
The project looks into reinforcement learning, and I wanted to see if I could create a simple process that learned how to play a game. I chose the game that involved taking away stones, it was introduced in lecture. It is a 2 player game where each player takes turns taking away 1 or 2 stones with each move. The player who removed the last stone is declared the winner. I broke my project into 2 programs, the first StoneGame.java, and the second SecondVersion.java. The differences in the programs was what I chose to reward. StoneGame rewards a series of choices made by the learning process. SecondVersion rewards choices based on the number of stones that were left for the process to choose. 


For the first program I looked at rewarding a series of moves made by the computer. The choices that the program made were recorded in an integer array int choices[]. Each index in choices corresponded to the move number of the program, with the value at that index being the number of stones that were taken. The first move of the program would be stored in choices[0]. If the process took 1 stone then the value of choices[0] would be 1, 2 otherwise. I had another integer array int pArray[]. The array pArray held the probability of taking 1 stone at that current move. Parray[0] was the probabilty of taking 1 stone with the process' first move, pArray[4] would be at the process' 5th move. At the end of the game if the learning process won I rewarded each of the choices that were taken. This is done in the method cpuLearn(). The method goes through each of the indexes of pArray[] and choice[] and increases the probability that the choice be made at that move again by increasing the probability in pArray[]. Similarly if the learning process lost each of the choices were punished by having their probabilities lowered. 


This process continued in a loop of 1,000 games. I was interested to see if the learning process was making any progress so in intervals of 100 games I recorded the percentage of games won by the learning process. The results showed that there was progress made when the learning process played against patterns. It played 1,000 games against an opponent that would take 1 stone with each move, results stored on results1.txt. It also played the same against an opponent that took 2 stones with each move, results stored in results2.txt. When playing against an opponent that followed the same pattern each time the learning process was able to adjust and win at a higher percentage. A problem was obvious when the process was put up against an opponent that did not follow a pattern. The third opponent chose random choices with each move, no pattern was made. As a result the process was never able to adjust and the winning percentage did not improve, results stored in randomResults.txt.


The process was unable to adjust to random play because I rewarded/punished choices as a whole at the end of the game. So the individual choices were not being rewarded. So for the second part of my project I rewarded each move on an individual basis. I changed the pArray to be an integer array with each index corresponding to how many stones were left, a change from each index representing the move number of the game. With the changes that were made the cpu fared much better against a random opponent. While the win percentage did not reach a very high number it was over 50% and showed that the process was improving.

