Jeff Flanigan

6579

Genetic Programming: Interesting Diversion, or Useful Tool?

Genetic programming is a relatively new area of artificial intelligence research.

The practical applications of this new technology are numerous, and there are many possibilities for discovery of new applications. The fundamental challenge of genetic programming lies in the definition of the problem, and the method used to select superior generations. The general concept is to provide the system with the set of variables, and the functions used to operate on those variables, and then allow the system to apply the selection model just as in Darwin’s concept of Natural Selection. This method has been highly effective in development of logic circuits, radio antennas, and there are definite applications in the realm of networks, specifically dealing with routing and switching.

The basis of genetic programming is the genetic algorithm. In the genetic algorithm, fixed length character strings are used to represent a particular result of a problem. The fitness of each particular result is assigned a fitness based on it’s relative correctness, or closeness to a desired answer. In some cases this may be the maximum value found, the minimum value found, or the closest value to a predetermined answer. Reproduction is achieved by using part of the character string of one parent and part from the other parent to produce the offspring’s own character string. The genetic algorithm was initially developed by John Holland in 1975
, and has been applied to many problems, both abstract and concrete. A team at Purdue University is attempting to use the genetic algorithm to determine the appropriate material to use in chemistry, given the desired properties of the final product.
 John Biles, a professor at the Rochester Institute of Technology, has developed a jazz improvisation system that uses the genetic algorithm to create mutations that are the basis for musical improvisation.
 One example of a theoretical problem that is well suited for the genetic algorithm is the traveling salesman problem.
 Representing each possible path as a character string with each node represented as a character allows exploration of a graph while only considering sub-paths that have a low travel “cost” and thus a high fitness. While there are many other problems that can be solved using the genetic algorithm, there are many problems that do not allow for an easy implementation of the genetic algorithm. The representation of problems involving complex data can be difficult when limited to fixed length strings. Steven Smith was one of the early proponents of variable length strings. The messy genetic algorithm, introduced by Goldberg, Korb and Deb in 1989, attempted to solve the fixed length string problem by using variable length strings of fixed length substrings. However, even with variable length strings, genetic algorithm could not accomplish simple recursion or iteration that is needed in most computer programs. The genetic classifier system applied the genetic algorithm simultaneous to the condition and the action of an if-then structure. The result was a flexible system for solving a problem. However, recursion and iteration were still not possible.
 In order to achieve these abilities, genetic computing would need to incorporate some form of language with control structures.

According to John Koza, genetic programming is the answer to one of the early questions in computer science, posed by Arthur Samuel in the 1950’s: “How can computers learn to solve problems without being explicitly programmed? In other words, how can computers be made to do what is needed to be done, without being told exactly how to do it?”
 His theory is that many problems from many different fields are actually variations of a single larger problem; the problem of discovery of a specific computer program that will solve the problem.
 In genetic programming, the problem to be solved is represented as a tree, and then different branches of high fitness individuals are combined to form new offspring. This is very similar to the genetic algorithm, except that the tree structure is more natural for problems involving complex input. Of course, the problem of representation is certainly still present with genetic programming, however given the flexibility of modern programming languages many representation problems are more a problem of language than a problem with genetic programming itself. Genetic programming can be applied to any language that uses some form of tree structure to represent its programs. While languages such as Lisp and Prolog use a tree representation on the surface, most other languages do rely on an underlying tree structure for operation.
 Koza suggests several reasons why Lisp is a good starting point for genetic programming. The previously mentioned fact that Lisp operates directly on a tree structure is one of the main reasons. The fact that Lisp programs and data have no distinction is another reason. A third major reason is that Lisp allows new programs to be tested very easily using the eval operator.
 While Lisp is perhaps the natural choice, Java provides some mechanisms that allow for the implementation of genetic programming. The use of objects allows for representation of complex data in a concise format. Through inheritance and interfaces a framework for working with genetic programming can be designed that is easy to apply to any problem, provided the proper representation and conceptualization can be achieved.

The Evolutionary Computing in Java library (ECJ,http://cs.gmu.edu/~eclab/projects/ecj/) makes use of these features to provide a platform for learning and experimentation with the genetic algorithm and genetic programming. A complete documentation of ECJ can be found at the web site, here the focus will be on the genetic programming classes. Each problem is declared as a child class of the GPProblem class. This class contains methods for actually doing the problem, and any data that needs to be maintained throughout a problem. Critical parts of this class include the setup method, which determines the initial state, the evaluate method, which handles the actual work, and the protoClone method which defines any objects that needs to be cloned between instances of the class. The most important part of the problem class is the implementation of the KozaFitness class, which takes a raw score and translates it into a score from 0.0 to 1.0. An important point is that while a low raw score is desirable, a translated score of 1.0 is optimal. In order to implement a problem in ECJ, the underlying tree must be considered in development. Each type of node is represented by subclass of the GPNode class. This class defines the action to take when that node is traversed. Once the proper classes are defined, a parameter file is used to control the interaction of the classes. It is in the parameter file that the structure of the tree is defined, by specifying the number of inputs to each type of node. Since the tree must end at some point, at least one node must be declared as a terminal node, with no input.

In Koza’s model of genetic programming, the general flow of operation is to first randomly choose a set of functions and terminals that will make up a program. This represents one individual. A given population will have many individuals, with each individual being a different composition of functions and terminals. Once the programs have been produced, they are run and the results are assigned a fitness that is used to select the best results to reproduce in the next generation. Once an ideal individual is achieved, or a given number of attempts have been made the result is complete, and the individual with the highest fitness in any generation is the solution to the problem.

ECJ follows this model very closely, making exceptions only where the language or practicality dictates. However, one significant issue with ECJ is that there is no direct way to actually output a generated program as actual Java code. While certainly a useful tool for experimentation, this limits the usefulness in practical applications. Furthermore, problems that require state to be maintained between operations can be difficult to implement as the operation at each node may depend upon the overall state of the problem. This issue is relatively easy to resolve through the use of object oriented design, however the definition of objects as nodes requires some planning. While some problems have a natural tree structure, for example mathematical calculations, programs with a more linear structure are not as natural in ECJ.

For the purposes of learning and evaluation, I have implemented the frog and toads problem using ECJ’s genetic programming classes. While this is obviously not a great challenge conceptually, the focus is to understand the details involved more fully so that they can be applied to more advanced concepts. The principle issue in this implementation is the representation of the frogs and toads search tree in a format that is congruent with ECJ. It seemed at first that this would be remarkably easy, given the tree structure used for all genetic programming. However, the nodes of an ECJ tree are the GPNode objects, which represent the functions to be used to create the program. In this model, each node of the frog and toad problem has only one child, which is the previous state. In implementation this is somewhat problematic, as the tree seems to be executed in a preorder traversal. While preorder traversal is totally natural for mathematical problems, for this particular problem it leads to trees that read in reverse. This is certainly a minor detail, and one that could be resolved with a few changes to the code, but it bears mentioning because it is one barrier to the use of ECJ, and genetic programming in general for problems involving procedure or control flow.

Two factors seem to be critical in achieving optimal results to this particular problem. The first factor is the number of moves allowed before a stuck condition is declared. This limit is needed due to ECJ’s handling of nodes. ECJ randomly chooses the assignment of nodes, which limits the ability to only use certain nodes in certain circumstances. This leads to the chance of ECJ creating a program that gets stuck, with no completion possible. For example, the pattern SFFTT is not solvable, and there needs to be a way to escape from any attempts or the ECJ program itself may become stuck. It may be possible to allow unlimited moves, and catch the stuck condition some other way, perhaps a complex flag structure that gets reset every time a move is made, but allows an exit if all four moves have been tried with no success. The second factor is the definition of the fitness function. An ideal program should solve the given map in the minimum number of moves. This number should be less than 2N+1, where N is the number of frogs (or toads). Directly subtracting this number from the number of moves to get the raw fitness would give negative results when the map is not finished, therefore a more complex function must be used. Obviously, the number of animals out of position must be used to calculate the fitness. What may make sense would be to multiply the number out of position by a number that is large enough to guarantee that several conditions are met. As mentioned before, the raw fitness cannot be negative. Also, a particular individual that is almost correct should be considered as potentially better than a correct individual that takes more moves. Due to these competing factors, the current implementation uses a function that will never produce an ideal individual, but rather will consider the complete problem that takes the minimum number of moves to be the best so far, and always run until the specified number of generations have been produced. So far, the results are not near ideal, but it is clear that the issue lies in the definition of the fitness function. My further efforts will involve trying to implement some form of list sorting and to see if that can be optimized. The main difficulty seems to be in determining exactly what an ideal result is, and defining a suitable fitness function.

While the experimentation with sorting problems is interesting, it is likely that there is little chance for an efficient result in this field from genetic programming. The reason is that the results are very hard to verify, given that they vary based on the size of input and other factors. Genetic programming seems best suited to finding specific solutions to specific problems. While this seems to preclude the use of genetic programming in a real time artificial intelligence decision system, it could be highly useful in a system that performs in a similar fashion to a human. A large amount of human knowledge is obtained by experiencing a particular situation, responding based on all available knowledge, and analyzing the result afterwards. The use of genetic programming to analyze previously obtained data and attempt to find a more desirable solution could have many applications. In robotics, a robot could record a map of where it travels and use genetic programming to determine a return route, or to determine a route for other robots to follow to get to its location. The applications in electronic circuit design are numerous, as a computer is simply faster at analyzing circuit configurations than a human. The present technology level allows computers to perform massive amounts of raw calculations in a very short period of time. Through genetic programming it should be possible to apply this computational power directly to the sort of trial and error development that has been responsible for a significant amount of human scientific development.

� Koza, John. Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, 1992. 17

� “Knowledge Discovery”, California Computer News 10/20/04. www.ccnmag.com/?nav=headlines&id=3399

� Biles, John. “GenJam: Evolutiononary Computing gets a Gig” www.it.rit.edu/%7Ejab/CITC3/Paper.html

� “Genetic Algorithm” www.aaai.org/AITopics/html/genalg.html

� Koza 63-65

� Koza 1

� Koza 9

� Koza 71

� Koza 71

� ECJ Tutorial 4: Building a Multivalued Genetic Programming Symbolic Regression Problem. http://cs.gmu.edu/~eclab/projects/ecj/docs/tutorials/tutorial4/

� Koza 77

