Anthony Matteo

CIS 203 – Artificial Intelligence

12 /17/ 02

Cluing in Computers: Explanations

In his master’s thesis, Bradley Bart gives a detailed specification of “Myst,” a non-cooperative game with static and incomplete information, using first order predicate logic and the situation calculus.  The game he describes is very similar to Clue and, in fact, he uses Clue as a way to introduce and familiarize the reader with his topic.  He also lists a computational implementation of a Clue player among his suggestions for further research.  Thus, my program, which is basically a production system including a knowledge base, a rule base (containing action descriptions), and a planner/control module, is based primarily on his formal specifications.  I am not, however, familiar with formal situation calculus; I only understand it to be a precise way of describing the state of the game at any moment.  So although I am not sure how the situation calculus “should” be coded, I do use assert and retract to update the database and constantly keep track of the current game situation.


At several points, Bart’s paper is inadequate to describe Clue, and at these instances, my program diverges from his specifications.  Many of these differences are due to the fact that the game he considers at length is actually a generalized variation of Clue.  A consideration of some of these points will help explain some details of my program.  First of all, Bart does not consider the key requirement of the game board: rolling dice and moving into rooms.  In the board game, players can only ask questions when they are in a room, and no player may ask questions from the same room on two consecutive turns.  I have handled this detail simply by inserting a user prompt before the actual question/answer part of a turn begins.  At the beginning of each turn, the action not_in_room() is called and only allows the turn to proceed to the question phase if the user says that the current player is in a position to ask, i.e. has just entered a room.

Bart also mentions how his variation, Myst, avoids the complication of multiple card types in Clue.  At certain times, only card names are significant, so allCards() may be an effective fact to call for.  At other times, a card’s type must be recognized, therefore, for each card a fact describing its type has been included in the system’s knowledge base.  Card type is important, for instance, when an opponent asks a question, since each one must be composed of one card of each type.  The computer will always ask a legal question, but it must also be sure that its opponents’ questions also consist of one card of each type.  Card type must also be taken into account in the computer’s determination of the hidden set.  Currently, the computer gradually narrows down the list of possible correct cards of a given type until only one possibility remains.  The predicates that narrow the possibilities are somewhat cumbersome at the moment because separate types are handled by separate predicates.  In future versions of the program, built-in functions, along the lines of =.. or arg(), which can process predicate names along with argument names, may be helpful in streamlining this process of elimination.

My work also differs from Bart’s because I am concerned with one player’s, i.e. the computer’s, perspective on the game, while he takes an omniscient perspective.  In his formal specifications, every player’s turn is identical, and he never explicitly addresses the issue of a single player’s perspective.  The Clue program deals with this issue at the beginning of each part of a given turn.  taketurns() is an overall planner for each turn; it works the same whether the computer is the active player or not.  However, the question_time(), answer_time(), and guess_time() actions, which can be understood as smaller-scale planners for the separate stages of a turn, do determine and differentiate between a computer action and an opponent action.

One aspect in which my program still, unfortunately, does not go beyond Bart’s description is in its reasoning faculty.  He argues that a card is known to be in the solution only when it is known to not be held by all the players, or when all other possible cards are known to not be in the solution.  These are also the only ways in which the current system approaches the solution.  Bart does not address methods for exploiting the partial knowledge that can be gained during every question/answer period, nor does the program know how to process this information productively.  In this way, I would say my program is still relatively “dumb”, and could only probably only compete with children at this point.  (Although just the fact that it can play the game from beginning to end is a sign of a certain amount of intelligence.)

Currently, it gathers two types of information: it is directly shown cards and it remembers what cards each player definitely does not have.  The latter information is sorted through before each time the computer asks a question, and if every player has said they are not holding a particular card, the computer knows that card is in the solution.  This is an important tool in playing the game, yet it falls far from realizing the potential of a computer Clue player.  Every answer to every question reveals some information: If an opponent asks a question, Q = [p, w, r], and another opponent shows them a card, it is known that the answering opponent has at least one of the cards in Q.  If nobody shows a card in response to this question and the asker does not guess, then s/he must have one of these cards.  A great deal of information can be gathered in these ways, and will certainly be difficult to work with, but I am confident that future versions of the program will be able to work with much, if not all, of this partial knowledge.

At any rate, this approach seems to make more sense than trying to, for instance, guess at other players’ cards based on their patterns of questioning, etc., which is a strategy a human player is likely to use.  My research into computer gaming suggests that attempting to imitate human players in this way is a useless, or at the very least, an unpopular approach.  The strongest computer chess players, for instance, rely on the unique computer abilities of search and computation speed, instead of trying to “play like Kasparov.”  In playing Clue, the main advantage of a computer and, specifically, of a Prolog program would seem to be its ability to consistently keep track of all the partial knowledge disseminated in a game and then to infer definite knowledge from it.

The program also lacks strategies for asking questions, which are essential for advanced play.  The only strategies the system currently has are about showing cards.  First, it tries to show an opponent the same card it previously showed him/her, to minimize the amount of information it spreads to other players.  If no card has previously been shown to the asking opponent, the computer will try to show the person or weapon asked before the room, because it is assumed that the room will be the most frustrating part of the solution to determine.  Eventually, a component that handles question strategy should be built in at the point where, before asking, the program reasons about it partial knowledge.  Part of this strategy module might look at what the computer or other players have previously asked in order to formulate its next question.  The possibility lists of each type could then be reordered, using append(), to put the cards to be asked at the head of each list.

It would also improve the computer’s play to find a new method altogether for question selection other than choosing the next card in the possibility lists.  Currently, when the computer is certain of one of the correct cards, the current program will keep including that card in its question over and over; this is likely to reveal valuable information to the other players.  If the computer knows the correct room, for example, an advanced guessing strategy would be to randomly choose the room to ask from among those the computer holds, the correct one, and possibly even those cards held by the last player to answer.  This would hide the computer’s knowledge and still allow much new information to be gathered.  Again, this strategizing action would be performed just before the computer asks each question.

So, clearly there is room for significant improvements in the area of reasoning. But nevertheless, much has been accomplished with the planning system.  The whole system could certainly be simplified and made more general to handle Bart’s Myst games.  With slight modifications, the whole or parts of it could be applied to board games based on questions and answers, e.g. trivia games like Trivial Pursuit; in this case, though, the reasoning function would be traded for a large trivia “expert” knowledge base.  Simpler board games, which involve only a roll of dice and a choice between several movement options, could also be easily handled by slight modifications(simplifications) to the current system.

