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1 Introduction

Perception is one of the primary and critical aspects of intelligence – it is right
above the interface between the mind and the world, and plenty of intelligence
phenomena are highly related to perception. Perception is also one of the hardest
challenges in AI – given a large number of input signals, how to organize them
efficiently and how abstract concepts emerge remain to be answered; although
over the years deep learning has gained huge success in many domains or prob-
lems (especially in computer vision), the two issues, the lack of interpretability
and the weird behaviors (sometimes called hallucination nowadays) by subtle
perturbations1, are apparently two “clouds” upon the deep-learning horizon.

How does humans’ perception work? Is there a unified and consistent way,
across various sensory channels (including sight/vision, hearing/audition, taste/
gustation, smell/olfaction, touch/somatosensation, etc.), of the mind to perceive
“open environments”?

There are some direct observations on the process of perceiving environments.
For example, humans perceive a scene by eye movement (see Fig. 1), and the
related research field in psychology is visual attention [6]. Humans’ perception
forms some stable patterns and concepts that are robust to perturbations, and
the recognized concepts are invariant to distortion, translation, scale, and even
rotation. Besides, the perception procedure is also subjective and highly related
to a subject’s demand – people tend to recognize what they expect but not
everything in a certain context.

Just like the motivations for studying intelligence, the motivations for study-
ing perception are also twofold – (1) to understand human perception procedure

1 A widely known example is that a deep neural network may recognize a panda as an
ostrich when adding some noises to the input image, but the noises do not influence
humans at all. Another example is that, after shuffling the positions of the features
on a face, humans can easily see the difference, but a convolutional neural network
still sees it as a face confidently.

3 The pictures of the famous painting Unexpected Visitors with eye trajectories stem
from https://www.cabinetmagazine.org/issues/30/archibald.php.
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Fig. 1. Task-oriented Top-Down Attention. The eye trajectories vary in different task-
hints [6].3

and discover general principles of perception, and (2) to enable machines to per-
ceive the world. “Deep neural networks”, due to the lack of interpretability, is
not a promising way to achieve the first goal of the research, thus, I suggest fol-
lowing another route, called “conceptual networks”, to model perception. More
specifically, as suggested by [5], perception is subjective, active, and unified,
and the model of perception that I would like to research also has these features
– (1) Subjectivity : new patterns (also called schema [2] or concepts) come into
being based on old patterns. This procedure is also called bootstrapping [?] in
cognitive science. (2) Proactivity : it should contain a sensory step and a motor
step, forming a sensorimotor loop. (3) Unity : it should follow a normative the-
ory and a unified representation; specifically, in this research, Non-Axiomatic
Logic (NAL) [4] is adopted as the theoretical foundation to build the model. To
emphasize these features of perception, I suggest using the term sensorimotor
model to refer to the perceptual model to be researched.

This paper is a progress report on modeling the sensorimotor procedure.
Firstly, in Sec. 2, a theory is provided, specifying the overall considerations.
Secondly, in Sec. 3, the theory is formalized by extending Non-Axiomatic Logic
and designing the control mechanism specific to the sensorimotor procedure.
Finally, the current implementation progress and tests are reported in Sec. 4
and Sec. 4.

2 Theory

In perception, on the one hand, an intelligent system tries to explain and predict
sensations via the existing concepts in its memory ; on the other hand, the system
tries to change its perceptive field via actions, for the sake of confirming its
explanations and predictions, as well as achieving its desires. This perspective
shares a similar intuition with Active Inference in Karl Friston’s theory [3], as
well as Assimilation in Jean Piaget’s theory [2]. In the meanwhile, the system
changes its memory to explain past experiences, and this procedure corresponds
to Accommodation in Piaget’s theory.
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In contrast to algorithms in computer vision, in this research, the system
should not be viewed as an algorithm when perceiving its environment, be-
cause the system executes working cycles without an explicit end-point and
does not follow the same routes within a problem-solving period (as similar to
Non-Axiomatic Reasoning System, NARS [4]). In each working cycle, the system
accepts sensory input, processing it within a relatively constant time, and de-
cides where to see next, subsequently executing an action to shift its perceptive
field. Different from NARS [1] at the current stage, it is assumed that an exhaus-
tive update is acceptable if each step is local and potential specific hardware can
process it within a small constant time. For example, in the human brain, each
neuron’s membrane voltage decays in parallel without depending on other neu-
rons, and similar processing is available in neuromorphic hardware. Similarly, if
a conceptual network can be implemented in specific hardware, such exhaustive
treatment should be legal in theory.

Within each working cycle, sensory signals are discretized and transformed
into concepts, so that they can be further handled by the system. The system
forms and organizes a conceptual network according to its experience, modifying
both the structure and the values in connections. Some concepts are significantly
active in a certain context as if the system perceives something representing the
outside objects.

There are two types of concepts in perception (as shown in Fig. 3):

– A composition is a special concept composed of a prototype as part and
a prototype as whole. It represents the relation between part and whole. A
composition is attached with an attribute, relative location, which indicates
the location of a part relative to its whole – It is relative in the sense that
the displacement between two locations can be computed without defining
an absolute, original point.

As the implications of this theory, the system would perform some human-
like properties – Since the system works with an endless loop, there is no “final
report” on “an image’s categorization(s)”4. By contrast, the system continu-
ously perceives its sensations, so that different concepts may catch its attention
at different moments. The system may gradually get a better and better under-
standing of scenery as time goes by, but it probably loses many details when it
is in a hurry.

There are some other notions widely used in computer vision, though some
of them have quite different interpretations in this work.

– Feature is the alias of prototype.
– An object is an instance of a prototype. In this sense, object here does

not mean “a thing as it is”, but rather the summary of relations among
prototypes.

– Recognition is the process in a system to retrieve its memory (i.e., the
conceptual network) and pay attention to active concepts.

4 Nonetheless, in some special cases (e.g ., exams), the system can provide its final
answer via a decision-making procedure.
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3 Model

In this section, I try to formalize the theory proposed above. To better describe
perception phenomena, I extend Non-Axiomatic Logic in Sec. 3.1, introducing
a new copula “7→” to represent the “part-whole” relation, as well as some in-
ference rules for retrieving an object in the memory. The following subsections,
Sec. 3.2 and Sec. 3.2, describe the control mechanism of the sensorimotor system.
The idealized situation, that specifies the purpose of the system, is provided in
Sec. 3.4, and it can be viewed as the rationale of the control mechanism.

3.1 Representation & Inference

A common relation in perception is “part-whole”, or composition. For exam-
ple, a bicycle is composed of two wheels and a frame. Composition has a different
meaning from intersection or union in current NAL. Concept bicycle is not the
intersection or union of concepts wheel and frame. However, concept bicycle is
the extensional intersection of concepts vehicle andmachine, and concept bicycle
is also the intentional intersection of concepts human-powered-vehicle and two-
wheeled-vehicle. Wheel is not a type of bicycle, thus we cannot use inheritance
to represent the relation.

For this purpose, another copula is introduced,

Definition 1 If P and W are events, composition statement “P 7→W” is true
if and only if P ’s occurrence provides a piece of positive evidence for W ’s occur-
rence. The first term P is called part, and the second term W is called whole.

Intuitively, “ 7→” can be read as “a part of”. Usually, location of part matters in
perception. Similar to the treatment of time in NAL-6, location is attached to a
composition statement,

Definition 2 “(P1 7→ W )[l1]
∧
(P2 7→ W )[l2]” is true if and only if “((P1,⇑move(l2−

l1), P2) ↔ W )
∧
((P2,⇑move(l1−l2), P1) ↔ W )”, where “⇑move(#1)” is a men-

tal operation that shifts the system’s perceptual focus by distance #1.

Locations here are relative to whole term W . It implies that an absolute origin
of a coordinate system is not needed.

Definition 3 A location attached to a prototype, e.g., “P [l]”, is implicitly rela-
tive to a whole term. What the whole term is depends on context.

Definition 4 Given composition statements “(P1 7→ W )[l1], ..., (P2 7→ W )[ln]”,
the whole term W is also represented as a compound term “W : {|C1[l1], ..., Cn[ln]|}”
or anonymously “{|C1[l1], ..., Cn[ln]|}”.

A whole can be represented as a compound of its parts, and Def. 4 provides the
formal representation. A whole term identifies a prototype defined in Sec. 2.
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For inference, the part-whole rule has the following form:

{(P 7→ W )[l1]⟨f1, c1⟩, P [l2]⟨f2, c2⟩} ⊢ W [l2]⟨FspjFprt⟩

where the FspjFprt is the combination of two truth-functions,

f, c′ =Fprt(f1, f2, c1, c2)

c =Fspj(c
′, l1, l2)

In the first step, frequency and confidence are computed by the “part-whole”
function Fprt, and then the confidence is decayed via the spatial-projection func-
tion Fspj . The definitions of Fprt and Fspj are shown in Tab. 1. According to
Def. 1, the total evidence is no more than 1, and the frequency depends on that
of the two premises. The confidence is decreased in spatial projection, and the
extent depends on the distance between the two locations. In this paper, a bell-
shaped function is adopted (see Fig. 2) for spatial projection. Here, l1 and l2 are
relative to W .

The revision rule with spatial information has the following form:

{W1[l1]⟨f1, c1⟩,W [l2]⟨f2, c2⟩} ⊢ W [l]⟨FsrvFrev⟩

where the FsrvFrev is the combination of two truth-functions,

f, c =Frev(f1, f2, c1, c2)

l =Fsrv(f1, f2, c1, c2, l1, l2)

In the first step, frequency and confidence are computed by the revision function
Frev [4], and then the location is adjusted via the spatial-revision function Fsrv.
The definition of Fsrv is shown in Tab. 1. Here, l1, l2, and l are relative to W .

Table 1. The Truth-Value Functions of Inference Rules

type inference name function

spatial revision spatial revision Fsrv l =
l1f1c1 + l2f2c2
f1c1 + f2c2 + ϵ

immediate inference spatial projection Fspj c = bell(l1 − l2)× c′

weak syllogism part-whole Fprt f = and(f1, f2)
w = and(f1, f2, c1, c2)

3.2 Memory

For the moment, the memory is a single-layered conceptual network (see
Fig. 3). An input feature corresponds to a whole term that names a concept in
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the memory. A whole term is regarded as a part term of a whole at the higher
level. A whole term in the higher level is a prototype of its parts. A connection
from a part term to a whole term corresponds to a composition statement.

Each concept or connection consists of some truth-values and budgets:

– truthe: the truth-value indicating the occurrence of an event.
– trutha: the truth-value indicating the anticipation of an event.
– budgetc: the budget for the competition of temporal resources (i.e., process-

ing time).
– budgetm: the budget for the competition of spatial resources (i.e., storage or

memory).

The difference between truthe and trutha is that the former is increased when
an event truly occurs, while the latter is modified if an event is anticipated to
occur. Truth-value of anticipation is necessary because anticipation plays a role
in accumulating negative evidence – a human usually does not think about a
non-occurring object, unless it conflicts with his anticipation(s), as implied by
many works in psychology.

The budgets for temporal and spatial resources are separated (as different
from NARS [4,1]) for some reasons: 1) in some cases, an item, that should be
remembered in a short period, should be forgotten in the long period; thus
priority and durability of budgetm serves for the balance between long-term and
short-term storage. If a large number of items swarm into the memory, durability
is critical to maintain those valuable items for the long term, since it avoids
having them squeezed out of memory. 2) In some cases, some long-standing
items should be recalled and processed at times if there is nothing urgent at
hand. Thus, there should be a balance between long-term processing and short-
term processing. Priority and durability in budgetc help to balance them. 3) In
some cases, an item, that should be remembered in a short period, does not need
to be processed urgently, and a single priority failed to resolve this conflict.
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Fig. 3. The Structure of the Conceptual Network

In this work, only one type of relation among concepts is considered, that
is, the “part-whole” relation “7→” – a component is a part of a prototype to
some degree. The truth-value (denoted as truthp) of a composition statement is
eternal, meaning that it does not decay through time. In contrast, the truth-value
of event-occurrence (truthe) and that of anticipation (trutha) are time-sensitive.

3.3 Working Cycle

Given the structure, the tricky part is how to exploit it and modify it. Similar to
NARS, the system in this paper also conducts working cycles repeatedly. In each
working cycle, the system retrieves some concepts, builds or deletes connections
among them, and revises the truth-values of connections.

More specifically, it involves four aspects,

1. Retrieving, which is majorly related to manipulating budgets and antici-
pations of concepts,

2. Hypothesizing, i.e., constructing new concepts and “part-while” relations,
3. Revising, i.e., accumulating evidence for truth-values, and
4. Recycling, i.e., removing concepts and relations because of insufficient re-

sources.

The current design only involves the retrieving aspect, while leaving the other
aspects to future work.

In retrieving, due to the relativity of space, when a feature occurs, the sys-
tem sometimes cannot determine what composition it pertains to. For exam-
ple, a prototype W is composed of three parts at different relative locations,
i.e.,“W : {|P1[(0.0; 0.0)], P1[(0.2, 0.0)], P1[(0.1, 0.2)]|}”.5 When feature P1 occurs,
“P1[(0.0; 0.0)]”, “P1[(0.2, 0.0)]”, “P1[(0.1, 0.2)]” are all possible part terms. The

5 Note that location here is represented as a two-dimensional number, but only the dif-
ference between two locations makes sense. For example, this prototype is equivalent
to “{|P1[(0.1; 0.1)], P1[(0.3, 0.1)], P1[(0.2, 0.3)]|}”.
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system generates six potential actions, “⇑move((0.2, 0.0))”, “⇑move((0.1, 0.2))”,
“⇑ move((−0.2, 0.0))”, “⇑ move((−0.1, 0.2))”, “⇑ move((−0.1,−0.2))”, and “⇑
move((0.1,−0.2))”. After moving, some more actions will be generated. This
procedure is similar to search in computer science, and actions lead to different
states (i.e., budgets and truth-values) of the system. In contrast to the tradi-
tional search algorithms, in the retrieving procedure, we do not assume a global
description of the system or the environment, and there is no explicit end of
the procedure. The system continuously looks for concepts that better explain
current situations.

To record the intermediate states, a data-structure task is adopted. A task
consists of a location ltask relative to the prototype, and mirrors of compo-
sitions. A mirror of composition has the same meaning as the corresponding
composition, except that a copy of the budgets and the anticipated truth-value
is maintained in the mirror. If the system focuses on merely one single task, it
goes through all the compositions and matches them with the prototype that
the task corresponds to, modifying the truth-value of the prototype’s occurrence.
Usually, there is more than one task, each of which corresponds to one possible
explanation of the input signals. When the system meets more and more mis-
matching in a task, the priority in the task ’s budgetc becomes lower and lower,
so that other tasks get a higher chance to be concerned.

In a nutshell, in each working cycle, the system repeatedly does the same
things, 1) to accept one event and conceptualize it, 2) to pick out one prototype
with the maximal priority from the memory, 3) to pick out one task with the
maximal priority from the prototype, 4) to pick up one (mirror of) composition
with the maximal priority from the task, 5) to predict the occurrence of another
composition and take an action if necessary, and 6) (not designed yet,) to modify
the memory.

3.4 The Idealized Situation

Each working cycle can be viewed as a step of an optimization procedure, where
the purpose is to find some concepts that best explain the input experience, such
that the following loss Jexplain is minimized:

Jexplain(I, C) = α ·match(I, C) + β · complexity(C) + γ · utility(C) (1)

where C is the set of concepts used to explain the image, and I is the input fea-
tures in the input stimuli. Function match(I, C) evaluates how well the concepts
C matches the input stimuli I.

To recognize objects is to find a set of concepts C that minimize Jexplain:

C = argmin
Ci

Jexplain(s, Ci) (2)

An agent could traverse all possibilities exhaustively if having sufficient com-
puting resources. However, an agent like human should probably do recognition
more smartly, basically due to AIKR – the system does not afford such a large
overhead given insufficient computing resources.
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4 Implementation Progress & Working Examples

Ideally, the system should learn some prototypes or patterns from noisy samples
in real-time, and it should be able to recognize the categories from tens of thou-
sands or even millions of prototypes. This is the actual case faced by the human
mind. However, in the initial stage, due to insufficient resources and knowledge,
I was unable to achieve it in one fell swoop. In this paper, I consider merely the
simplest example – three features (of the same type) with different locations that
form a triangle (see Fig. 4) – and the learning process (hypothesizing, revising,
and retrieving mentioned in Sec. 3.3) is not designed and implemented yet. The
system is able to recognize a prototype from samples.

Even for implementing the retrieving process, I split it into two sub-steps.
In the first step, I implemented an algorithm that matches a given prototype in
real-time (see Algorithm 1). As shown in Fig. 5, the system focuses on different
parts, and the “matching value” increases to a relatively high value, meaning
that the prototype is recognized. In the second step, I transfer the algorithm into
the working cycle (see Algorithm 2). The tricky part is adjusting the budgets,
so as to direct the system’s attention. This part is not well elaborated in Sec. 3,
because there are some issues unsolved and it is not mature enough. As shown
in Fig. 6, in most cases, the system converges to the correct prototype with the
correct location, however, sometimes the system sticks into a wrong obsessiveness
and cannot correct itself.

Fig. 4. Input Examples
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Fig. 5. The matching algorithm (to watch the video attached, see Appendix A)
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Fig. 6. (a)∼(d) success examples; (f) a failure example
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A Supplementary Materials

The source code is attached. See the file “readme.txt”. A video “demo1.mov”
demonstrating Algorithm 1 is also attached.

B Algorithms

Algorithm 1 Brute-Force-Matching(p, c0, R, k)
// p: prototype
// c0: component as the start-point
// R: retina object
// k: the number of iterations

1 visited = dict({})
2 value = 1.0
3 c0.budgetc.inhibit(0.1)
4 visited[c0] = value
5 bias = (0.0, 0.0)
6 for i = 1 to k × p.length
7 c = pick out the item with the maximal priority of budgetc in p
8 loc0 = get the relative location of c0
9 locc = get the relative location of c

10 mv1 = (locc − loc0)× p.scale
11 locR = R.loc
12 mv2 = R.move(mv1)
13 err = mv1 −mv1 + bias× p.scale
14 patch = R.sense(err)
15 feat, biasf = get the feature closest to R.loc+ err and the location bias
16 if feat ̸= NULL
17 v = evaluate the value given biasf
18 if c in visited
19 value = value− visited[c0]
20 visited[c] = v
21 bias = bias× value + biasf × v
22 value = value + v
23 c0 = c
24 else
25 R.move to(locR)
26 c.budgetc.inhibit(0.1)
27 return value
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Algorithm 2 Real-Time-Retrieving(sml, R)
// sml: sensorimotor layer
// R: retina object

1 s = R.sense()
2 Match existing prototypes given s
3 Modify the priority values of cpnt.budgetc, inst.budgetc and proto.budgetc
4 proto = pick out a prototype with maximal budgetm.priority from sml
5 task = pick out an task with maximal budgetm.priority from proto
6 cpnt = pick out an component with maximal budgetm.priority from task
7 Decrease the priority value of cpnt.budgetc
8 cpntnext = pick out an component with maximal budgetm.priority from inst
9 Anticipate cpntnext (i.e., increase trutha)

10 ∆l = cpntnext.location - inst.location
11 ∆l′ = R.move(∆l)
12 sml.motor input(∆l′)
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