number of inner boxes: 13

 Inner box shape: 3 × 3 Square

 Number range: 1 to 9

Dodeka Sudoku
Dodeka Sudoku can be considered as a larger
version of Mini Sudoku. As the maximum number
allowed is greater than 9, alphabetic letter may be
used instead of digits. For example, 10 can be
replaced by 𝐴, 11 can be replaced by 𝐵, 12 can be
replaced by 𝐶.

 Grid size: 12 × 12

 Number of inner boxes: 12

 Inner box shape: 4 × 3 Rectangle

 Number range: 1 to 12 or 1 to 9 and 𝐴 to
𝐶

Number Place Challenger
As the maximum number allowed is greater than
9, alphabetic letter may be used instead of digits.
For example, 10 to 16 can be replaced by 𝐴 to 𝐺
respectively.

 Grid size: 16 × 16

 Number of inner boxes: 16

 Inner box shape: 4 × 4 Square

 Number range: 1 to 16 or 1 to 9 and 𝐴 to
𝐺

CIS 5603 Project Report Qizhong Mao, Baiyi Tao, Arif Aziz

 6

Giant Sudoku
As the maximum number allowed is greater than
9, alphabetic letter may be used instead of digits.
For example, 10 to 25 can be replaced by 𝐴 to 𝑃
respectively.

 Grid size: 16 × 16

 Number of inner boxes: 16

 Inner box shape: 4 × 4 Square

 Number range: 1 to 25 or 1 to 9 and 𝐴 to
𝑃

Killer Sudoku (Not Supported)
In this 9 × 9 Sudoku, with the Sudoku strategy,
Kakuro strategy is also required. In the dotted
lines, which is also called cages, contain a set of
non-repeating digits. The sum of the numbers in
the cages will give the number that is shown in the
cage.

 Grid size: 9 × 9

 Number of inner boxes: 9

 Inner box shape: 9 × 9 Square

 Number range: 1 to 9

CIS 5603 Project Report Qizhong Mao, Baiyi Tao, Arif Aziz

 7

Greater Than Sudoku (Not Supported)
In this 9× 9 Sudoku, a greater – than or a smaller –
than sign will appear between any two blocks in
the 3× 3 sub blocks, that indicates the relationship
between the numbers in those blocks.

 Grid size: 9 × 9

 Number of inner boxes: 9

 Inner box shape: 9 × 9 Square

 Number range: 1 to 9

Sudoku Solving Algorithm

Brute Force Search
The brute force search algorithm is probably the most fundamental method to solve any type of
puzzle game. To solve a Sudoku game by brute force search, the following steps are performed:

1. Find the first block that is empty
2. List all values 1 to 𝑁 for that block
3. Check all the other blocks in the row that contains this block, remove any used values
4. Check all the other blocks in the column that contains this block, remove any used values
5. Check all the other blocks in the inner boxes that contains this block, remove any used

values
6. If there is only one value remained, assign the value to the block, then go back to step 7.

If there are multiple remaining values, choose one of the values and assign to it, and keep
a record of which value is chosen for the block and all the remaining values for that block,
then go to step 7. If there is no value remained, go to step 8.

7. Find the next empty block, and repeat the above steps. If no empty block can be found,
then the game is solved.

8. If in any previous steps, there is one block that has been assigned a value from a list,
choose the last block that satisfy the condition, assign another value from the remaining
list and remove all the values assigned after the block, then repeat the above steps. If all
remaining values have been tested, choose second last block that has multiple remaining
values, and test another value, until a solution is found, or no solution if all blocks having
multiple remaining values are checked.

CIS 5603 Project Report Qizhong Mao, Baiyi Tao, Arif Aziz

 8

Based on the explanations above, we can observe that the brute force search is to build a tree
that with maximum height of 𝑁2, as every block needs to be checked. A abstract tree structure
is shown below (each level is a block).

However, if we look the game row by row, for each row, we have 𝑁 possible values for the first
block, and 𝑁 − 1 possible values for the second block, 𝑁 − 2 possible values for the third block,
and 1 value for the last block. Hence the computational complexity for filling one row is
𝑂(𝑁 × (𝑁 − 1) × … × 1) = 𝑂(𝑁!). As there are 𝑁 rows, the total computational complexity is
𝑂((𝑁!)2). In fact, this can be further reduced, but it is hard to find a short formula to represent
it, so we will just keep this as the final computational complexity of brute force search.

Heuristic Search
An alternative way to solve a Sudoku game is heuristic search. In every step, we try to find a block
that has least possible values. The detailed steps are given as follows:

1. Scan all empty blocks, for every empty blocks, maintain a list of possible values by
checking the row, column and inner boxes that contain the block.

2. Find a block that has least possible values.
3. If the block has only one possible value, assign that value to the block, and repeat from

step 1. If the block has multiple possible values, assign one value from the list, and keep
a record of which value has been assigned and all the other remaining values, then repeat
from step 1. If the block has no possible value, go to step 4.

4. If there is one block that has multiple possible values, assign another value in the list and
remove all the values after the block. If all values have been tested, check the second last
block that has multiple possible values, until a solution is found, or no solution if all blocks
having multiple possible values are checked.

It is easy to see the steps of heuristic search share some commons with brute force search. The
key difference is that heuristic search tries to minimize the cost of testing possible values by
introducing more tests on all empty blocks. The introduced cost may be ignored because it is
marginal. Therefore, if every empty block has exactly 0 or 1 possible value, it is the best scenario
with computational complexity 𝑂(𝑁2) as every block needs to be checked once only. But the

CIS 5603 Project Report Qizhong Mao, Baiyi Tao, Arif Aziz

 9

worst scenario where all blocks are empty will have computational complexity the same as brute
force search, which is 𝑂((𝑁!)2).

Filling Empty Grid
There is a special algorithm that can fill an empty board quickly with computational complexity
𝑂(𝑁2), if the game satisfy the following conditions:

 The grid must be completely empty

 The width and height of the grid must be 𝑁 = 𝑛2

 There must be exactly 𝑁 inner boxes

 Every inner box must be a 𝑛 × 𝑛 square

 No overlapping blocks

The pseudocode of this algorithm is shown on the right
(we did not implement this algorithm in our program,
since this algorithm is too restricted, which is not very
useful for our purpose.

Comparison between Brute Force Search and Heuristic Search
The comparison is shown in the following table

𝑁 Complexity (𝒄 = 𝟏) Complexity (𝒄 = 𝟑) Complexity 𝑶((𝑁!)𝑁)

4 16 1.30 × 103 3.32 × 105

6 36 4.67 × 104 1.39 × 1017

9 81 1.01 × 107 1.09 × 1050

12 144 2.18 × 109 1.46 × 10104

16 256 2.82 × 1012 1.35 × 10213

25 625 2.84 × 1019 5.84 × 10629

Where 𝒄 is the average number of possible values for every empty block. Hence, the second
column in the table is the best scenario of heuristic search, the third column is a heuristic search
with 3 possible values for every empty block on average, and the last column is the brute force
search, where 𝒄 can be consider to be 𝑁 . Obviously a larger 𝒄 will significantly increase the
computational complexity in an order of magnitude.

However, brute force search has an advantage that it will always take constant time to solve all
games of one variant, though the time can be extremely long.

final int n = 3;
final int[][] field = new int[𝑁][𝑁];
for (int i = 0; i < 𝑁; i++)
 for (int j = 0; j < 𝑁; j++)
 field[i][j] = (i* 𝑛 + i/ 𝑛 + j) % 𝑁 + 1;

CIS 5603 Project Report Qizhong Mao, Baiyi Tao, Arif Aziz

 10

Experiments

Filling Empty Grid (Worst Scenario)
We have tested the time to solve an empty grid of different grid sizes. We can see that the time
for small and mini Sudoku are quite short, but the ratio does not correspond to the ratio
calculated by the computational complexity. This may be caused by the overhead of internal
functions and CPU scheduling. But the time to fill an empty standard grid took a whole day to run
and not yet finished. Larger grid size causes an exponential grow in the complexity. Larger grid
size such as 12 × 12 and even larger variants should have much longer time to complete.

 Small Mini Standard

Size 4 × 4 6 × 6 9 × 9

Time 5 ms 12 ms ∞

Solving Standard Sudoku
As the algorithm to solve all supported Sudoku variants is the same, we mainly test the time, CPU
and memory usage for 200 preset values for standard Sudoku. Among the 200 presets, 100 are
easy level and 100 are hard level. The presets are crawled from the Internet, but the difficulty
levels are not quite uniform. We found that there could be some relatively hard presets in the
easy level set, and there are also some extremely hard presets in the hard level set.

 Time CPU Memory

Easy Level 815 ms 5% 100 MB

Hard Level 6,189 ms 17% 1.5 GB

Since easy levels generally have a smaller 𝒄 value, the time needed for solving an easy level
standard Sudoku is far more less than solving a hard level. The CPU and memory usage are not
very precise, but the CPU usage for easy levels is usually below 8%, and above 13% for hard levels.
Also the maximum memory usage we recorded for easy levels is less than 100 megabytes, but
for hard levels, the memory usage can easily go beyond 1.5 gigabytes, sometimes even 10
gigabytes.

CIS 5603 Project Report Qizhong Mao, Baiyi Tao, Arif Aziz

 11

Optimization
Exponential grow is a natural of Sudoku, which means there is no way that can really reduce the
complexity to solve a badly designed game. However, there are still 2 methods may be used.

Concurrently Processing
If a game has multiple solutions, usually these valid solutions and any other invalid solutions are
independent with each other. Hence concurrently processing or multi-threading can be applied
to speed up the searching process. Also possible values of any empty block can be checked
concurrently. For example, the row, column, and all inner boxes that contain the block can be
checked concurrently though multiple threads (1 thread for checking the row, 1 thread for
checking the column, 1 or more threads for checking inner boxes).

There are also several disadvantages of using concurrently processing, specifically multi-
threading (assuming we have enough cores for multi-threading). For a small grid size, the
overhead of creating, executing, terminating threads may take longer time than single thread.
Also each thread has its own memory space, the overall memory usage will be much higher than
a single thread application. This is especially serious for this memory-consuming problem.
Another problem could be when to create threads. Obviously it is impossible to create a thread
for every iteration, if there is only one possible value for a block, multi-threading is not needed.
Multi-threading is only needed when a block has multiple possible values. But such block may be
found in any time in the process.

Stochastic Value Selection
Instead of testing possible values in order, a value can be randomly chosen. Theoretically this is
faster and resource efficient. But still, it can also reach the worst scenario, which is the same as
testing possible values in order. Also the implementation of this method will be more
complicated.

Application
 Home Page: https://github.com/autopear/Sudoku-Solver (Source code and executables

available)

 Developer: Qizhong Mao

 License: LGPL 3.0

 Language: Qt (C++)

 Qt Version: 5.0+

 Support Platforms: Windows (x86/x64) *, Mac OS X (Other major operating systems are also
supported)
* Visual C++ Redistributable Packages for Visual Studio 2013 may be required

 Features:
 Include 8 Sudoku variants to play
 Heuristic search method to solve the game
 Real-time validation is supported if the game is played by human

https://github.com/autopear/Sudoku-Solver
https://www.microsoft.com/en-us/download/details.aspx?id=40784

CIS 5603 Project Report Qizhong Mao, Baiyi Tao, Arif Aziz

 12

 The time to solve the game automatically is provided
 Easy to load presets
 Easy to create and edit preset, and save it to file for reuse
 Flexible to add more Sudoku variants

Screenshots

CIS 5603 Project Report Qizhong Mao, Baiyi Tao, Arif Aziz

 13

CIS 5603 Project Report Qizhong Mao, Baiyi Tao, Arif Aziz

 14

Add a New Board Variant
A board is a .board file under the Boards directory. There are several settings in the file, each
setting occupies a single line or multiple contiguous lines.

Settings
 NAME: The name of the variant, must be

unique

 ROWS: The number of rows

 COLUMN: The number of columns

 MINIMUM: The minimum value allowed,
must be at least 1

 MAXIMUM: The maximum value
allowed, must be greater than the
minimum value

 MINVALUES: The minimum number of
blocks with preset values required to
solve the game. Settings this value can
avoid some situation such as filling empty
grid, which take too long to complete.

 BLOCKS: A list of list of blocks that represent inner boxes. Start from top-left to bottom right,
(𝒙, 𝒚) represents a block in the grid, where 𝒙 it the row number and 𝒚 is the column number.
Both 𝒙 and 𝒚 start from 𝟎 to 𝑵 − 𝟏. Different blocks are separated by a single comma, and
an inner box is enclosed by [and] with multiple blocks inside. Different inner boxes are
separated by a single comma also, except there is a colon in the end. Blocks and inner boxes
may be in one line or across multiple lines. All blocks within an inner block and all inner blocks
must be in ascending order.

 COLORS: A list of colors for ever inner block. The size of this list must be the same as the
number of inner blocks. Different colors are separated by a single comma. Valid colors are
standard HTML color codes, and strings listed in this page: http://doc.qt.io/qt-
5/qcolor.html#predefined-colors.

Note that ROWS and COLUMNS are set independently, this makes the application support
rectangle grids. Also the MINIMUM and MAXIMUM can be set to start with 1 or any integer
greater than 1.

Create a Preset File
Preset is a text file with .sdk extension. There are two ways to create a preset file.

1. Directly edit using text editor

Preset values are separated by commas. Empty block
can be represented by 0 or empty string. Each row in
the grid requires a line in the file. There is no need of
a comma in the end of a line in the file.

NAME: Small Sudoku
ROWS: 4
COLUMNS: 4
MINIMUM: 1
MAXIMUM: 4
MINVALUES: 0
BLOCKS:
[(0, 0), (0, 1), (1, 0), (1, 1)],
[(0, 2), (0, 3), (1, 2), (1, 3)],
[(2, 0), (2, 1), (3, 0), (3, 1)],
[(2, 2), (2, 3), (3, 2), (3, 3)];
COLORS: #E5E4E2, #FFFFFF, #FFFFFF, #E5E4E2

Example of Small Sudoku

0, 0, 0, 4
0, 4, 2, 0
0, 1, 3, 0
3, 0, 0, 0
Example of Small Sudoku Preset

http://doc.qt.io/qt-5/qcolor.html#predefined-colors
http://doc.qt.io/qt-5/qcolor.html#predefined-colors

CIS 5603 Project Report Qizhong Mao, Baiyi Tao, Arif Aziz

 15

2. Through the application
User can directly input the preset values to the application, and use the
“Save as Preset” function from the context menu in the grid area to save
the current preset values into a .sdk file.

Summary
In this project, we implemented a playable application to solve a variety of Sudoku games by
using heuristic search and multi-threading. The heuristic search is more efficient than brute force
search in most cases (though the worst can be the same). Our application is compatible with most
Sudoku variants and is flexible to add more variants. A solution is guaranteed (or no solution will
be given), though sometimes it is restricted by the hardware power. The application does not
only support solving a Sudoku game, users can also play the game by themselves.

We have studied several facts that may affect the heuristic search, and proposed a stochastic
heuristic search model as a future work.

References
[1] https://en.wikipedia.org/wiki/Sudoku
[2] https://en.wikipedia.org/wiki/Brute-force_search
[3] https://en.wikipedia.org/wiki/Heuristic_(computer_science)
[4] https://en.wikipedia.org/wiki/Sudoku_solving_algorithms
[5] http://doc.qt.io/qt-5/qcolor.html - predefined-colors.
[6] http://www.lamsade.dauphine.fr/~cazenave/papers/sudoku.pdf
[7] http://publish.wm.edu/cgi/viewcontent.cgi?article=1077&context=caaurj
[8] http://www.sudokuwiki.org/sudoku_creation_and_grading.pdf
[9] http://www.sudoku-solutions.com
[10] http://angusj.com/sudoku/hints.php
[11] http://www.paulspages.co.uk/sudoku/howtosolve/
[12] http://www.bigfishgames.com/blog/how-to-solve-sudoku-puzzles-quickly-and-reliably/

https://en.wikipedia.org/wiki/Sudoku
https://en.wikipedia.org/wiki/Brute-force_search
https://en.wikipedia.org/wiki/Heuristic_(computer_science)
https://en.wikipedia.org/wiki/Sudoku_solving_algorithms
http://doc.qt.io/qt-5/qcolor.html#predefined-colors
http://www.lamsade.dauphine.fr/~cazenave/papers/sudoku.pdf
http://publish.wm.edu/cgi/viewcontent.cgi?article=1077&context=caaurj
http://www.sudokuwiki.org/sudoku_creation_and_grading.pdf
http://www.sudoku-solutions.com/
http://angusj.com/sudoku/hints.php
http://www.paulspages.co.uk/sudoku/howtosolve/

