AUTOMATIC PROGRAMMING:

CAN A COMPUTER PROGRAM BETTER THAN A HUMAN?

Prepared for

Mr. Pei Wang, Professor

Temple University

Philadelphia, PA 19122

Prepared by

Mr. Matthew Paige

Temple University

Philadelphia, PA 19122

December 4, 2003

TABLE OF CONTENTS

Page

I. Introduction

 1

II. Background

 1

III. Applications

 2

A. Relevance of Automatic Programming Techniques

 3

B. Usefulness of Automatic Programming Techniques

 4

IV. Programmers

 4

A. Good Programmers

 4

B. Bad Programmers

 4

C. Qualities That Computers Possess

 5

V. Summary

 5

Glossary

 7

References

 8

REFERENCES

Programming without programmers: towards an industrial revolution for

software?. Johnson, Colin G. December 1, 2003.

<http://www.cs.kent.ac.uk/people/staff/cgj/research/software.html>.

Automatic Programming. Novak, Gordon. December 1, 2003.

<http://www.cs.utexas.edu/users/ai-lab/projects/ap.htm>.

Rich, Charles, Waters, Richard C. “Approaches to Automatic Programming”.

Advances in Computers. Vol 35. June 1992.

<http://www.merl.com/papers/TR92-04/>.
S. Ong, N. Kerkiz, et. al. “Design Flow for Automatic Mapping of Graphical

Programming Applications to Adaptive Computing Systems“.

Electrical and Computer Engineering.

<http://216.239.39.104/search?q=cache:jNR1XRZ9DikJ:microsys6.engr.utk.edu/ece/hpec_2000.pdf+automatic+programming,+applications&hl=en&ie=UTF-8>.

Home Page of John R. Koza. October 7, 2003. John R. Koza. December 3,

2003.
<http://www.genetic-programming.com/johnkoza.html#anchor6009925>.

John R. Koza, Forrest H. Bennet, III, et al. “Automatic Programming of a Time-

Optimal Robot Controller and an Analog Electrical Circuit to Implement the

Robot Controller by Means of Genetic Programming”. Proceedings of

1997 IEEE International Symposium on Computational Intelligence in

Robotics and Automation. 1997.

<http://citeseer.nj.nec.com/338448.html>.

C. Rich and R. Waters. “Automatic Programming: Myths and Prospects”. IEEE

Computer, Vol. 21, No. 8, Aug. 1988.

<http://citeseer.nj.nec.com/context/230430/0>.

Betty Holberton. Caitlan Sullivan. December 2, 2003.

<http://www.uri.edu/personal/csul7234/bettyholberton1.html>.

George Gray. “UNIVAC I: The First Mass-Produced Computer “. Unisys History

Newsletter. Volume 5, Number 1. January 2001

<http://www.cc.gatech.edu/gvu/people/randy.carpenter/folklore/v5n1.html>

Automatic Design of Algorithms Through Evolution. Olsson, J. R. December 2,

2003. <http://www-ia.hiof.no/~rolando/adate_intro.html>.

8

GLOSSARY

Domain-specific Language – a special-purpose programming language (or

an extension to a general-purpose language) that allows programmers to more easily express a program in terms of domain-specific abstractions

(e.g., state machines, EJB declarations).

Generative Programming – form of programming in which a program is

generated automatically.

Genetic Programming – an automated method for creating a working computer

program from a high-level problem statement of a problem.

Universal Language – a programming language that is platform independent.

7

AUTOMATIC PROGRAMMING:

CAN A COMPUTER PROGRAM BETTER THAN A HUMAN?

I. INTRODUCTION

Automatic programming is defined as the synthesis of a program from a specification. For automatic programming to be useful, the specification must be smaller and easier to write than the program would be if written in a conventional programming language. Automatic programming is also known as program synthesis and program induction - that is getting computers to solve problems without explicitly programming them. Some other names for automatic programming are automation, genetic programming, and automated software engineering. In the past thirty years, a great deal of progress has been made in the development of program synthesis systems based on theorem proving, transformations, and logic programming.

The focus of this project is whether or not a computer can program better than a human being. In order to figure this out, certain things need to be discussed. What characteristics does a good programmer have? What characteristics does a bad programmer have? Is it possible for a computer to display any of these qualities? These things need to be discussed, but first, automatic programming itself needs to be explained.

II. BACKGROUND

Automatic programming has been a goal of computer science and artificial intelligence since the first programmer came face to face with the difficulties of programming. The goal of automatic programming is to increase by orders of magnitude both the quality and the productivity of software engineering. As befits such a long-term goal, it has been a moving target--constantly shifting to reflect increasing expectations.

In the early part of the 1950’s there was a call for the development of automatic

programming by the computer industry, with the thought that it should be

possible to find a means to describe a problem and have the computer evolve the means of solution--thus the term automatic programming. Today, no one would consider an assembler or a compiler automatic programming. However, when these devices were first invented in the 1950's, the term was quite appropriate. Grace Hopper, known to some as a pioneer computer scientist, was

1

responsible for the creation of the compiler. Knowledge of assembly language was no longer required in order to program. The compiler translated English looking programming language into machine code. Compared with programming in machine code, assemblers represented a spectacular level of automation. The need for the person writing the program to know the explicit machine code instructions was no longer necessary. Moreover, Fortran was arguably a greater step forward than anything that has happened since. In particular, it dramatically increased the number of scientific end users who could use computers without having to hire a programmer.

Betty Holberton is the first person known to write a program that generated another program, a task that Hopper had been told by her superiors was impossible. Holberton concocted the first sort-merge generator for the UNIVAC I, which was the first mass produced computer. The sort-merge generator allowed the creation of customized programs. It was building on this idea that Hopper conceived of the compiler and the way was open for the development of high level programming languages that were machine independent, and for the possibility of "universal languages". There was a proposal for a universal language at the assembly language level named UNCOL by Tom Steel, but manufacturers were unwilling to give up their stranglehold of individual machine languages in order to conform to a universal standard.

It seems that for automatic programming to be practical, it would have to be machine independent, coincidentally making it universal. These days, computers use different kinds of technology when it comes to hardware and software. With different types of processors, operating systems, etc, it is necessary for automatic programming to be compatible with all of those things.
III. APPLICATIONS

As mentioned before, the compiler was probably the earliest example of the automatic programming concept. Since then the types of systems that fall under automatic programming have become more advanced. One example is AUTOPASS. The Automated Parts Assembly System (AUTOPASS) is an experimental very high level programming system for computer controlled mechanical assembly. It is intended to enable the user to concentrate on the overall assembly sequence and to program with English-like statements using names and terminology that are familiar to him. To relate assembly operations to manipulator motions, the AUTOPASS compiler uses an internal representation of the assembly world. This representation consists of a geometric database generated prior to compilation and updated during compilation; it thus represents the state of the world at each assembly step. The level of the language has been

2

chosen to provide a high degree of assistance to the user without the system's having to perform artificial intelligence type problem solving operations.

Another example of automatic programming is the ADATE system. The Automatic Design of Algorithms Through Evolution (ADATE) is a system for automatic programming i.e., inductive inference of algorithms. ADATE can automatically generate non-trivial and novel algorithms. Algorithms are generated through large-scale combinatorial search that employs sophisticated program transformations. The ADATE system is still an unfinished research prototype. Currently, researchers are working on general improvements of program transformations and search strategy. For example, the newest version of ADATE, which is not yet available, employs novel techniques to explore plateaus in the search landscape, thus avoiding entrapment in a small region of search space. There are also significant changes to expression synthesis, compound transformations as well as the abstraction and REQ transformations. Another project that is under way will allow users to use ADATE to synthesize functional programs that serve as the "brains" of intelligent agents that understand and speak a simple natural language.

A. Relevance of Automatic Programming Techniques

This section will discuss the ability to apply automatic programming techniques. In the early 1980s, researchers abandoned automatic programming, as existing techniques simply did not scale to programs beyond a few hundred lines. Now automatic programming is undergoing a renaissance, and its need (e.g. for fault tolerance) is even more critical than ever.

One area where automatic programming is relevant is databases. When talking about databases and automatic programming, you must also talk about domain-specific languages (DSL) and generative programming (GP), because the area of databases contains examples of each. Relational query processing in particular is where these examples really show up. Relational queries are expressed as SQL SELECT statements. A parser translates a SELECT statement into an inefficient relational algebra expression, a query optimizer rewrites this expression into an equivalent expression that has better performance properties, and a code generator translates the optimized expression into an executable program. In this example, the optimizer exemplifies automatic programming while the code generator embodies generative programming. SQL is an example of a declarative DSL. It is a language that is specific to tabular representations of data. The code generator, which maps a relational algebra expression to an

executable program, is an example of GP. The query optimizer is the key to AP.

3

It searches the space of semantically equivalent equations to locate an equation, which has good performance characteristics.

B. Usefulness of Automatic Programming Techniques

Automatic programming is definitely useful for a couple of reasons. First, automation can ensure that programmers do not overlook details associated with programming and the design process. Automation can establish that constraints levied on a design are satisfied, and that unsatisfied constraints are brought to the designer’s attention. Second, automation can speed up the design process without sacrificing rigor. Third, automation can help the inexperienced designer by making default decisions.

IV. PROGRAMMERS

In order to determine if a computer can program better than a human, what makes someone or something a good programmer must be decided first. Once those characteristics are decided upon, the next topic to discuss is whether computers or humans best exemplify the characteristics.

A. Good Programmers

Determining what makes a good programmer is a tough job. You would probably get different answers from just about anyone you talked to. After reviewing a couple of sources, I’ve compiled a list of some of the better qualities. A good programmer is a creative problem solving, detail oriented, a systematic thinking, a collaborative working, a good communicating, result oriented, multi-tasking person. The most important ones these days are probably communication and people skills.
B. Bad Programmers

In my opinion, bad programmers are basically programmers who do not possess the qualities of good programmers. This could be due to inexperience or stubbornness. Either they are new to programming and still need to learn the

right way of doing things, or they have their own methods and do not want to

admit that they are wrong.

4

C. Qualities that Computers Possess

It is certainly possible for computers to possess some of the qualities that make up a good programmer. One of the most obvious ones to me is the ability to multi-task. These days, most computers need to be able to do more than one task at a time. Programs that create threads or processes would require this quality. Another quality I think computers possess is the ability to think systematically. Having this quality, at least in computers, eliminates the ability to solve problems creatively. When you request something from a computer, you are most likely going to get the same result every time. The method the computer used in acquiring the information you requested will most likely be the same every time as well. This is due to programming. The computer will just follow a set of steps given to it by a programmer. The computer is going to follow those steps every time. It does not have the ability to stray and develop its own method. A computer can be programmed to make it appear that it has a thought process and that perhaps it is learning from mistakes or finding better ways to do things, but that is a result of the programming. The code was written in a way that would allow for adjustments. The computer is not going to make an adjustment on its own.

VI. SUMMARY

This is the section where I discuss what I learned from this project. No question, I’ve learned about automatic programming itself. I’ve realized how vague the term is. Initially, I thought that automatic programming dealt with just the creation of something that can be compiled. However, I’ve realized that when the concept was first thought of, a compiler was considered to exemplify automatic programming. The compiler would actually translate code that resembled English, into something the computer could understand. Automatic programming could also encompass the process that takes place prior to coding, the design phase. The design phase is a part of programming that a lot of people, especially students, would rather do without. This involves creating endless documents, which demonstrate that you understand what is required and also provide a plan of attack. Since most people don’t like to do it, it doesn’t seem like a bad idea to have the computer do it for you. The computer will not look for shortcuts or leave out certain aspects of the process as a person might do.

Allowing the computer to handle this can also speed up the process.

Now for the decision that was made on the topic of this paper. Can a computer program better than a human? This would be a case of the student surpassing the teacher. I think its safe to say that humans have taught computers every

5

thing they know. That is not to say that it is impossible for a student to become smarter than the teacher, but it is unlikely if the teacher continues to learn. When it comes to dealing with computers, humans must continue to learn and invent and re-invent. In saying that, I do not think that computers will be better programmers than humans. Perhaps they can perform certain tasks better, but that is only because they do not have the free will to stray from what they have been “taught”. If a computer is told that a design document must be created before any coding is done, the computer will create a design document before any coding is done.

6

