Brian Vance

Cis203, Dr. Wang

12/14/04

Final Project: Guess Who

A simplified version of the Turing Test is as follows: if a human engages in natural language conversation with two parties, a human and a machine, and cannot tell which is which, the machine passed the test. I think the most fascinating example of this test lies with chatterbots. According to www.a-i.com, chatterbots are “a logic system of if/then statements. They look for keywords, then go to the answer that fits best.” I find chatterbots so interesting because while you know you are talking to a machine, its creators designed it to resemble human conversation as much as possible. It is this interest in chatterbots that sparked my idea for creating a Guess Who game for my project.

My first thought for this project was to create some type of small chatterbot, or something that could interact with and learn from the user. Also, being an aspiring programmer, I also wanted to create a program to do actually it, not just theorize about it on paper. However, I realized I did not have the great deal of time or resources needed to create a solid chatterbot, so after much thought, Guess Who popped in my head as a great choice.

Guess Who is a classic 2-player board game created by Milton Bradley. Each player receives a game board containing 24 “face cards”. A face card is simply a picture of a person with their name. Then each player receives one “mystery card”. A mystery card is the same as a face card, and represents one of the 24 characters. While both players have the same face cards, they do not know who each other’s mystery person is. The game is played by each player taking turns asking the other player questions about their mystery person, such as “Is your person wearing glasses?” The player can then flip or eliminate some of his face cards depending on the answer. This continues until one player believes he knows who the other’s mystery person is. He then asks “Is your person Joe?” etc. If their guess is right, they win the game. If they’re wrong, they used their turn and the game continues until someone wins.

I programmed the game using the same principle as a chatterbot. It uses a series of if/then statements (or select/case) and a set of keywords. Instead of just one set of keywords, I used three sets which I labeled “keywords”, “adjectives”, and “nouns”. I chose to program it in Visual Basic because I knew the game would need a strong GUI. After I created the GUI, I spent a lot of time entering the information about all 24 characters because I knew the game would only be as good as the information it contained. The next step was getting the computer to ask and answer questions.

I wanted the program to display intelligence in both asking and answering questions, so I created separate algorithms which are included at the end of this document. To answer a question the computer searches the information about the characters and gives an answer. Asking a question was a little harder, so I created a binary tree of questions along with a Boolean array. (The tree is included in a separate document). The Boolean array represents which characters are still valid as possible choices and which are not. The binary tree is represented by an array, using the equation that for position p, the left child is (2*p)-1, and the right child is (2*p)-2. The computer moves around the binary tree depending on the user’s answer. The tree is created using the following principle: for each situation, choose the question that comes the closest to dividing the characters in half. As a result, the first question asked will always be the same. Once the Boolean array has been narrowed down to two possibilities, it will make a guess to one of the characters. If it was wrong, it will guess the other character on it’s next turn.

One of the main things I learned from this project is the incredible amount of information it takes to create an artificial intelligence, especially a chatterbot. My game is based on only 24 characters, yet it took a great deal of information to work. While my game is not a true chatterbot, it can learn from and communicate with its user just as a human would making it a small yet working AI.

**Scroll down to see input and output algorithms.

My simplified algorithm for answering user input:

if input contains "or" or "and" then

display error message

exit function

end if

if first word of input is not "does" or "is" or "are" then

display error message

exit function

end if

search for keyword

if keyword found then

search for adjective

if adjective found then

determine if mystery person matches adjective with keyword

display "yes" or "no"

exit function

end if

else if adjective not found then

determine value of keyword for mystery person

display "yes" or "no"

exit function

end else if

end if

else if keyword not found then

search for adjective

if adjective found then

search for noun

if noun found then

determine if mystery person matches adjective with noun

display "yes" or "no"

exit function

end if

else if noun not found then

display error message

exit function

end else if

end if

end else if

if both keyword and adjective are not found then

display error message

exit function

end if

My simplified algorithm for asking a question:
//works off of pre-defined tree of questions, and Boolean array of characters

index = 0

if tree(index) = "make guess" or "name person" then

search for first character that equals 'True'

if character found then

ask user if character is their mystery person

end if

else

display error and exit

end else

end if

else

display question listed in tree(index)

end else

/*The real inner-workings of asking questions occurs when the user replies either 'yes' or *'no'. If Yes, the tree node moves left, and all characters in the Boolean array that do not *have the questioned attribute are made false. If No, the tree node moves right and all *characters that do have the questioned attribute are made false. This can be viewed in *the source code.

*/

