Peter de Blanc

Go AI

One of the great successes of game-playing software is the game of Chess. The IBM computer, Deep Blue, defeated Garry Kasparov, then the world champion. The game of Go, however, has been proven extremely difficult to program. Go players rank from 30 kyu to 9 dan; the strongest computer programs rate 9 kyu on online Go servers, putting them at the level of intermediate amateur players.

Because human Go players are so much stronger than computer players, Go seems like a suitable domain for AI research; conventional approaches have failed, and an innovation which could improve computer Go players may well have greater implications for the entire field of AI.

Creating a full-fledged Go program may be too difficult to accomplish in the short time allotted for this project, but an interesting alternative is the Capture Game. The Capture Game is sometimes used to teach Go to beginners: players take turns placing stones until one player has captured a specified number of enemy stones, and then that player wins. The Capture Game has the advantage that it can be played in a shorter amount of time than Go, and it always ends at a particular time (whereas in Go it is necessary for both players to pass, so one player can drag out the game indefinitely). Furthermore the winner of the Capture Game is unambiguous, while in Go both players must first agree over which stones are considered dead.

Because it takes so much less time to evaluate a game, it should be possible to test different versions of the program against each other in a relatively short amount of time. Furthermore, the Capture Game shares most of its tactics with Go, so a successful Capture program could lead to the development of a successful Go program.

GnuGO, one of the most powerful programs, rates 9 kyu and is essentially a very complex expert system. GnuGO uses a move suggester to present a list of moves which are then evaluated locally. GnuGO does not have a general-purpose board evaluation function, so it can not implement minimax search, although arguably minimax search is not desirable; Go has a branching factor as high as 360 (never reaching 361 due to symmetry), so building a search tree of any significant depth is not feasible.

When a board evaluation is needed, most current programs use a method called playout analysis, in which an entire game is completed using move suggesters and the final score is calculated.


The expert-system approach to Go is reaching a plateau; it has become increasingly difficult to implement new improvements to current programs. Other AI methods have been tried: NeuroGo uses neural networks, and Lithos uses genetic algorithms. These programs have had some modest success, but they have not yet reached the level of GnuGO.

I plan to take a middle route. My program will be based on a set of patterns of stones. The program will try to locate these patterns in each board position. Each pattern will have a value, and these will be summed to find the value of the board. Although I will use board evaluation, the search will only be of depth 1, so speed will not be too problematic. Patterns will be tested and randomly modified in order to find a set which produces the best results.


The goal of this project is not to create a superior Go program, but to identify important patterns without any built-in knowledge.
