
Robot Navigation in AI

Asmaa Sehnouni

Computer Science and Technology

Temple University

Philadelphia, USA

tug25597@temple.edu

Jasmine Dsouza

Computer Science and Technology

Temple University

Philadelphia, USA

tue97411@temple.edu

Abstract — A solution is designed that will find the

path of a robot from random points A and B, in the

best possible track/path while also avoiding obstacles.

This can work for a random selection of start and

end points and this, can also work for a user selected

value of start and end points. This solution is

optimized using Breadth first search and also a

comparable solution is designed using Genetic

Programming. We have done the coding in Python

but this can be replicated in any other comparable

programming language.

I. PROBLEM STATEMENT

We consider a problem where a robot has to traverse a

path from A to B. We also consider that this path must be

the shortest path from A to B. To further complicate the

scenario, we consider obstacles. The robot should find

the shortest path from A to B while also avoiding

obstacles. We consider that the robot can travel in any

direction as long as the robot is facing the desired

direction. The robot can travel in 1, 2 or 3 steps at a time.

So for example, the solution can contain “a3, R” which

means the robot has travelled 3 steps and turned right. Or

the solution can contains “L, L and a2” which mean the

robot took 2 left turns and then travelled 2 steps.

We also consider an iteration of the problem where the

user can provide the variable values – which are the start

and end points, and obstacle locations. These values can

be part of the file the user provides. The same solution

can be used to solve both the random creation of the

problem and user defined values for the problem. In the

user defined file, the first line in the file contains the

number of rows and columns. From the second line, the

user fills out the array as an array of 0’s for the given

number of rows and columns. A 1 value denotes an

obstacle. At the end of the desired number of rows and

columns, the user can denote the location of the start and

end points and direction the robot is facing in the start. A

“0 0” at the end of file denotes the last line and the
processor knows to stop reading the file at this line.

Figure 1

In Figure 1, we can see an example of the Problem. Start

point is denoted by a green dot and the direction the robot

is initially facing is denoted by an arrow from the green

dot. End point is denoted by a red dot. Any obstacle is

denoted in blue. Robot cannot travel to any path or node

containing the obstacle. To face the desired direction, the

robot can perform movement steps like Left and Right.

For example, if the robot if facing up and wants to move

left, it can perform one Left Movement.

Once we completed the design of the solution using

Breadth First Search, we focused on an alternative
solution using Genetic Programming.

II. SOLUTION

We designed the solution in Python due to the flexibility

of the language and the ease of use of the Graphs and

various libraries.

In the solution, we first request the user to enter the

number of rows and columns using Tkinter which is a

widget creator tool. We also allow the user to enter the

number of obstacles. If the number of obstacles is larger

than the grid (matrix nodes), this solution will not work.

The first step of the solution algorithm is to generate the

obstacles. We create a matrix using the number of rows

and columns entered by the user. We fill this matrix with

all zero values. We then generate the obstacles in random
locations in the matrix using numpy commands.

Once the obstacles are generated, we generate the graph

with all the possible solutions using networkx library for

DiGraph. If the node is an obstacle node, we do not add

the 4 directions and the path traversals. If the node is not

an obstacle node, we add the 4 directions as 4 possible

nodes the robot can be facing in. We also add all the

actions the robot can perform to go from one possible

direction to the other. We also check if the robot can

travel 1 or 2 or 3 steps from the considered node and we

add edges accordingly. In this way, every path mapped
out is an achievable path.

The next step is to find the optimum solution from all

these solutions. The main crux of this solution is we used

Breadth first optimal path solution. For this solution, we

give 2 attributes to each node – we give each node a

distance value and a parent value. We initialize all the

distances to infinity. We revise these distances as we find

a path to the final node. We start out from the start node.

Initialize distance of start node to 0. Then we place start

node in the queue. We look for all its neighbors and place

them in the queue. All the neighbors get a distance of 1

since they are one edge away from the start node. Parent

of the neighbor node is marked as the start node. Once all

the neighbors of a node are considered, the node is taken

off from the queue and the next node from the queue is

considered. 1 is added to the distance from the parent

node for the neighbor/child node. We use the start node
and loop through the start and all its neighboring nodes.

We then take the end node and try to trace a path back to

the start node.

Figure 2

In figure 2, we can see an example where the user

selected 5 rows and 5 columns and 3 obstacles. The start

and end points and obstacle locations are random. We

can see the final path in yellow.

PSEUDO CODE TO SOLVE PROBLEM USING

BREADTH FIRST SEARCH:

 Read File to create a matrix OR Generate

random start point, end point, and obstacles.

 Generate a graph

 Choose all the solutions in the graph from

start to end point

 Pick the short solution using bread first search

 Build the grid

 Display the grid with path

 Write the path in a text file

The result diagram and graph is displayed using

matplotlib library. In the resulting diagram, the start point

is indicated by a green circle and end point by a red

circle. The direction of the robot when he starts is

indicated by an arrow from the start point. Any obstacle

is indicated by blue. A node in white basically has no
obstacles.

III. OTHER SOLUTION USING GENETIC

PROGRAMMING

Genetic Programming is a very unique and powerful

solution. Genetic programming might not always be able

to solve new questions but they can find better answers

to existing questions. Hence, we decided to experiment

one solution with genetic programming to test its

implementation and application. The central theme of

genetic programming is in how robust the fitness

function has been designed. We noticed this when we

tested various iterations and worked through the

solution. Fitness score is a measure of how good the

current individual is at solving the problem on hand.

Genetic Programming tries to emulate natural selection

and evolution. The individuals in Genetic Programming

will not change. But as in evolution, the individuals with

a higher fitness value, will survive and create more

children or offsprings which have a higher chance of

survival.

Before we can use genetic programming to solve the

problem on hand, we have to design a way of encoding

the potential solution to the problem. The solution is

designed with a given start and end point and a certain

number of obstacles. We already know the ideal path

using the previous solution.

We designed the individual as a possible solution to the

problem. We choose 3 in our example as we are aware

that the solution can be found in 3 robot movements.

The population is designed as a number of individuals.

We choose 100 in our example. We start off with an

initial population of 100 individuals, then we give each

individual a fitness number. We calculate, for each

individual, the final X and Y coordinates, considering

we have the start coordinates and direction. If the final

coordinates are out of the bounds of the graph, we add a

100 to the fitness function. We calculate the difference

between the final coordinates and the start coordinates

and add this to the fitness number. The less the number,

the closer the individual is to the actual solution or final

location. The fitness function takes into account if the

individual only has direction change steps like Left,

Right, Up and Down and not any movement steps like

take 1, 2 or 3 step forward. We add 50 to the fitness if

there are no movement steps because obviously the robot

is not any closer to the end point without any

movements.

We then calculate the average fitness for the entire

population. After the average fitness, we then evolve

each population into the next generation. The evolution

process starts off with calculating the fitness of each

individual then grading the population by best fitness

first. We can select the retain function to be 20%. Hence,

20% of the best population is selected as the parents and

are retained in the next generation of individuals.

Besides the parents, random individuals are selected into

the list of parents, from the rest of the current generation

in order to add genetic diversity to the next generation.

Based on a 1% mutation factor, a random action is added

to a random location in an individual in the selected

parents. The fitness is then reevaluated for the modified

parent.

We then crossover the parents to create the children so

that the total number of individuals in a population is the

same (100 in our case). Till we can create the entire

group of children, we select 2 different random

individuals from the parent population as male and

female, then we select the first 2 from the male and the

last 2 from the female parent into the crossover child

individual.

In this way, we evolve populations for 100 generations

of individuals. We can notice that the fitness value

improves considerably. One same result set is attached.

PSEUDO CODE TO SOLVE PROBLEM USING
GENETIC PROGRAMMING:

 Set the size of population(100) and length of each

individual(3)

 Pick a random set of individuals for the first

population

 Calculate the fitness function of each individual

in the population. Fitness function has been

described above.

 LOOP: for a new generation, pick the top 20

individuals with best fitness value.

 LOOP: Randomly add other individuals to

promote diversity

 LOOP: Mutate some individuals.

 Cross over the parents to create children who are

part of the new generation.

 Repeat the steps for creating the new generation

100 times.

IV. TIME TAKEN AND CHALLENGES

In Breadth First Search, since the robot cannot travel any

side or edge of the node, we had to decide how to design

the Graph and that was challenging. Selecting the

shortest path while also avoiding the obstacles was a

challenge. There are various algorithms available which

could solve this problem like A* or Depth First Search.

But we selected Breadth First due to its ease of use and

performance.

In Genetic Programming, selecting good parameters for

the fitness function was challenging. For the fitness

function to work – we made it depend on how far the

individual was from the final location. Also, if the

individual has no movement steps, then we gave it a

higher value (further away from solution) since it is not

moving to the final step. If we assume we already know

one ideal response, we can compare each individual to

the ideal response for the fitness function too.

V. CONCLUSION

Genetic Programming can do well in any environment

but they work especially well when the set of solutions

can be very large and has many peaks and ebbs. Genetic

Programming can work well where there is no ideal

solution. In Genetic Programming, we do not need to do

any preparation or cleanup for the input and output data.

However, we might need a large population size and

more generations to give good or ideal results. There is

no guarantee of finding the ideal solution. Most of the

applications in Genetic Programming depend on how

well the fitness function is defined. In Genetic

Programming, a key parameter is selecting the children

and parents for next generation. It has to take the best of

the current generation and also have enough mutants to

make the generation diverse. It might take some time to

code as there are not as many example using Genetic
Programming and there is no standard for use.

Time: Time complexity of breadth first search is at the

least O(V+E) where V is the number of vertices and E is

the number of edges. There is a guarantee that breadth

first search will find a solution if exists. Same cannot be

said for Genetic Programming. Also, if there is more

than one solution, breadth first search can be used to find

the minimal solution. The main issue with breadth first

search is that it requires higher space to save all the node

values. Also, if the final node is far away from the start

node, solution will take more time.

For the scenario we have selected, we prefer using the

traditional approach of Bread First Search. Breadth First

Search will definitely find a solution if one exists.

Genetic Programming may or may not find a solution.

The more the number of generations or evolutions, the

better the chances of a solution. However, after a certain

number of generations, the population almost stabilizes
and we do not see a large variation.

VI. REFERENCES

1) Genetic Programming and AI Planning Systems1,

http://faculty.hampshire.edu/lspector/pubs/gp-

aaai.pdf

2) https://en.wikipedia.org/wiki/Breadth-first_search

3) https://en.wikipedia.org/wiki/Genetic_programming

4) http://www.genetic-programming.org/

5) http://theory.stanford.edu/~amitp/GameProgramming

/AStarComparison.html

http://faculty.hampshire.edu/lspector/pubs/gp-aaai.pdf
http://faculty.hampshire.edu/lspector/pubs/gp-aaai.pdf
https://en.wikipedia.org/wiki/Breadth-first_search
https://en.wikipedia.org/wiki/Genetic_programming
http://www.genetic-programming.org/
http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html
http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html

