
Matt	Usifer	 	 	 	 	 	 	 	 	 																		4/28/2016	

Artificial	Intelligence	–	Project	Report	

Fast	Blue	Train:	Finding	the	Optimal	Route	

Introduction	

	 Travel	planning	is	a	vital	and	innate	human	skill,	and	this	has	been	the	case	

throughout	all	of	human	history.	Though	humans	have	a	well-honed	ability	to	plan	a	route	

between	locations,	that	ability	has	been	challenged	in	recent	years	by	the	multitude	of	

options	for	transportation	introduced	in	the	modern	era:	public	transit,	personal	

automobiles,	personal	bicycles,	taxis,	taxi-like	technology	start-ups	such	as	Uber,	and	the	

list	continues	to	expand.	When	making	the	choice	of	which	route	to	take	between	two	

places	in	the	modern	age,	the	goal	has	not	changed	despite	the	increase	in	optionality.	One	

still	seeks	to	choose	the	optimal	route	–	the	route	that	is	fastest,	cheapest,	and	meets	other	

high-level	criteria	such	as	safety	and	convenience	–	but	the	increasing	amount	of	options	to	

consider	when	making	this	choice	has	also	increased	its	difficulty.	Some	of	these	modern	

modes	of	transportation	cost	more	than	others,	some	take	more	time,	and	the	cost	and	

availability	of	these	modes	is	subject	to	change	in	unpredictable	ways	based	on	external	

factors	such	as	the	time	of	day	and	the	state	of	the	organization	offering	the	service.	

	 With	the	advent	of	the	Internet	and	GPS	technology,	travel	planning	has	become	a	

much	simpler	process.	Using	online	navigation	services	such	as	Google	Maps,	users	are	

empowered	to	find	the	fastest	route	between	two	locations	using	the	4	most	popular	major	

modes	of	transportation:	Driving,	Walking,	Biking,	and	Public	Transit.	However,	there	are	

generalizations	made	in	this	process	that	prevent	these	services	from	addressing	some	of	

the	most	basic	realities	of	travel	in	a	modern	American	city.	For	example,	these	services	

always	assume	that	the	user	is	negligibly	close	to	the	location	of	their	car	or	bicycle,	which	

is	almost	never	the	case.	Additionally,	they	do	not	take	into	account	the	user’s	budget	and	

the	cost	of	the	route.		

	 Fortunately,	many	relevant	services	have	exposed	themselves	via	Web	APIs.	These	

interfaces	allow	programmers	to	incorporate	data	and	functionality	from	these	3rd	party	

technologies	within	custom	applications,	and	thereby	create	a	unique	opportunity	to	

extend	the	functionality	of	these	services	to	fill	in	the	gaps	noted	above.		This	work	seeks	to	

achieve	these	goals	through	the	creation	of	a	route	recommendation	system	called	Fast	

	 2	

Blue	Train,	and	it	also	seeks	to	identify	opportunities	for	further	advancements	that	can	be	

made	in	this	area.	

	

Relevant	Work	

	 A	considerable	amount	of	recommendation	systems	have	been	created	to	help	users	

choose	among	a	large	set	of	options.	This	type	of	work	has	been	applied	to	a	wide	variety	of	

disciplines,	such	as	choosing	a	TV	show	[Kurapati	et	al],	choosing	a	product	[Wang],	and	

also	to	route	recommendation	(CrowdPlanner	[Su]	and	R3	[Wang	et	al]).	CrowdPlanner	

cleverly	addresses	the	route	recommendation	problem	through	crowd	sourcing	-	gathering	

popular	routes	and	suggesting	those	routes	to	the	user.	This	recommendation	system	is	

centered	on	the	assumption	that	drivers	who	live	in	a	given	area	will	choose	routes	in	that	

area	that	are	ostensibly	better	than	the	routes	suggested	to	a	traveller	via	Google	Maps	or	a	

similar	service.	The	main	idea	is	that	some	routes,	though	they	look	to	be	ideal	on	a	map,	

are	riddled	with	obstacles	that	only	a	seasoned	local	driver	would	know	to	avoid	such	as	

traffic	lights	or	traffic	congestion.	This	is	a	logical	idea,	but	does	not	examine	any	modes	of	

transportation	outside	of	driving	in	a	personal	car	and	it	does	not	address	any	user	

preferences	outside	of	minimizing	the	travel	time	to	destination.	R3,	on	the	other	hand,	

aims	to	provide	a	recommendation	based	on	real-time	traffic	information,	hoping	to	

overcome	the	limitations	of	those	route	recommendation	systems	that	do	not	account	for	

unexpected	traffic.	This	is	another	leap	forward	in	route	recommendation,	but	it	is	also	

limited	to	automobile	transportation	and	it	does	not	account	for	a	user’s	monetary	budget.	

	

	

	 In	the	following	section,	I	present	the	architecture	of	the	Fast	Blue	Train	route	

recommendation	system	that	I	created	in	order	to	address	the	issues	outlined	above.	The	

section	thereafter	will	outline	some	of	the	higher-level	findings	that	I	gleaned	from	this	

project,	and	I	conclude	with	some	suggestions	for	future	work	in	this	area.	

	

	

	

	

	 3	

Fast	Blue	Train:	Architecture	

I.	Technology	

	 From	a	technology	standpoint,	Fast	Blue	Train	is	a	single	page	web	application	

designed	with	a	focus	on	efficient	computation	and	rendering.	It	relies	on	Google’s	

AngularJS	application	framework	to	organize	its	different	software	components,	arrange	

their	level	of	interaction,	and	to	enable	a	responsive	user	interface	in	the	browser.	The	

server-side	logic	is	written	in	Clojure,	and	the	client-side	logic	is	written	entirely	in	

ClojureScript,	a	functional	Clojure-like	lisp	that	compiles	to	JavaScript.	As	implied	above,	

the	web	application	exists	in	only	a	single	page,	and	all	user-input	and	application	output	is	

handled	therein.	It	is	from	this	technology	that	Fast	Blue	Train	is	given	the	ability	to	accept	

and	record	user	preferences,	aggregate	route	information,	and	organize	routes	by	given	

heuristics.	The	entire	architecture	is	outlined	in	Figure	1.	

	 This	application	exists	in	the	form	of	a	web	application	as	opposed	to	a	desktop	

application	in	order	to	make	it	convenient	and	accessible	to	the	general	public.		

	

II.	User	experience	

	 The	user	experience	within	this	web	application	can	be	broken	down	into	2	parts:	

the	initial	state	and	the	post-initial	state.	The	initial	state	consists	only	of	two	search	boxes,	

labeled	‘Start’	and	‘End’,	as	well	as	two	buttons,	labeled	‘Get	Directions’	and	‘Settings’.	The	

user	can	click	the	‘Settings’	button	to	set	the	following	preferences:	

	

§ Bike	Location	

§ Car	Location	

§ Car	MPG	

§ Budget	for	trip	

§ Has	Transpass	

	

	 The	application	uses	the	Google	Maps	API	to	enable	auto-complete	in	the	start,	end,	

bike	location,	and	car	location	input	boxes.		

	 When	the	user	clicks	‘Get	Directions’	to	begin	the	calculation	phase	of	the	

application	cycle,	he	or	she	will	also	trigger	the	post-initial	state,	which	consists	of	all	of	the	

	 4	

elements	in	the	‘initial-state’,	along	with	a	map	and	a	results	display	pane.	The	results	of	the	

calculation	phase	are	rendered	both	in	the	map	and	organized	in	the	results	display	pane.		

	

III.	Optimal	Route	Calculation	

	 The	application	begins	its	calculation	phase	by	assembling	all	responses	that	will	be	

sent	out	to	Google	Maps	and	Uber.	The	maximum	amount	of	requests	are	sent	if	the	user	

has	filled	out	all	of	‘start’,	‘end’,	‘bike	location’,	and	‘car	location’.	In	this	case	the	following	

requests1	will	be	sent	to	the	Google	Maps	API2:	

	

§ Origin	->	Destination			via	Walking,	Transit,	and	Driving3		

§ Origin	->	Bike																	via	Walking,	Transit,	and	Driving	

§ Origin	->	Car																			via	Walking,	Transit,	and	Driving	

§ Bike	->	Destination						via	Bicycling	

§ Car	->	Destination								via	Driving	

§ Bike	->	Car																						via	Bicycling	

§ Car	->	Bike																						via	Driving	

	

Additionally,	the	following	requests	will	be	sent	to	the	Uber	API:	

	

§ Time-to-pickup	from	origin	

§ Estimated	cost	between	origin	and	destination	

§ Estimated	cost	between	origin	and	bike	

§ Estimated	cost	between	origin	and	car	

	

	 Once	the	responses	from	all	of	these	requests	have	been	received	by	the	application,	

the	route	optimization	calculation	begins.	The	application	will	aggregate	key	statistics	from	

																																																								
1	‘Start’	and	‘end’	are	both	required	inputs,	but	if	the	user	fails	to	fill	out	‘bike	location’	or	‘car	location’,	the	
associated	requests	will	be	eliminated	from	the	outgoing	batch	of	requests.	
2	Since	the	Google	Maps	API	will	not	allow	more	than	10	requests	per	second,	the	application	will	inject	a	
delay	between	requests	if	it	hits	the	rate	limit	
3	Driving	is	requested	from	the	Google	Maps	API	as	part	of	the	initial	leg	of	a	route	to	account	for	Uber	
estimates	

	 5	

the	legs	of	high-level	route	–	namely	cost	and	time.	It	uses	the	cost	data	gained	from	Uber	to	

incorporate	costs	from	corresponding	legs	of	a	given	route,	and	it	uses	the	user’s	car	MPG	

plus	the	average	gas	prices	in	Philadelphia4	to	incorporate	cost	from	any	‘Driving’	leg	of	a	

route.	Furthermore,	it	will	add	$1.80	for	any	‘Transit’	leg	of	a	route	if	the	user	does	not	have	

a	SEPTA	trans-pass	to	account	for	the	cost	of	public	transit	in	Philadelphia.	With	regard	to	

time,	the	application	will	aggregate	all	estimated	times	learned	from	the	Google	Maps	API	

for	all	legs	of	routes.	The	full	duration	of	an	Uber	route	is	estimated	by	adding	the	‘Driving’	

estimation	for	the	route	given	by	Google	Maps	to	the	time-to-pickup	estimation	for	that	

route	given	by	the	Uber	API.		

	 When	all	costs	and	times	have	been	calculated,	the	arrangement	of	the	routes	

becomes	very	straightforward.	Routes	that	exceed	the	user’s	budget	are	removed	from	

consideration,	and	the	resulting	collection	of	routes	is	ordered	by	time.	Any	two	routes	

with	an	identical	estimated	duration	are	secondarily	ordered	based	on	their	cost.	

	

Findings	

Artificial	Intelligence	on	the	Internet	

	 This	project	was	implemented	with	an	intention	of	building	an	application	that	

would	seamlessly	combine	relevant	data	from	different	regions	in	the	Internet	and	use	that	

data	to	make	recommendations	to	a	user.	For	route	planning,	once	all	of	the	data	is	present	

and	accessible	in	memory,	making	a	recommendation	is	relatively	trivial.	The	application	

can	apply	the	user	preferences	to	sort	all	available	routes	in	the	optimal	order,	thereby	

providing	the	necessary	services	to	the	user.	By	far	the	most	challenging	part	about	

building	this	application	was	obtaining,	aggregating,	and	combining	all	relevant	data.	Data	

points	that	come	out	of	the	Google	and	Uber	API	are	vastly	different	in	structure	and	

content	from	one	another,	and	learning	how	to	parse	and	interpret	the	desired	data	from	

these	structures	is	often	impossible	without	referencing	some	form	of	human	readable	

documentation	available	about	the	API.	Furthermore,	building	valid	requests	that	can	be	

these	APIs	is	also	an	unpredictable	endeavor.	The	authentication	methods	are	vastly	

different,	and	the	desired	endpoints	are	not	easy	to	find	without	a	reference	to	
																																																								
4	The	application	is	designed	only	for	routes	within	Philadelphia	due	to	the	lack	of	readily-accessible	data	
pertaining	to	both	gas	prices	and	the	cost	of	public	transit	in	different	areas	

	 6	

documentation	and	an	ability	to	interpret	the	responses	that	are	returned	from	the	server.	

It	is	extremely	common	that	a	malformed	request	will	trigger	a	generic	‘404’	error	from	the	

server	with	a	more	helpful	message	provided	in	plain	English	in	the	body	of	the	response.	If	

an	artificially	intelligent	machine	is	going	to	interact	with	the	huge	amounts	of	data	readily	

available	on	the	Internet,	it	will	need	to	be	able	to	learn	how	to	conduct	those	interactions	

with	Web	APIs.	As	human	programmers	interacting	with	this	data	we	are	able	to	access	

documentation	and	interpret	the	natural	language	responses	to	guide	our	behavior,	but	a	

machine	that	is	aware	of	how	to	process	language,	where	to	look	for	documentation,	and	

how	to	parse	data	out	of	the	response	does	not	exist.		

	 To	make	matters	more	complex,	these	APIs	are	constantly	changing.	The	structure	

of	responses,	endpoints,	or	valid	requests	is	subject	to	change	at	any	given	time	with	only	a	

warning	provided	in	natural	language	by	the	vendor	either	on	their	website	or	via	email.	If	

an	artificially	intelligent	machine	is	expected	to	maintain	an	API	interaction	for	a	long	

period	of	time	it	will	have	to	learn	how	to	adapt	to	these	changes	by	reading	the	messages	

provided	by	vendors	and	modifying	it’s	interaction	accordingly.		

	

Future	Work	

	 There	are	several	elements	that	I	plan	to	add	to	this	application	in	the	coming	

months	in	order	to	improve	its	usability,	efficiency,	and	extendibility.	

	

I.	More	User	Information	

The	application	could	be	recording	several	additional	attributes	about	the	user.	A	

few	of	these	potential	attributes	are	Age,	Weight,	and	a	preference	against	or	for	certain	

travel	modes.	Age	would	be	useful	in	the	case	of	a	senior	citizen,	for	example,	whose	

preference	profile	one	might	want	to	augment	with	a	preference	against	bicycling	and/or	

long	walks.	Knowledge	of	a	user’s	weight	would	provide	a	method	of	estimating	how	many	

calories	would	be	burned	on	each	route.	Using	this	information,	we	could	then	add	an	

additional	preference	for	(or	against)	routes	that	burn	more	calories.	Finally,	a	preference	

for	or	against	certain	modes	of	transportation	is	common	among	travelers.	Some	people	

simply	do	not	trust	Uber	or	do	not	like	taking	public	transportation,	and	these	sorts	of	

preferences	could	be	factored	into	the	optimal	route	calculation	relatively	easily.	

	 7	

II.		Efficiency	Improvements	

	 The	second	category	of	elements	that	would	improve	the	quality	of	the	application	is	

centered	on	performance	and	efficiency	improvement.	To	start,	results	from	API	calls	

should	be	cached	to	avoid	sending	duplicate	requests	to	the	APIs.	Additionally,	the	batch	of	

outgoing	API	calls	could	be	pruned	down	to	only	those	necessary	based	on	user	

preferences.	For	example,	if	the	user	has	no	budget	and	no	trans	pass,	it	doesn’t	make	sense	

to	send	API	calls	to	Google	Maps	for	public	transit.		

	 Finally,	there	is	an	opportunity	within	the	application	to	learn	about	repeat	visitors	

to	the	site.		If	the	application	were	modified	to	allow	users	to	sign	in	and	save	their	

preferences,	it	could	also	learn	what	types	of	routes	a	given	user	generally	chooses.	Given	

enough	of	this	data,	the	route	recommendation	system	could	make	better	

recommendations	that	are	catered	to	the	user	based	on	their	historic	route	selections.	

	

III.	Expansion	

	 The	application	could	be	further	expanded	in	a	variety	of	ways.	Lyft,	another	

popular	taxi	start-up	that	is	similar	to	Uber,	also	has	an	API	that	could	be	incorporated	into	

the	application.	The	scope	of	this	application	should	also	be	expanded	to	outside	

Philadelphia.	This	may	mean	first	expanding	into	specific	cities	before	creating	an	

application	that	is	truly	flexible	enough	to	calculate	routes	between	any	origin	and	

destination.	This	would	require	that	gas	prices	and	the	price	of	public	transportation	are	

available	programmatically	(i.e.	via	an	API),	which	is	currently	not	the	case.	The	final	

expansion	that	will	eventually	be	added	to	this	application	is	an	expansion	to	consider	air	

travel	and	rental	cars.	These	are	two	extremely	common	forms	of	transportation	that	could	

easily	be	incorporated	into	an	application	that	had	a	wider	scope	by	design.	

	

	

	

	

	

	

	

	 8	

Conclusion	

	 This	project	was	an	exercise	in	applying	cutting-edge	technology	to	an	age-old	

problem:	planning	an	optimal	route.	In	the	form	of	a	web	application,	this	technology	gains	

access	to	a	plethora	of	relevant	data	and	can	be	made	readily	available	to	all	who	are	

interested	in	using	it,	but	it	is	not	clear	how	it	can	be	expanded	to	a	true	artificial	

intelligence.	An	artificially	intelligent	web	application	would	need	to	overcome	several	

obstacles	in	order	to	dwell	on	the	Internet	without	human	intervention.	To	name	a	few	of	

these	obstacles	that	are	yet	to	be	fully	overcome,	this	machine	would	need	to	process	

natural	language	from	free	text,	it	would	need	an	idea	of	where	data	is	located,	and	it	would	

need	a	clear	goal	of	what	service	it	was	providing.	Until	those	and	several	other	lower-level	

needs	are	met,	web	applications	will	be	dependent	on	human	intervention	in	order	to	

function	properly.		

	

	

	

	

	

	

	

	
Figure	1.	Architecture	of	the	Fast	Blue	Train	route	recommendation	system	

	 9	

References	

Kurapati,	Kaushal,	Srinivas	Gutta,	David	Schaffer,	Jacquelyn	Martino,	and	John	Zimmerman.	

A	Multi-Agent	TV	Recommender.	N.p.,	2001.	Web.	

Su,	Han.	CrowdPlanner:	A	Crowd-Based	Route	Recommendation	System.	University	of	

Queensland,	Australia,	2013.	Web.	

Wang,	Henan,	Guoliang	Li,	Hu,	Chen,	Shen,	and	Wu.	R3:	A	Real-Time	Route	Recommendation	

System.	N.p.,	2014.	Web.	

Wang,	Pei.	Recommendation	Based	on	Personal	Preference.	N.p.,	2003.	Web	

	

	

