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1. Abstract: 

This proposed research is expected to present a comparative analysis of NARS (Non-Axiomatic 
Reasoning System) and Qualitative Representations (QR), two approaches to artificial general 
intelligence that address uncertainty and dynamic change from different perspectives. NARS 
emphasizes flexible, resource-bounded reasoning with a focus on variable unification, symbolic 
inference, and probabilistic rule application. In contrast, QR leverages structural mapping and 
qualitative simulation to model real-world processes without relying on precise numerical data. 
The analysis highlights how each system manages ambiguity and changes and discusses potential 
avenues for integrating the strengths of both approaches to enhance overall reasoning 
capabilities. 

 

2. Relevant Works 

Wang, P. (2013) [3] This work lays out the theoretical foundation of NARS and explains how 
reasoning under uncertainty and limited resources is achieved through flexible, weighted 
inference. It’s an essential reference for understanding the principles and applications of NARS. 
Forbus, K. D. (1983) [4] This paper introduces key ideas behind qualitative reasoning and how 
processes can be represented without relying on exact numerical data. It forms the basis for many 
qualitative simulation systems. Kuipers, B. (1994) [5] This book comprehensively treats 
qualitative reasoning, including the theoretical and practical aspects of modeling dynamic 
systems when precise quantitative information is not available. Gentner, D. (1983) [6] Although 
not solely focused on qualitative reasoning, this article introduces the structure-mapping 
framework that underpins many approaches (like QR’s SME) for drawing analogies and 
abstracting relational structures, which is relevant to QR’s design. 

 

3. Background: 

Qualitative Representations (QR) follows the representationalism principle in AGI. It is a 
framework and methodology used to describe, reason, and simulate the world with continuous 
changes, which serves as an important role in natural language and visual semantics. It abstracts 
continuous numerical data into qualitative categories (e.g., low, medium, high) and qualitative 



trends (e.g., increasing, decreasing, steady). This mirrors how humans often reason about 
everyday phenomena without performing exact numerical calculations. On top of that, when 
people derive hypotheses from their experiences, the qualitative features help them reason in 
partial causal knowledge by omitting unimportant numerical details, which provides the basis for 
both commonsense reasoning and expert reasoning.  

QR abstracts relational representations (observations) using a structure mapping engine (SME) 
and stores them in a knowledge base using a sequential analogical generalization engine 
(SAGE)[1]. Russian psychologist and philosopher Lev Vygotsky pointed out that much of our 
knowledge is learned through interactions with other people. Inspired by this, QR tries to become 
a software social organism that works with people using natural modalities (natural language, 
sketch, vision, speech). 

Analogy and Analogical Reasoning borrow the idea of assimilation and accommodation from 
psychology, especially in the constructive theory of knowing. [9] An analogy is a comparison 
between two objects, or systems of objects, that highlights respects in which they are thought to 
be similar. Analogical reasoning is any type of thinking that relies upon an analogy. Analogical 
reasoning is fundamental to human thought and, arguably, to some nonhuman animals as well. 
Historically, analogical reasoning has played an important, but sometimes mysterious, role in a 
wide range of problem-solving contexts. The explicit use of analogical arguments, since 
antiquity, has been a distinctive feature of scientific, philosophical and legal reasoning. [7]. 
Analogical reasoning is wildly used in qualitative representations. It is performed under the 
assumption that people learn new concepts by comparison with the most similar ones they 
already know. For example, assume that you do not know trapezoids. The first time you see 
Figure 1, you may name it quasi-parallelogram, or something else. What happens in your mind is 
that, when new concepts come in, it keeps looking for the similarities to your acquired concepts 
and encapsulates them into your knowledge base. Analogical reasoning finds a short-cut in your 
knowledge base. It serves as an efficient method to do data incrementation and inspectable 
learning. 

Structure Mapping Theory, developed by Dr. Dedre Gentner, is a theory of analogical 
reasoning aiming to improve upon previous theories of analogy by distinguishing analogy from 
literal similarity [8]. Literal similarity represents the attributes used to describe nones. Whereas 
structure mapping theory pointed out that analogy maps the similarity in the relationships 
between nones. Attributes are predicates with One argument, whereas relationships are 
predicates with two or more arguments. For example, the K5 planetary system is like the Solar 
System, which is literal similarity because the attributes of K5 are compared with which of the 
sun, the planetary system is compared with our solar system. However, the atom is like the Solar 
System is an analogy. This statement does not compare the attributes of an atom with the sun 
(e.g., the size of the atom cannot be comparable with the sun). However, the higher-order 
relationships (e.g., the motion of electrons) are compared with the solar system. 



Structure Mapping Theory describes the psychological process of reasoning through analogies. 
Specifically, it describes how people generalize the familiar knowledge about a base domain to 
less familiar knowledge about a target domain. In QR, knowledge is represented in the tree 
structures. The mapping consists of three aspects: 1. correspondence between each tree. 2. 
numerical similarity scores that measure how similar those components are. 3. Candidate 
inference that aims to find the missing components with high similarity scores. Structure 
Mapping Theory is observed in a large body of psychological evidence. 

 

4. Methodology: 

4.1 NARS Methodology: 

NARS is built on the principle of reasoning under the Assumption of Insufficient Knowledge and 
Resources (AIKR). Rather than presuming a complete, static knowledge base, NARS represents 
beliefs as weighted statements in a non‑axiomatic logic, where each sentence carries a pair of 
truth values: frequency (how often it has been observed) and confidence (how reliable that 
evidence is). This allows NARS to operate under an open‐world assumption: new information 
can always arrive, old beliefs can be revised, and no statement is ever taken as absolutely certain. 
Knowledge is stored in a dynamic memory network of concepts and terms, and inference is 
driven by a suite of generic syllogistic rules (deduction, induction, abduction, exemplification, 
and revisions) that apply to arbitrary term structures. 

Reasoning in NARS proceeds as an iterative task‐based cycle. At each step, incoming inputs 
(percepts, goals, questions) are framed as tasks and placed in a priority‐driven task queue. The 
system selects a task, applies the inference rule(s) (deduction, induction, abduction, 
exemplification, and revisions) to produce new judgments or tasks, updates truth values via a 
revision rule when contradictions or redundancies arise, and then re‐queues both the original and 
newly generated tasks according to their updated priorities. Over time, this multi‐strategic 
strategy blending, coupled with resource‐bounding mechanisms, enables NARS to perform 
learning, decision‑making, and problem-solving robustly, even with partial knowledge and 
limited computational resources. 

 

4.2 QR Methodology: 

Instead of non-axiomatic, QR requires a comprehensive knowledge base that defines the 
reasoning system's basic concepts (nouns as facts, verbs as experiences). The knowledge is in a 
structural representation. Before starting the system, the users should specify a base case, which 
is a set of knowledge. The Structure Matching Engine (SME) is running to compare the 
similarity between the base and the target knowledge. MAC/FAC (magnitude accumulation 
components, force accumulation components) serves as the interface between the knowledge 



base and the other part of the system (QR focuses on physical world representations. However, it 
also supports commonsense reasoning). Figure 1 illustrates the overall view of the QR system. 

 

Figure 1: Overall view of Qualitative Representations 

• MAC (Magnitude Accumulation Component): 
MAC essentially plays the role of integrating changes over time. It “accumulates” the 
effects of ongoing changes (for example, how a quantity increases or decreases 
gradually) without resorting to precise numerical integration. In a simulation, MAC is 
what lets the system predict that a variable is steadily moving toward a higher or lower 
qualitative state. 

• FAC (Force/Forcing Accumulation Component): 
FAC deals with external or causal influences on the system. It captures how external 
“forces” impact the rate or direction of change. For instance, if an external input or 
disturbance acts on the system, FAC represents that sudden push or pull, modifying the 
trajectory produced by MAC. 

MAC/FAC keeps an eye on the knowledge base, it fetches the target knowledge out of the 
knowledge base and feeds it into the SME to compare the similarity, and also updates the base 
knowledge according to the similarities. 
For the knowledge base, there is another 
model called the Sequential Analogical 
Generalization Engine (SAGE), which 
incrementally produces generalizations in 
the knowledge base with the new 
information from MAC/FAC. SAGE only 
performs the similarities when 
generalizing the knowledge base, whereas 
SME computes the similarities while Figure 2: SAGE generalization process 



reasoning about the inference cases. Figure 2 demonstrates the process of SAGE. 

5. Comparative Analysis 

In order to compare the performance of QR with NARS, the first thing to do is to merge the 
knowledge base from QR to NARS, since NARS knows nothing at the beginning.  Figure 3 
illustrates one example of the QR’s knowledge base. It has four keywords: isa, hasa, implies, and 
cause. When translating the knowledge base to NARS, isa, hasa, and implies are straightforward, 
since we have a similar representation in NARS. 

 

Figure 3: One example of QR's knowledge base 

(isa A B) can be translated to <A --> B>. %1.00;0.90 
(hasa A B) can be translated to <A --> [B]>, %1.00;0.90 

 (implies A B) can be translated to <A ==> B>. %1.00;0.90 

However, for cause, NARS’s representation requires an explicit causation to form the 
representation in our textbook 

 (($a X $b) -> causationi) <=> (($a ==/> $b) Ù ($a X $b) -> criteriai) 

In QR’s knowledge base, it is not necessary to explicitly mention the causation and criteria. 
Instead, I decided to translate cause into 

 (cause A B) can be translated to <(A ==/> B) Ù ¬ (¬A ==/> B)> 



With that in mind, I would like to compare the performance of QR and NARS in commonsense 
reasoning and physical world reasoning. 

 

5.1 Commonsense Reasoning 

Case 1 Deduction:  

Input : <<robin --> bird> ==> <robin --> animal>>. 
  <<robin --> [flying]> ==> <robin --> bird>>. 
 Output: <<robin --> [flying]> ==> <robin --> animal>>. %1.00;0.81 

NARS gives the above output in 19 iterations (roughly 3 seconds). 

QR knowledge base is created as 

(isa robin bird) 
(isa robin animal) 
(implies (isa robin bird) (isa robin animal)) 
(hasa robin flying) 
(implies (hasa robin flying) (isa robin bird)) 

The QR output gives the following statement in less than 1 second. 

  (implies ((implies (hasa robin flying) (isa robin bird))) (isa robin animal)) 

Case 2 Abduction: 

Input: <<robin --> bird> ==> <robin --> animal>>. 
 <<robin --> [flying]> ==> <robin --> animal>>. %0.80% 
Output:<<robin --> bird> ==> <robin --> [flying]>. %1.00;0.39% 
 <<robin --> [flying]> ==> <robin --> bird>>. %0.80;0.45% 

NARS gives the above output in 24 iterations (roughly 3 seconds) 

QR knowledge base is created as 

 (isa robin bird) 
 (isa robin animal) 
 (implies (isa robin bird) (isa robin animal)) 
 (hasa robin flying) 
 (implies (hasa robin flying) (isa robin animal)) 



The QR output gives the following statement in less than 1 second.  

 (implies (isa robin bird) (hasa robin flying)) 

However, it does not give us the inverse of the implication, which indicates that the implication 
rule is calculated by the mutual similarity. 

 

5.2 Physical world Reasoning 

I want to compare the performance on the case when a pendulum is at its leftmost point. A valid 
reasoning system will predict that the ball will move right. Therefore, in QR’s knowledge base 

 (hasa ball mass) 
 (hasa ball gravity) 
 (isa ball left) 
 (isa ball right) 
 (hasa gravity left) 
 (hasa gravity right) 
 (hasa ball moving-left) 
 (hasa ball moving-right) 
 (implies (isa ball left) (hasa gravity right)) 
 (implies (isa ball right) (hasa gravity left)) 
 (implies (hasa gravity right) (hasa ball moving-right)) 
 (implies (hasa gravity left) (hasa ball moving-left)) 

QR gives the output of the following in less than 1 second. 

 (implies (implies (isa ball left) (hasa gravity right)) (hasa ball moving-right)) 
 (implies (implies (isa ball right) (hasa gravity left)) (hasa ball moving-left)) 

In NARS: 

 Input: <ball --> [mass]>. 
  <ball --> [gravity]>. 
  <ball --> left>. 
  <ball --> right>. 
  <gravity --> [left]>. 
  <gravity --> [right]>. 
  <ball --> [moving-left]>. 



  <ball --> [moving-right]>. 
  <<ball --> [left]> ==> <gravity --> [right]>>. 
  <<ball --> [right]> ==> <gravity --> [left]>>. 
  <<gravity --> [left]> ==> <ball --> [moving-left]>>. 
  <<gravity --> [right]>==> <ball --> [moving-right]>>. 
 Output:<<ball --> [left]> ==> <ball --> [moving-right]>>. %1.00;0.81% 
  <<ball -->[moving-right]> ==> <ball --> [left]>>. %1.00;0.45% 

 

6. Discussion and Conclusion 

Pioneered by Kenneth Forbus[2], QR focuses on modeling and reasoning about dynamic, real-
world processes without relying on exact numerical data. In the physical world, we can set the 
direction left and right, the speed high and low, the weight heavy and light, depending on how 
accurate we want the system to be. For the output, QR gives out the whole sequence of similarity 
comparisons forming implications. Meanwhile, NARS always gives pairwise results, which are 
natural to the design of the truth-value system. For efficiency, QR is much faster than NARS in 
that QR seems more goal-oriented, whereas NARS sometimes gets distracted. In such simple 
testing cases, QR achieves comparative results to NARS, under the assumption of a closed 
world. However, in an open world, since the similarities are ubiquitous, the calculation of 
similarity (SME) cannot work very efficiently. Fairly speaking, NARS in the open world may 
suffer from getting more distracted. 

Philosophically, analogical learning learns similarity, but it does not know that something is 
dissimilar. NARS naturally does not have such issues since the truth-value system guarantees 
antonymity. Since every quality is represented by categories, the dissimilarity is less represented 
in QR. 

For the knowledge base, actually, with or without a knowledge base does not affect much in 
terms of the accuracy of the reasoning parts, at least in small testing cases. In the real world, a 
knowledge base may help the system initially. However, conflicts are more likely to arise when 
the system adapts new knowledge into the knowledge base. NARS gives the truth-value to each 
“observation”, which elegantly solves this issue. 

To conclude, QR’s similarity + reasoning works more effectively under the closed-world 
assumption. It is designed for qualitative reasoning with partial knowledge and limitations of 
accuracy. In contrast, NARS’s pure reasoning can be more generalized in any case under AIKR. 
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