MicroMouse Simulation Environment

Designed and written by Dmitri Prozorov for the final CIS203 project at Temple University.

1: General Information & Instructions

2: Logic and Memory

3: Main.h

4: MicroMouse.cpp

5: MazeGen.cpp

6: Misc.cpp

7: Mouse.cpp

1 ----------------–--- General Information & Instructions
1.1 --- Introduction to MicroMouse Robotics

MicroMouse is a robotics competition designed by IEEE. The object is to design a robot that is able to run through a complex maze and reach the end from the start in the fastest time possible. The complexity lies in the maze having multiple routes from start to finish. The robot has 15 minutes (usually) to do as many runs as it wants from start to end with the fastest time being its final score. The 'run' timer is reset every time the robot goes back to start.

In theory, the ideal approach is for a robot to explore the maze and store it to memory, then compute the fastest route and then run it. That is the goal of the code written for this project.

1.2 --- MicroMouse Simulation

MicroMouse Simulation Environment is a program that generates every aspect of the competition virtually. The program is effectively split into two sides that know nothing about each other. The 'environment' side generates a randomized maze of predefined dimensions (set in Main.h). It then modifies it to make sure every room is linked and there are multiple paths from start to end. It then creates a virtual robot and gives it to the user side.

The 'user' side of the program implements the actual code written to map and search out the maze. It first maps the maze completely into its own memory and, after returning to start, uses a few specifically designed algorithms to reduce the maze to one path.

1.3 -- Teach Yourself MicroMouse in 24 Minutes

Don't know your MicroMouse Simulation? This quick guide should get you started and on your way.

1.3.1 -- MicroMouse Shell

The general shell has 8 commands. If you ever get stuck 'help' gives you a complete list with descriptions. By the time you hit the actual shell prompt, the code will have already generated a map and robot for you. The commands are as follows:

Run: With a fully defined maze and robot, this command will place the robot in the maze and begin its run. In other words this activates the robot in the maze. Adding a 'nopause' flag at the end of the command eliminates the standard pause in the center.

Quit: Exits the simulation.

Reset: Resets the simulation completely. Generates a new maze and robot from scratch.

Display: Shows the maze generated. Note that this is the maze the environment contains, not the maze that is in robot memory necessarily.

Status: Displays the status of the robot including its memory, as well as environmental settings.

Help: Lists all MicroMouse Shell commands.
1.3.2 --- Input and Output Files

There are two output files used by the simulation. The first is 'mgen.out', or Maze Generation Output. This file stores the complete maze after each minor alteration is made in its creation. Using this file you can trace the transformations that the maze goes through in its creation.

The second output file is called 'rmem.out' or Robot Memory Output. This stores the robot memory after each algorithm is applied to it. It is similar to a 'status' command every time the code pauses.

2 -- Logic and Memory

2.1 --- Memory Representation

There are two types of memory representation used in this simulation. The first is the representation the environment uses to represent the maze. The structure 'grid' is used to define a maze. Inside of grid is a three dimensional array:

grid->area[WIDTH][HEIGHT][TYPE]

WIDTH & HEIGHT: Two constants defined in main.h and control the actual difficulty of the competition. Increasing the numbers increases the complexity of the competition exponentially.

TYPE: There are actually 6 different fields in this field. 0->3 are used to represent either existing or non-existing exits (North, West, South, East). 4 is used to define the type of the room. Either RREG (regular room), REND (goal), RSTART (starting point). 5 is used to check whether the room is visited or not and is constantly set and reset. This avoids infinite loops while traversing through the maze.

The second and more complicated representation is used by the robot and involves a completely dynamic approach since in real life the robot wouldn't know the size of the maze. The maze is represented by a linked grid where a structure room has a pointed room array of size 4 representing each exit. A non-existent exit is defined as a NULL while an existent exit points to the corresponding room. Each room also is part of a single pointer linked list. This makes resetting certain variables in the room structs globally much easier. A room can also be part of a node linked list which is used to define visited rooms in the final search algorithm. This a room can be linked to anywhere between one and six different rooms

2.2 --- Applied Logic

The most complex, although the shortest in code length, piece of code is the search algorithm used by the robot to find the shortest route through the maze. This function uses a modified minimax procedure studied in class. Starting at the end, it recursively moves through the maze keeping track of length in rooms from the end. It then sets that length to the room and the direction the length is in. Eventually every room is reached from all sides therefore the shortest path is found. This is very rapid because it does no structure or linked list modification. These direction markers are then used by the robot to traverse the maze in the shortest time possible.
3 --- Main.h

3.1 -- Includes

There are 4 include files required for the code:

Stdio.h and Stdio.h:
Standard functions as well as input/output.

Time.h: Timer and clock functions.

String.h: String formatting functions.

3.2 --- Constants

General Purpose:

MaxStr – Maximum line size.

MaxBuf – Maximum buffer size.

Maze Definition:

Mwidth – Width of maze.

Mheight – Height of maze.

LX – X coordinate

LY – Y coordinate

Array third dimension definitions, used to specify exits and other settings:

North – North direction (exit)

West – West direction (exit)

South – South direction (exit)

East – East direction (exit)

Rtype – Type of room

Rvis – If room was visited or not

Types of rooms:

Rreg – Regular room

Rstart – Starting point

Rend – Ending room

Status of robot:

Inactive – Robot is in inactive mode

Running – Robot is physically moving

Searching – Robot is working with its memory, not moving

Error – Robot has an error

Done – Robot has completed task

Timer definitions:

Mtime – Time allotted in minutes

Mtimes – Time allotted in seconds

Seconds & Percent – Boolean settings used in a later function

Move_Pause – Time it takes for robot to move a room

Percentstop – Percentage of time allotted to maze exploration

Output and input files:

Mgenout – Maze generation output file
Rmemout – Robot memory output file

Plcode – Target prolog source file

Plsource – Prolog source file

3.3 --- Macros

remReturn(x) – removes the carriage return at the end of string 'x'

revesrseDir(x) – returns the direction opposite 'x' using modulo hashing

3.4 -- Structures

Grid Struct:
Defines a maze structure

(int) totRooms – Total rooms in the maze.

(int) Area[Mwidth][Mheight][6] – Maze definition grid (room per room).

Room Struct:
Defines a room structure

(room *) next – Used to create a linked list for easy room traversal.

(room *) nextNode – Used to list visited rooms in search algorithm

(room *) exits[4] – Four pointers for each exit, a NULL indicates no exit.

(int) dir – Direction of shortest path to end.

(int) length – Length to end in the direction specified.

(int) type – Room type, similar to the grid definition.

(int) location[2] – Rooms x,y coordinates.

(bool) reached – Checks if a room has been visited.

Data Struct:
Defines the memory of a virtual robot

(room *) firstRoom – The first room in a linked maze grid.

(bool) foundEnd – Makes sure an end was found.

Unit Struct:
Defines a virtual robot

(data *) memory – Robot memory.

(int) status – Robot status.

3.5 -- Prototypes

The prototypes are too numerous to list but are organized based on which source file they come from. This header is used in every source file in the project and therefore links them all to allow cross-referencing.

4 --- MicroMouse.cpp
int main() {
IN – No inputs.

OUT – No output.

SUMMARY – Main function that sets up the whole environment defining a robot and generating a maze. It then runs a MicroMouse shell which allows the user to play with the environment

}

double engageRobot() {

IN – A maze of type grid, a robot of type unit, the maze generation timer shift of type clock_t as well as a flag indicating the need for a pause or not.

OUT – The time required for the robot to complete the final run.

SUMMARY – This function activates the robot and includes within itself all the mapping and searching calls in order to build and work through the room grid in the robots memory. It then runs the robot for the last time.

}

5 --- MazeGen.cpp

unit *genRobot() {

IN – No inputs.

OUT – Returns a pointer to a robot structure.

SUMMARY – Creates a robot structure and resets its memory.

}

grid *genMaze() {

IN – No inputs.

OUT – Returns a pointer to a maze structure.

SUMMARY – Generates a complete maze using randomize functions. Randomizes all room exits and picks an exit arbitrarily.

}

void fixPath() {

IN – A maze of type grid.

OUT – No outputs.

SUMMARY – Fixes the maze created by linking all rooms and adding additional paths to raise the difficulty level.

}

int reachedInDir() {

IN – A maze of type grid, a grid location x,y as well as the direction to check in.

OUT – A integer that defines success or failure.

SUMMARY – Tests weather a room in the direction specified from room at x,y is reached.

}

bool checkedInDir() {

IN – A boolean three dimensional array for checking, a location x,y and a direction in which to check.

OUT – A bool value that defines success or failure.

SUMMARY – Same as previous, used in a different function to avoid overlapping.

}

void addPaths() {

IN – A maze of type grid.

OUT – No outputs.

SUMMARY – Adds additional paths from end to start for increased difficulty. The function uses a variety of turns and twists.

}

bool addVisited() {

IN – A maze of type grid, a location x,y, a reverse direction, a three dimensional bool array to check visited.

OUT – Returns a boolean value specifying weather a link was added or not.

SUMMARY – This function links all rooms making sure that a robot can get from the start to every room in the maze. This function is run several times, a false return specifies that no more can be linked.

}

void checkVisited() {

IN – A maze of type grid, a location x,y, a reverse direction, a three dimensional bool array to check visited.

OUT – No outputs.

SUMMARY – This updates the visited bool array used in maze modification.

}

bool allVisited() {

IN – A maze of type grid.

OUT – A boolean value, true specifies that all rooms are visited.

SUMMARY – Checks weather every room can be reached.

}

void clearGrid() {

IN – A maze of type grid.

OUT – No outputs.

SUMMARY – Resets the maze completely including room types and end.

}

6 --- Misc.cpp
float remainingTime() {

IN – Float of elapsed time as well as a type. Either SECONDS or PERCENT.

OUT – Value of either seconds remaining or percent of time remaining.

SUMMARY – Returns the remaining time a robot has in the maze.

}

void pause() {

IN – A floating point number of seconds to pause the program for.

OUT – No outputs.

SUMMARY – Pauses the program for the defined seconds in order to simulate a robots physical moving.

}

void resetVisited() {

IN – Either a maze of type grid or the first room in a linked list.

OUT – No outputs.

SUMMARY – Either resets visited rooms in a grid for maze creation or a room linked list that is used in robot memory.

}

char *showRoomGrid() {

IN – A room linked grid.

OUT – A string representation of the room grid.

SUMMARY – Traverses the room linked grid using x,y coordinates and draws an ASCII picture of the maze, after completion of running it displays the path traveled.

}

int numExits() {

IN – A pointer to a room.

OUT – An integer.

SUMMARY – Returns the number of exits a room has.

}

room *getRoomLoc() {

IN – A room linked list as well as x,y coordinates.

OUT – A pointer to a room.

SUMMARY – Searches the room linked list for the x,y coordinates.

}

char *showMaze() {

IN – A maze of type unit.

OUT – A string representation of the room grid.

SUMMARY – Draws an ASCII picture of the maze.

7 --- Mouse.cpp
bool traverseMaze() {

IN – A room grid, a reverse direction, and a referenced length.

OUT – A success/failure flag.

SUMMARY – Runs the robot through the maze using predefined direction markers indicating the shortest path. Has a sanity check to make sure robot does not move into a NULL room.

}

bool inList() {

IN – A room to search, and a room node linked list to be searched.

OUT – a success/failure flag if room is found in node list or not.

SUMMARY – Searches a linked room node list for the specified room.

}

void lengthToEnd() {

IN – A room grid, a reverse direction, a length from end, and a visited room node list.

OUT – No outputs.

SUMMARY – This is the core of the robots search algorithm. It uses a modified minimax procedure to recursively search out the maze. The algorithm starts at the end of the maze with a length of 0 rooms from end. It then moves through the maze constantly adjusting the visited room node list and the length. Upon entering a room it checks weather the length is shorter then the set length in the room (or if no length exists) and then sets the rooms length variable to the new length and the rooms dir variable to the proper direction thus setting up a string of markers for the robot to follow.

}

bool traverseGrid() {

IN – A room grid to be filled, a maze grid, x,y coordinates, a reverse direction, and a pointer to the first room in the grid.

OUT – A true/false value for success.

SUMMARY – This function allows the robot to explore the maze generated by the environment. It generates the room grid as well as fills in all the relevant room information.

