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Abstract

.

1 Introduction

Finding the strategy to park based on the availability of open parking spot is important
because it can save time, energy and manpower. There exist current efforts to develop
algorithms which can provide effective strategy to a driver. In [1], [2], [3] and [4], strategies
are proposed that allow drivers to reserve an available parking spot. In [5], [6] and [7],
several agent based parking choice models were discussed. This work aims to develop a
parking strategy in a scenario where the probability of the availability of an open parking
spot of a given street is known but this knowledge is derived from a noisy dataset and thus
not reliable. This project aims to incorporate the noisy information in the search strategy.

1.1 Problem Statement

Given any parking dataset containing historical parking information along the street side
road segments and additional road network information (map), a problem can be formulated
as follows :
Given current location of the car, the destination, and geometry of the road segments,
identify the best parking spot.
If we do not consider the parking dataset, this problem reduces to a graph traversal problem.
But in presence of a noisy dataset we need some methodology to extract information from
this dataset and incorporate that information in the search strategy. This work aims to
design a methodology which can incorporate additional information from the noisy dataset
in the search algorithm.

2 Data Set

2.1 Data Set description

In this work, a total of five datasets with a total of 510,214 instances spanning over the
year 2013 and 2014 are considered. The total number of samples and the time duration
between which the data is collected is shown in Table-1.

The information of individual street segment consists of the name, identification number
of the street, latitude and longitude of start and end location of streets, total number of
available parking spots and total number of occupied parking spot. The total number of
occupied parking spot and the total number of allowed parking spot can give us idea about
the availability of the parking space in a particular street. Figure-1 and 1 are examples of
such time series dataset.
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Table 1: Dataset Description

Dataset No Start Date End Date # Samples

(yyyy-mm-dd) (yyyy-mm-dd)

1. 2013-07-28 2013-09-29 84624
2. 2013-09-29 2013-12-11 102780
3. 2013-12-11 2014-02-06 79743
4. 2014-02-06 2014-06-13 176503
5. 2014-06-13 2014-07-30 66564
† Time between two consecutive responses are different in each dataset
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Figure 1: Number of allowed parking slots and the occupancy level of a selected street segment

Given this large amount of data, it might not be feasible to analyse the entire dataset
before incorporating the information in the search strategy. Instead, some representative
sections can be analysed and this small sampled dataset can be used to implement a search
strategy. A total of 79 street segments are selected in this step for further analysis. In
Figure-3, the all available street segments i and the street segments in the representative
section are shown.

Figure 3: Overlay of the street segments for which information is available
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Figure 2: Number of allowed parking slots and the occupancy level of a another selected street segment

2



2.2 Data Cleaning

The information from the representative section of the dataset is extracted and processed.
The parking data contains the occupancy information at different locations. The informa-
tion is collected from sensors installed at parking locations. At a any given time, a fraction
of the total number of sensors malfunctions. So, the available data set is noisy in some
sense. A suitable algorithm needs to be developed in order to identify the sensors that are
malfunctioning at a given time. Although majority of the sensors works properly in most
of the street segment, some streets are identified where a few sensor malfunctions. A major
challenge is to identify those malfunctioning sensors and exclude the faulty information
from this study. Two simple assumptions are made in the data cleaning process.

• 1. Malfunctioning sensors not replaced in later stage, i.e. if three sensors started to
malfunction after one weeks of installation, the number of malfunctioning sensors will
be greater than or equal to three at the end time.

• 2. As the region concerned is very busy area, it is expected that the occupancy level
will reach maximum value at least once in a week. This assumption is necessary
because some street segments are found in the dataset for which the occupancy level
never reaches to the maximum level in the entire time span of two months for which
the data is collected. Given the place concerned here is down town San Francisco,
one of the busiest location of the country, it is highly unlikely that all the parking
spot of a given street segment will not be in the occupied state in the span of two
months. In this case, the number of properly functioning sensors are taken to be equal
to the highest number of occupied spot in the entire time span over which the data is
collected. In some streets the number of allowed parking spot vary with time, in this
case the same approach is taken for all the allowed parking levels.

In Figure-4, 6 and 5, examples of the cleaned data is shown. Days are marked with a
vertical black line. The red green and blue lines represent the number of currently occupied
spot, the number of total available spot, and the predicted number of properly functioning
sensors respectively.
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Figure 4: Street ID 411002 predicted number of working sensors

It can be observed in Figure-4 that one sensor is predicted to be in non-performing state
after a couple of days. This is so because the total occupancy level never reaches to the
maximum number of allowed parking spot (9 in this case) for the rest of the time during
which the data is collected.
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Figure 5: Street ID 411059 predicted number of working sensors

In Figure-5, it can be seen that one sensor was malfunctiong at the beginning, then after
a few days one additional sensor started to malfunction.

0 2000 4000 6000 8000 10000
0

2

4

6

8

10

occ
total avail
total avail_predicted

(a)

0 2000 4000 6000 8000 10000
0

2

4

6

8

10

occ
total avail
total avail_predicted

(b)

0 2000 4000 6000 8000 10000
0

2

4

6

8

10

occ
total avail
total avail_predicted

(c)

Figure 6: Street ID 612032 predicted number of working sensors

In Figure-6, the similar result can be observed. One sensor started malfunctioning after
few days. Then for a long time the occupancy level does not reach the maximum (Figure-
6c), but it again reached the maximum value of in Figure-6c. So it is not necessary to
assume the any additional sensor died in that period. From Figure-4, 6 and 5, it can be
concluded that the proposed method to identify the malfunctioning sensors is able to clean
the data to some extent.

3 Proposed Search Algorithm

3.1 Search Algorithm

Given the geometry of the road segments, any suitable graph traversal algorithm can be
applied to such problems. In this work A∗ search algorithm is is used. A∗ search uses
heuristic in the search process. It is suitable in this specific problem because the uncertainty
in the dataset can be incorporated in the heuristic of A∗ search algorithm. In Algorithm-,
the pseudo code of the algorithm is described.
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Algorithm A∗ search algorithm

Input : Graph : G, StartNode : s, EndNode : g
1. Set PriorityQueue Q as Empty
2. Q.enqueue(s)
3. Parent(s) = Null

4. V isited(s) = True

5. gScore(s) = 0
6. fScore(s) = 0
while Q is not Empty do

u = Q.dequeue()
V isited(u) = True

if u == g then

Break
end if

for Each neighbour v of u do

if u == g then

Break
end if

newgScore := gScore[current] + dist(u, v)
if V isited(u)! = True or newgScore < gScore[v] then

gScore[v] = newgScore

Parent(v) = u

fScore[v] := gScore[v] + heuristic(v, g)
Q.enqueue(v, fScore[v])

end if

end for

end while

return List Parent
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Here, the metric gScore represents the distance that is already covered to reach to the
current node and the metric fScore represents the tentative distance remains to be covered.
Given the graph of the road network, the uncertainty from the dataset can be incorporated
into the fScore. Two things should be considered here, parking availability and walking
distance from Parking spot to destination. These information is available in the dataset.
The measure of walking distance can be measured using latitude and longitude information
accurately. But the probability that a parking space would be available is uncertain. NARS
(Non-Axiomatic Reasoning System) like concept can be used in such a scenario [8] [9]. We
have some probability measure of a parking spot being available which can be calculated
from the dataset but the confidence on this probability measure depends on how much data
we have and the quality of the data. Now confidence can be measured directly using NARS
( w/(w + k) where w is the number of experiments and k is some constant), but in this
particular problem the time series of all the roads are of same length. So number of samples
are same for each case. To incorporate the confidence measure, the variance of the data is
used instead. If the occupancy level fluctuates more then there is less certainty of an open
parking slot. The heuristic used in this work is presented in eq.(1).

heuristic(v, g) = k1 ∗ (1/prob) + k2 ∗ (1/confidence) + k3 ∗ walk(curr, target) (1)

Both low probability and low confidence measure increases the tentative distance and A∗

algorithm will be more unlikely to produce that path as a solution. k1, k2 and k3 are three
constants that can control the trade off between parking availability and Walking distance.

3.2 Implementation

Google Map APIs have in built search algorithms that can produce best path on google map
given start and end points. But the proposed method uses parking availability information
that could not be incorporated into Google Map API. So Google Map is not used in this
project. The data processing and implementation of the proposed method is done using
Python programming language. The python implementation of the proposed algorithm is
shown below.
def A STAR( graph , s tar t , t a rg e t ) :

param1=10
param2=15
param3=10000
AStarPriorityQueue=Prior i tyQueue ( )
AStarPriorityQueue . i n s e r t ( s tar t , 0)
p a r e n t l i s t={}
accumulat iveCost={}
p a r e n t l i s t [ s t a r t ]=None
accumulat iveCost [ s t a r t ]=0

while not AStarPriorityQueue . isEmpty ( ) :
curr=AStarPriorityQueue . remove ( )

i f curr == ta rg e t :
break

for indx , ch i l d in enumerate ( graph . neighbors ( curr ) [ 0 ] ) :
updated cost=accumulat iveCost [ curr ] + graph . neighbors ( curr ) [ 1 ] [ indx ]

i f ch i l d not in accumulat iveCost or updated cost < accumulat iveCost [ c h i l d ] :
accumulat iveCost [ c h i l d ]=updated cost
p a r e n t l i s t [ c h i l d ]= curr

prob , con f i d ence=ca l cu l at eProbCon f id ence ( curr )
p r i o r i t y=updated cost + param1 ∗ (1/ prob ) + param2 ∗ (1/ con f i d ence ) + param3 ∗ walk ( curr , t a rg e t )
AStarPriorityQueue . i n s e r t ( ch i l d , p r i o r i t y )
p a r e n t l i s t [ c h i l d ]= curr

return pa r e n t l i s t , accumulat iveCost

3.2.1 Calculation of Parking availability

The first two terms in eq. (1) is calculated from the dataset. Occupancy probability is the
ratio of average occupancy and average number of maximum allowed parking space in a
given street segment. The confidence is the variance of the data. Instead of averaging the
data, specific time windows can be used to measure the probability and confidence because
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often the parking availability depends on the time of the day. The Python implementation
is shown bellow.
# This i s t h e used h e u r i s t i c f un c t i o n f o r A s t a r t

def ca l cu l at eProbCon f idence ( s t r ee t1 , s t r e e t 2 ) :
#### Open Data F i l e

f 1 = open( ’ S e l e c t ed S t r ee t LatLong . pckl ’ , ’ rb ’ )
S e l ec t ed S tee r Lat Long = p i c k l e . l oad ( f1 )
f1 . c l o s e ( )

sample db=l i t e . connect ( ’ ParkData Selected Clean . db ’ )
streetNum1=s t r e e t 1
strName1=Se l ec t ed S tee r Lat Long [ streetNum1 ] [ 0 ]
strName1= ” ’B” + strName1 + ” ’ ”

s t r ee tData1=[ ]

with sample db :

#query1=” s e l e c t ∗ from ParkDataTable where S t r e e t I d =’B411011 ’ and Date between ’09−24 ’ and

’09−29 ’”

query1=” s e l e c t ∗ from ParkDataTable where S t r e e t I d= ” + strName1 + ”and Date=’09−07’ order by Time asc ”
cur= sample db . cu r sor ( )
for row in cur . execute ( query1 ) :

s t r ee tData1 . append( row )

occ1=np . array ( [ a [ 3 ] for a in s t r ee tData1 ] )
t ava i l 1 1=np . array ( [ a [ 4 ] for a in s t r ee tData1 ] )

prob=1−np .mean( occ1 )/np .mean( t ava i l 1 1 )
con f i d ence=np . var ( occ1 )

return prob , con f i d ence

3.2.2 Calculation of Walking Distance

The probability and the confidence measure takes care of the Parking availability part of the
heuristic. The second part is the walking distance from parking location to the destination.
This is essential because parking distance should not be far from the actual destination. To
incorporate this information, the latitude and longitude information of the the streets are
used. The implementation is shown below.

def walk ( s t r ee t1 , s t r e e t 2 ) :
#### Open Data F i l e

f 1 = open( ’ S e l e c t ed S t r ee t LatLong . pckl ’ , ’ rb ’ )
S e l ec t ed S tee r Lat Long = p i c k l e . l oad ( f1 )
f1 . c l o s e ( )

streetNum1=s t r e e t 1
l a t 1=(Se l ec t ed S tee r Lat Long [ streetNum1 ] [ 2 ] −Se l ec t ed S tee r Lat Long [ streetNum1 ] [ 4 ] ) / 2
long1=(Se l ec t ed S tee r Lat Long [ streetNum1 ] [ 3 ] −Se l ec t ed S tee r Lat Long [ streetNum1 ] [ 5 ] ) / 2

streetNum2=s t r e e t 2
l a t 2=(Se l ec t ed S tee r Lat Long [ streetNum2 ] [ 2 ] −Se l ec t ed S tee r Lat Long [ streetNum2 ] [ 4 ] ) / 2
long2=(Se l ec t ed S tee r Lat Long [ streetNum2 ] [ 3 ] −Se l ec t ed S tee r Lat Long [ streetNum2 ] [ 5 ] ) / 2

d i s t = np . sq r t ( ( lat1−l a t 2 )ˆ2 + ( long1−l ong2 )ˆ2)

return d i s t

4 Conclusion

In this work a small scale analysis is performed in the SFPark parking dataset. A section
of the dataset is cleaned and analysed. A small section of the road network graph is built
manually. The Data cleaning section of this project was time consuming. Although a small
section of the data was used, it took time to manually build the street graph. Given a pre-
built graph the system is able to produce reasonable solution if parameters k1, k2 and k3
are tuned properly. But given the small road network graph, the tuning of the parameters
is a problematic task. More detailed investigation is required before carrying out the the
proposed method on the entire dataset successfully.
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