
Comparative Implementation of Tic-Tac-Toe
Using SWI-Prolog and OpenNars-AGI

Hsing-Chen (Tony) Lin

Abstract

This project explores the implementation of the Tic-Tac-Toe game
using two distinct approaches: SWI-Prolog, a traditional logic pro-
gramming environment, and OpenNars-AGI, a framework based on
Artificial General Intelligence. The effectiveness, complexity, and per-
formance of both implementations are analyzed and compared.

1 Introduction
Tic-Tac-Toe, a simple yet profound game, offers a fundamental platform
for exploring various aspects of artificial intelligence systems, particularly
in understanding and implementing rule-based decision-making and strategy
development. This game is not only about placing ‘X‘s and ‘O‘s in a grid but
involves recognizing patterns, optimizing decisions, and strategizing based on
the opponent’s moves.

In contrast, the choice to implement Tic-Tac-Toe in Prolog, a distin-
guished logic programming language, presents an excellent opportunity to
fundamentally grasp how logical reasoning can be effectively applied to de-
velop game algorithms.

2 Implementation in SWI-Prolog
In this section, we explore the implementation of a Tic-Tac-Toe AI robot
using SWI-Prolog. We begin our implementation by dividing it into four
main parts: Recognizing the Game Board, Win Conditions, Game Analysis,
and Decision Making. Initially, we construct the game board as a dynamic list

1

of moves. We then delve into the methodologies for each part, starting with
how the game recognizes board states, evaluates potential moves, determines
win conditions, and finally, how decisions are made within the game.

2.1 Recognizing the Game Board
The game board in Tic-Tac-Toe is represented as a list of moves, where
each move is denoted by move(Player, X, Y), indicating that a player has
placed a mark at coordinates (X, Y). During each turn, the move made by
the player, specified by the coordinates and the player’s identifier, is stored in
the GameBoard. This list accumulates the history of moves made throughout
the game. The robot recognizes the game board state by iterating over this
list to check the positions and to determine the possible valid moves.

(2,0) (2,1) (2,2)
(1,0) (1,1) (1,2)
(0,0) (0,1) (0,2)

2.1.1 Evaluating Potential Moves

The predicate list_valid_moves ensures that Prolog evaluates every possi-
ble move on the board. By processing each column separately, it accumulates
all potential moves into a single list, considering only the unoccupied cells.

1 % Generate a list of valid moves, this process should not
be influenced by Prolog's decision -making.

2 list_valid_moves(Moves, GameBoard , Player) :-
3 valid_moves_for_column(0, Moves1, [], GameBoard , Player

),
4 valid_moves_for_column(1, Moves2, Moves1, GameBoard ,

Player),
5 valid_moves_for_column(2, Moves, Moves2, GameBoard ,

Player).
6

7 % Calculate all valid moves for a specific column.
8 valid_moves_for_column(Column, ValidMoves , InitialMoves ,

GameBoard , Player) :-
9 valid_move_for_cell(Column, 0, Moves1, InitialMoves ,

GameBoard , Player),

2

10 valid_move_for_cell(Column, 1, Moves2, Moves1,
GameBoard , Player),

11 valid_move_for_cell(Column, 2, ValidMoves , Moves2,
GameBoard , Player).

12

13 % Calculate a valid move for a specific cell.
14 valid_move_for_cell(Column, Row, UpdatedMoves , CurrentMoves

, GameBoard , Player) :-
15 member(move(_, Column, Row), GameBoard) -> CurrentMoves

= UpdatedMoves;
16 UpdatedMoves = [move(Player, Column, Row) |

CurrentMoves].

2.2 Win Conditions
The predicate win_condition is specifically designed to evaluate the game
board for any set of three consecutive marks made by the same player, which
would indicate a win. This includes checks across rows, columns, and both
diagonal lines. Here is how the win conditions are defined and recognized:

1 % Check if any row, column, or diagonal is completed by the
same player

2 win_condition(Player, GameBoard) :-
3 (check_rows(Player, GameBoard);
4 check_columns(Player, GameBoard);
5 check_diagonals(Player, GameBoard)).
6

7 check_rows(Player, GameBoard) :-
8 (Row = 0; Row = 1; Row = 2),
9 member(move(Player, Row, 0), GameBoard),

10 member(move(Player, Row, 1), GameBoard),
11 member(move(Player, Row, 2), GameBoard).
12

13 check_columns(Player, GameBoard) :-
14 (Column = 0; Column = 1; Column = 2),
15 member(move(Player, 0, Column), GameBoard),
16 member(move(Player, 1, Column), GameBoard),
17 member(move(Player, 2, Column), GameBoard).
18

19 check_diagonals(Player, GameBoard) :-

3

20 (member(move(Player, 0, 0), GameBoard), member(move(
Player, 1, 1), GameBoard), member(move(Player, 2, 2)
, GameBoard)) ;

21 (member(move(Player, 0, 2), GameBoard), member(move(
Player, 1, 1), GameBoard), member(move(Player, 2, 0)
, GameBoard)).

The win_condition predicate functions by calling three separate predi-
cates: check_rows, check_columns, and check_diagonals. Each of these
predicates uses Prolog’s member function to determine if a specific row, col-
umn, or diagonal line contains the same player’s marker consecutively in all
three positions. This logical check efficiently evaluates the board’s state and
determines if a player has won the game.

2.3 Game Analysis
The analyze_game predicate not only checks for immediate winning or los-
ing conditions but also simulates potential future moves to anticipate the
opponent’s strategy.

2.3.1 Functionality of analyze_game:

• Immediate Check: Initially, the predicate checks if there is a winner
in the current board configuration. If the player ’x’ has already won,
the function ends, reflecting a strategy to secure a win or avoid a loss
immediately.

• Strategic Planning: If the game is still ongoing (i.e., no current win-
ner), the function proceeds to the continue_game_analysis predicate.

1 % Analyze the game to decide the strategy
2 analyze_game(_, Game, _) :-
3 win_condition(Winner, Game),
4 Winner = x.
5 analyze_game(Player, Game, NextMove) :-
6 not(win_condition(_, Game)),
7 continue_game_analysis(Player, Game, NextMove).

4

2.3.2 Detailed Strategy Analysis:

• List Possible Moves: The list_valid_moves function is called to
enumerate all possible moves that the player can make from the current
game state.

• Evaluate Moves: Each move is evaluated by search_game_analysis,
which simulates the game board after each potential move to foresee
outcomes and determine the best strategic option.

1 continue_game_analysis(Player, Game, NextMove) :-
2 list_valid_moves(Moves, Game, Player),
3 search_game_analysis(Moves, Player, Game, NextMove).

2.3.3 Recursive Game Play:

• Recursive Analysis: The search_game_analysis and its helper,
search_game_analysis_x, utilize a depth-first search (DFS) algorithm
to recursively simulate future moves. Each potential move to the game
board, and re-analyzing the results. This recursive depth helps us
predict the consequences of moves several steps ahead, ensuring that
strategies are both reactive and proactive.

1 search_game_analysis([], o, _, _). % Draw if no moves are
possible.

2 search_game_analysis([], x, _, _).
3

4 search_game_analysis([Move|Rest], o, Game, NextMove) :-
5 NextBoard = [Move | Game],
6 search_game_analysis(Rest, o, Game, NextMove),
7 analyze_game(x, NextBoard , _), !.
8

9 search_game_analysis(Moves, x, Game, NextMove) :-
10 search_game_analysis_x(Moves, Game, NextMove).
11

12 search_game_analysis_x([Move|_], Game, Move) :-
13 NextBoard = [Move | Game],
14 analyze_game(o, NextBoard , _).
15 search_game_analysis_x([_|Rest], Game, NextMove) :-
16 search_game_analysis_x(Rest, Game, NextMove).

5

This comprehensive approach to game analysis using Prolog’s logical rea-
soning capabilities allows for sophisticated strategic planning, where we not
only respond to the current game state but also plan several moves ahead,
considering various possible future game scenarios.

2.4 Decision Making
The make_decision predicate introduces randomness by choosing randomly
from a list of possible moves generated by the game analysis. This approach
ensures that the game does not always follow the same predictable pattern,
enhancing the robot’s realism and making it more challenging for human
opponents.

2.4.1 Process of Making Decisions:

• Selection of Moves: The function begins by ensuring that the list of
possible moves is not empty. It then randomly selects one move from
the list. This randomness introduces unpredictability into the game,
simulating a more human-like decision-making process.

• Application of the Move: After selecting a move, it is applied to
the current board to generate a new game state. This new state is then
displayed using the print_board function.

• Checking for a Win: Once the move has been made, the game checks
if this move results in a win for the player ’x’. If so, the game announces
the player’s victory; otherwise, it hands the turn over to the opponent.

1 % Make a decision based on possible moves
2 make_decision(PossibleMoves , CurrentBoard) :-
3 not(PossibleMoves = []),
4 length(PossibleMoves , NumberOfMoves),
5 random(0, NumberOfMoves , SelectedMove),
6 nth0(SelectedMove , PossibleMoves , Move),
7 NextBoard = [Move | CurrentBoard],
8 print_board(NextBoard),
9 (win_condition(x, NextBoard) ->

10 (write('I won. You lose.'), nl);
11 opponent_turn(NextBoard), !).

6

2.5 Conclusion
This implementation illustrates the use of Prolog’s logical inference capa-
bilities to manage game states and decide optimal moves in Tic-Tac-Toe.
By structuring the game logic in terms of rules and logical queries, Pro-
log allows for clear and concise representation of the game mechanics and
decision-making processes.

3 Implementation in OpenNars-AGI
This section describes the implementation of Tic-Tac-Toe using the OpenNars-
AGI framework, focusing on how NARS is utilized merely as an observer of
the game to analyze possible truths of game states. Although NARS does
not yet function as a fully autonomous AI agent within this project, its capa-
bilities in reasoning and learning provide valuable insights into game strategy
and win conditions. This part of the project was developed in two versions.
The first version represented my initial ideas on implementation, which en-
countered several issues leading to inaccuracies in the inference results. The
second version is a revised implementation that allows for more accurate pre-
dictions of potentially winning moves, although it still occasionally makes
errors in judgment.

3.1 Recognizing the Game Board
In the initial version, the process of recognizing the game board focused
primarily on the state of each cell within the grid. At the start, the game
board was conceptualized as entirely empty, and specific Narsese rules were
implemented to manage the occupancy state of each cell. These rules ensured
that a cell is marked as empty if it is not occupied by either player.

1 // All cells are initially empty
2 <{x0y0, x0y1, x0y2, x1y0, x1y1, x1y2, x2y0, x2y1, x2y2} -->

[empty]>.
3

4 //If a cell is marked as occupied by player1, it cannot
also be marked as empty.

5 <<(*, {player1},{$1}) --> board> <=> (&&, (--, <(*, {
player2},{$1}) --> board>), (--, <{$1} --> [empty]>))>.

7

6 <<(*, {player2},{$1}) --> board> <=> (&&, (--, <(*, {
player1},{$1}) --> board>), (--, <{$1} --> [empty]>))>.

7 <<{$1} --> [empty]> <=> (&&, (--, <(*, {player1},{$1}) -->
board>), (--, <(*,{player2},{$1}) --> board>))>.

3.2 Win Conditions
Win conditions were defined using a set of rules that identified potential
winning lines (rows, columns, diagonals) on the board. The system was
configured to detect these lines and evaluate whether they could potentially
lead to a win based on the current placement of markers.

3.2.1 Defining Winning Lines and Conditions

1 // Initialize player win probability
2 <{player1} --> win>. %0.5%
3 <{player2} --> win>. %0.5%
4

5 // Ensure only one player can win at a time
6 <<{player1} --> win> ==> (--, <{player2} --> win>)>.
7 <<{player2} --> win> ==> (--, <{player1} --> win>)>.
8

9 // Define all potential lines that can result in a win
10 <(*, {x0y0}, {x0y1}, {x0y2}) --> sameline >.
11 <(*, {x1y0}, {x1y1}, {x1y2}) --> sameline >.
12 <(*, {x2y0}, {x2y1}, {x2y2}) --> sameline >.
13 <(*, {x0y0}, {x1y0}, {x2y0}) --> sameline >.
14 <(*, {x0y1}, {x1y1}, {x2y1}) --> sameline >.
15 <(*, {x0y2}, {x1y2}, {x2y2}) --> sameline >.
16 <(*, {x0y0}, {x1y1}, {x2y2}) --> sameline >.
17 <(*, {x0y2}, {x1y1}, {x2y0}) --> sameline >.
18

19 // Define Winning Condition
20 <(&&, <(*, {$1}, {$2}, {$3}) --> sameline >, <(*,{$p},{$1})

--> board>,<(*,{$p},{$2}) --> board>,<(*,{$p},{$3}) -->
board>) ==> <{$p} --> win>>.

8

3.3 Game Strategy
In our Tic-Tac-Toe strategy, we utilize specific logical rules to enhance the
NARS’s ability to win or secure a draw. These rules are designed to increase
the likelihood of winning by strategically analyzing the board and identifying
the most advantageous moves.

3.3.1 Strategic Move Evaluation

We implement rules to detect when a player (’p’) has two marks in a row with
one space empty, offering a high chance of securing a win, and another rule
where a player has one mark with two spaces open, setting up future winning
opportunities. These strategic evaluations allow the AI to act proactively,
maximizing winning probabilities and blocking opponent advances effectively.

N
W

Scenario 1

1 // Two in a Row with One Empty
2 <(&&, <(*, {$1}, {$2}, {$3}) --> sameline >, <(*,{$p},{$1})

--> board>,<(*,{$p},{$2}) --> board>,<{$3} --> [empty]>)
==> <{$p} --> win>>. %0.8;0.7%

3

4 // One Occupied and Two Empty
5 <(&&, <(*, {$1}, {$2}, {$3}) --> sameline >, <(*,{$p},{$1})

--> board>,<{$2} --> [empty]>,<{$3} --> [empty]>) ==>
<{$p} --> win>>. %0.6;0.3%

3.3.2 Offense and Defense Strategies

We use logical rules to activate offensive or defensive modes dynamically.
A player marked as ’ready-to-win’ triggers offensive maneuvers, while the
robot adopts defensive tactics to thwart similar threats from opponents. This
strategic flexibility enhances our robot’s ability to respond to game develop-
ments effectively, increasing the chances of securing a win or preventing a
loss, as illustrated in the provided scenarios.

9

N W
W W
N

Scenario 1

N W
W W
N N

Scenario 2

1 //If anyone is ready to win
2 <(&&, <(*, {$1}, {$2}, {$3}) --> sameline >, <(*,{$s},{$1})

--> board>,<(*,{$s},{$2}) --> board>,<{$3} --> [empty]>)
==> (&&, <(*, {$s}, {$3}) --> offense>, <{$s} --> ready

-to-win>)>.
3 //Offensive Play Decision
4 <(&&, <{player1} --> ready-to-win>, <(*, {player1}, {$1})

--> offense >) ==> <(*, {player1}, {$1}) --> nextstep >>.
5 //Defensive Play Decision
6 <(&&, <{player2} --> ready-to-win>, (--, <{player1} -->

ready-to-win>), <(*, {player2}, {$1}) --> offense >) ==>
<(*, {player1}, {$1}) --> nextstep >>.

7 //Increased Winning Probability
8 <(&&, <(*, {$s}, {$1}) --> nextstep>, <(*,{$s},{$1}) -->

board>) ==> <{$s} --> win>>. %0.9%

3.4 Decision Making
In the Decision Making section, we calculate the truth values for all potential
positions that could lead to a win for Player 1. We then identify the position
with the highest truth value, which becomes our final choice for the next
move.

1 <<(*,{player1},{x0y0}) --> board> ==> <{player1} --> win>>?
%0.50;0.06%

2 <<(*,{player1},{x0y1}) --> board> ==> <{player1} --> win>>?
%0.97;0.32%

3 <<(*,{player1},{x0y2}) --> board> ==> <{player1} --> win>>?
%0.99;0.58%

4 <<(*,{player1},{x1y0}) --> board> ==> <{player1} --> win>>?
%0.49;0.10%

5 <<(*,{player1},{x1y2}) --> board> ==> <{player1} --> win>>?
%0.97;0.32%

10

3.5 Challenges Encountered
One of the significant challenges encountered was the handling of unexpected
relational inferences. For example, consider the following NARS statements
that define positions on the same line:

1 <(*, {A}, {B}) --> sameline >.
2 <(*, {A}, {C}) --> sameline >.

The NARS engine incorrectly inferred a direct relationship between B and
C, as shown below:

1 <{B} <-> {C}>. %1.00;0.45%

This inference led to an unreasonable situation where a choice for one po-
sition erroneously suggested a choice for a non-aligned position, complicating
the game strategy:

1 <(*,{player1},{B}) --> choose> <=> <(*,{player1},{C}) -->
choose>

3.6 Adjustments and Enhancements
To address the challenges encountered with unexpected relational inferences,
significant adjustments were made to the way the game board is recognized
and processed within the NARS framework.

3.6.1 Recognizing the Game Board

To ensure accurate position recognition and avoid incorrect relational infer-
ences, explicit definitions were assigned to each position on the game board
regarding their x and y coordinates. These definitions ensure that each po-
sition’s coordinates are recognized independently, minimizing the risk of in-
correct relational reasoning based on shared positions or implied lines, and
thus enhancing the system’s ability to make accurate and logical decisions in
the game.

Here are the NARS statements used to define the x and y coordinates:
1 <(*, {x0y0}, [x0]) --> Px>.
2 <(*, {x0y0}, [y0]) --> Py>.
3 <(*, {x1y0}, [x1]) --> Px>.
4 ...

11

5

6 //Original rule
7 <(*, {x0y0}, {x0y1}, {x0y2}) --> sameline >.
8 <(*, {x1y0}, {x1y1}, {x1y2}) --> sameline >.

3.6.2 Win Conditions

I directly assign color attributes to positions immediately after a move. This
approach replaces the previous method of using relational associations, such
as the board definition, to connect players and positions. Now, each move
directly marks the position with attributes (black, white).

1 // Define Winning Condition
2 <(&&, <{x0y0} --> [black]>, <{x0y1} --> [black]>, <{x0y2}

--> [black]>) ==> <{player1} --> win>>.
3 <(&&, <{x1y0} --> [black]>, <{x1y1} --> [black]>, <{x1y2}

--> [black]>) ==> <{player1} --> win>>.
4 <(&&, <{x2y0} --> [black]>, <{x2y1} --> [black]>, <{x2y2}

--> [black]>) ==> <{player1} --> win>>.
5 ...
6

7 //Original rule
8 <(&&, <(*, {$1}, {$2}, {$3}) --> sameline >, <(*,{$p},{$1})

--> board>,<(*,{$p},{$2}) --> board>,<(*,{$p},{$3}) -->
board>) ==> <{$p} --> win>>.

3.6.3 Game Strategy

1 //Increasing Winning Probabilities
2 // One Occupied and Two Empty
3 <(&&, <(*, {$1}, [$b]) --> $a>, <(*, {$2}, [$b]) --> $a>,

<(*, {$3}, [$b]) --> $a>, <{$1} --> [black]>, <{$2} -->
[empty]>, <{$3} --> [empty]>) ==> <{player1} --> win>>.
%0.6;0.5%

4

5 // Two in a Row with One Empty
6 <(&&, <(*, {$1}, [$b]) --> $a>, <(*, {$2}, [$b]) --> $a>,

<(*, {$3}, [$b]) --> $a>, <{$1} --> [black]>, <{$2} -->
[black]>, <{$3} --> [empty]>) ==> <{player1} --> win>>.
%0.7;0.7%

12

7

8 <(&&, <(*, {$1}, [$b]) --> $a>, <(*, {$2}, [$b]) --> $a>,
<(*, {$3}, [$b]) --> $a>,<{$1} --> [white]>,<{$2} --> [
white]>,<{$3} --> [empty]>) ==> (&&, <{player2} -->
ready-to-win>, <(*, {player1}, {$3}) --> defense >)>.

9 //Offensive Play Decision
10 <(&&, <{player1} --> ready-to-win>, <(*, {player1}, {$1})

--> offense >) ==> <(*, {player1}, {$1}) --> nextstep >>.
11 //Defensive Play Decision
12 <(&&, <{player2} --> ready-to-win>, (--, <{player1} -->

ready-to-win>), <(*, {player2}, {$1}) --> offense >) ==>
<(*, {player1}, {$1}) --> nextstep >>.

13

14 <(&&, <(*, {player1}, {$1}) --> nextstep >, <{$1} --> [black
]>) ==> <{player1} --> win>>.

3.7 Decision Making

1 <<{x0y0} --> [black]> ==> <{player1} --> win>>? %0.46;0.03%
2 <<{x0y1} --> [black]> ==> <{player1} --> win>>? %0.25;0.01%
3 <<{x0y2} --> [black]> ==> <{player1} --> win>>? %0.50;0.03%
4 <<{x1y0} --> [black]> ==> <{player1} --> win>>? %0.50;0.02%
5 <<{x1y2} --> [black]> ==> <{player1} --> win>>? %0.50;0.02%
6 <<{x2y0} --> [black]> ==> <{player1} --> win>>? %0.46;0.07%
7 <<{x2y1} --> [black]> ==> <{player1} --> win>>? %0.50;0.02%
8 <<{x2y2} --> [black]> ==> <{player1} --> win>>? %0.25;0.01%

4 Result(Nars)
0.50;0.03 0.50;0.02 0.25;0.01
0.25;0.01 W 0.50;0.02
0.46;0.03 0.50;0.02 0.46;0.03

Step 1

B
W

Step 2

13

B 0.47;0.04 1.00;0.41
0.32;0.19 W 0.26;0.21

W 0.26;0.04 0.29;0.07

Step 3

B B
W

W

Step 4

B W B
0.32;0.19 W 0.88;0.12

W 0.95;0.25 0.25;0.16

Step 5

B W B
W

W B

Step 6

B W B
0.96;0.41 W W

W B 0.48;0.09

Step 7

B W B
B W W
W B

Step 8

B W B
B W W
W B W

Step 9

5 Comparison of Implementations
This section compares the two different implementations of Tic-Tac-Toe:
SWI-Prolog and OpenNars-AGI. Each platform has its strengths and weak-
nesses, which are discussed below in terms of efficiency, realism, flexibility,
and scalability.

5.1 Efficiency and Accuracy
The implementation in SWI-Prolog is more efficient and accurate for a game
like Tic-Tac-Toe, which has a finite number of possible game states. Prolog
functions like executing an algorithm, systematically exploring all possible
moves to find every potential win scenario. This deterministic approach
guarantees that all possibilities are considered, leading to a higher precision

14

in gameplay and decision-making.

5.2 Realism and Cognitive Simulation
Conversely, the OpenNars-AGI approach mirrors how humans learn and play
games. It is not about brute force computation but about understanding and
adapting to new information. In this implementation, Nars is taught the ba-
sics of the game—such as recognizing the game board and understanding the
rules and strategy. This method is more aligned with true Artificial Intelli-
gence, reflecting a learning and adapting system rather than just solving a
problem. Nars, therefore, requires more reasoning time and does not guar-
antee a win or draw with certainty, but it offers a more human-like approach
to gameplay.

5.3 Flexibility and Scalability
OpenNars-AGI exhibits greater flexibility and scalability. For example, in
applications like chatbot technologies (e.g., ChatGPT), it is impractical to
compute all possible answers. Instead, Nars can reason within limited infor-
mation to derive conclusions, making it highly scalable for more complex or
undefined scenarios. On the other hand, for games with fixed rules like Tic-
Tac-Toe, Prolog’s ability to methodically determine all possible outcomes
makes it superior. However, Prolog’s rigid, rule-based approach might limit
its application in scenarios that require adaptation to a wide variety of inputs
and conditions.

6 Conclusion
This comparative study of Tic-Tac-Toe implementations using SWI-Prolog
and OpenNars-AGI has highlighted the distinct advantages and limitations
of each approach within the context of artificial intelligence applications.
The Prolog implementation demonstrated a high degree of efficiency and
accuracy, owing to its capability to exhaustively explore all possible game
states and outcomes. This deterministic approach ensures that the optimal
moves are always selected, based on logical deduction from the current game
state.

15

Conversely, the OpenNars-AGI implementation offered a glimpse into a
more human-like approach to learning and playing games. Although it did
not achieve the same level of performance consistency as the Prolog im-
plementation, its ability to adapt and learn from new scenarios presents a
compelling case for its use in more dynamic and less defined environments.
This capability mirrors human cognitive processes more closely than the al-
gorithmic precision seen in Prolog.

7 References
1. OpenNARS for Applications: A reasoning system for the AI demands

of practical applications and an approach towards AGI.
https://github.com/opennars/opennars/wiki.

2. Gym-TicTacToe: A simple Tic-Tac-Toe environment for OpenAI Gym
with random and Q-learning agents.
https://github.com/haje01/gym-tictactoe/tree/master.

3. Tic-Tac-Toe Game Example in SWI-Prolog.
https://swish.swi-prolog.org/p/Tic-Tac-Toe.swinb.

4. Prolog Tic-Tac-Toe: An implementation of Tic-Tac-Toe in Prolog.
https://github.com/cheery/prolog-tic-tac-toe/tree/master.

16

	Introduction
	Implementation in SWI-Prolog
	Recognizing the Game Board
	Evaluating Potential Moves

	Win Conditions
	Game Analysis
	Functionality of analyze_game:
	Detailed Strategy Analysis:
	Recursive Game Play:

	Decision Making
	Process of Making Decisions:

	Conclusion

	Implementation in OpenNars-AGI
	Recognizing the Game Board
	Win Conditions
	Defining Winning Lines and Conditions

	Game Strategy
	Strategic Move Evaluation
	Offense and Defense Strategies

	Decision Making
	Challenges Encountered
	Adjustments and Enhancements
	Recognizing the Game Board
	Win Conditions
	Game Strategy

	Decision Making

	Results(Nars)
	Comparison of Implementations
	Efficiency and Accuracy
	Realism and Cognitive Simulation
	Flexibility and Scalability

	Conclusion
	References

