
Honors Program and Design Project: Battle Bot Calculations

Introduction & Goals

When deciding what to pick as a project topic we knew that we wanted to do something
that was challenging, but also taught us new skills beyond our in class experiences. We decided
that we wanted to do something relating to physics and robotics and from there we quickly
settled on Battlebots. Once we had decided on a general topic we narrowed it down to the
creation of a program that would assist in the creation and function of Battlebots while in
combat. Additionally, we also chose this topic because we were confident that it would be
achievable in the month time period while also providing a fun and interesting experience at the
same time.

Specifically, we aimed to create working gear ratio, weapon speed, rotational kinetic
energy, and mass moment of inertia calculators. We chose these values in particular as the
weapon speed and kinetic energy values represent the impact a Battlebot’s weapon has on the
opposing bot while the mass moment of inertia and gear ratio values are necessary to find the
two other values. We accomplished this by researching physics concepts as well as Battlebots as
a whole. The purpose of this project beyond the application of the calculator itself was to
combine and demonstrate our group’s knowledge and interests of programming, mathematics,
physics, and robotics. By completing this project we have learned more about the world of
robotics and its intersection with Computer Science. This is particularly exciting as both of these
fields are rapidly developing in the modern day world.

Distribution of Labor

When deciding on how to divide up the labor for the project so that we could both
complete it on time and ensure that everyone contributed evenly, we decided to go for a flexible
approach. Instead of having each of us strictly focus on one thing we decided to share the
workload so that it would be easier to complete, and so that we all benefited from the learning
process throughout the project. From actual programming to research, slide design, this very
word docs development, and more. We all actively divided up work in multiple areas of the
project to achieve what we deemed was the best form of productivity and time management. We
would say that this flexible approach was very successful for our first group coding project and
will most likely implement it in other class projects and our future careers.



The Rough Flexible Distribution

Alex:, Research, mass moment of inertia, written report, debugging, outline planning, and
editing
Daniel: slides design, written report, research, gear ratio calculator code, and debugging
Nick: research, weapon speed code, kinetic energy code, written report, slides, editing, and
debugging

Methodology
Our progression for completing this project began with rough outlining and discussing

the framework for our final code. This included work on scratch paper outlining roughly what
classes we thought would be necessary as well as potential parameters to occupy the methods in
each class. We also thought about the outputs we’d be looking for from each class to guide our
programming. Additionally, we also completed the math and physics portions of this project, as
well as optimizing the equations for easier programming. As seen below, our methods for
completing the equations were done so that they could be coded as seamlessly as possible. This
includes breaking up otherwise continuous equations into individual mathematical functions.
After completing this, we moved into creating our initial programs



From here, we individually completed four different rudimentary programs to create and test the
calculations being done by our project, as well as to divide the difficult sections. Each of us
separately created the four unique and standalone programs that all complete a specific
mathematical function. From here, we hoped to combine them into one cohesive program, and
we hoped that this method would increase our efficiency, as all three of us working on one
program would be very time consuming and ineffective. Below are our programs, all with our
own programming styles and conventions.

Program to Compute a Gear Ratio
import java.util.Scanner;

public class GearRatio

{

public static void main(String[] args)

{

Scanner scanner = new Scanner(System.in);

System.out.println("Enter the number of teeth on the first gear (the driver

gear):");

int teethDriver = scanner.nextInt();

System.out.println("Enter the number of teeth on the second gear (the

driven gear):");

int teethDriven = scanner.nextInt();

// Calculate the gear ratio

double gearRatio = (double) teethDriver / teethDriven;

// Format the gear ratio to truncate after 4 decimal places

String formattedGearRatio = String.format("%.4f", gearRatio);

System.out.println("The gear ratio is " + formattedGearRatio + " : 1");

}

}

Program to Compute the Kinetic Energy
import java.util.*;

public class KineticEnergy

{

public static void main(String[] args)

{

Scanner doubleScanner = new Scanner(System.in);

System.out.println("Enter in the rpm of the weapon for the calculation of

the weapon speed");



double rpm = doubleScanner.nextDouble();

System.out.println("Enter in the moment intertia drawn from groupmates

other program");

double momentIntertia = doubleScanner.nextDouble();

double kineticEnergy;

//rotational kintetic energy = 1 / 2 * moment of inertia around the axis of

rotation * angular velocity (rotations per minute)

kineticEnergy = (1 / 2) * inertia * rpm * rpmToRadS;

System.out.print(kineticEnergy);

}

}

Program to Compute the Weapon Speed
import java.util.*;

public class WeaponSpeed

{

public static void main(String[] args)

{

Scanner doubleScanner = new Scanner(System.in);

System.out.println("Enter in the rpm of the weapon for the calculation of

the weapon speed");

double rpm = doubleScanner.nextDouble();

System.out.println("Enter in the rotational radius for the weapon for

calculation of the weapon speed");

double weaponRadius = doubleScanner.nextDouble();

double kmhToMph = 1.609344;

double rpmToRadS = (Math.PI * 2) / 60;

double velocityMph, velocityMs, velocityKmh, wRads;

//Rotational velocity = rpm to radians constant * rpm

wRads = rpmToRadS * rpm;

//Velocity meters/second = rotational velocity * radius

velocityMs = wRads * weaponRadius;

//velocity kilometers/hour = meters/second to kilometers/hour constant *

velocity meters/second

velocityKmh = (3600/1000) * velocityMs;

//Velocity miles/hour = velocity kilometers/hour * kilometers/hour to

miles/hour constant

velocityMph = (velocityKmh / kmhToMph);



System.out.print(velocityMph);

}

}

Program to Compute the Momentary Inertia
import java.util.Scanner;

public class MomentInertia {

public static void main(String[] args)

{

Scanner scanner = new Scanner(System.in);

// Prompt user to select the shape

System.out.println("Enter the shape (1 for disk, 2 for tube):");

int shape = scanner.nextInt();

if (shape == 1)

{

calculateDiskInertia();

} else if (shape == 2)

{

calculateTubeInertia();

} else

{

System.out.println("Invalid shape selection.");

}

}

public static void calculateDiskInertia()

{

Scanner scanner = new Scanner(System.in);

// Ask for dimensions

System.out.println("Enter radius of the disk (in meters):");

double radius = scanner.nextDouble();

System.out.println("Enter length of the disk (in meters):");

double length = scanner.nextDouble();

// Ask for density

System.out.println("Enter density of the material (in kg/m^3):");

System.out.println("Common densities: Steel (7800), Titanium (4500),

Aluminum (2760)");

double density = scanner.nextDouble();



// Calculate volume

double volume = Math.PI * Math.pow(radius, 2) * length;

// Calculate mass

double mass = density * volume;

// Calculate inertia

double inertia = (0.25 * mass * Math.pow(radius, 2)) + (1.0/12 * mass *

Math.pow(length, 2));

// Print inertia

System.out.println("The Mass Moment of Inertia of the disk is: " + inertia

+ " kg*m^2");

}

public static void calculateTubeInertia()

{

Scanner scanner = new Scanner(System.in);

// Ask for dimensions

System.out.println("Enter length of the tube (in meters):");

double length = scanner.nextDouble();

System.out.println("Enter inner radius of the tube (in meters):");

double innerRadius = scanner.nextDouble();

System.out.println("Enter outer radius of the tube (in meters):");

double outerRadius = scanner.nextDouble();

// Ask for density

System.out.println("Enter density of the material (in kg/m^3):");

System.out.println("Common densities: Steel (7800), Titanium (4500),

Aluminum (2760)");

double density = scanner.nextDouble();

// Calculate volume

double volume = Math.PI * (Math.pow(outerRadius, 2) - Math.pow(innerRadius,

2)) * length;

// Calculate mass

double mass = density * volume;

// Calculate inertia

double inertia = 0.5 * mass * (Math.pow(outerRadius, 2) +

Math.pow(innerRadius, 2));

// Print inertia



System.out.println("The Mass Moment of Inertia of the tube is: " + inertia

+ " kg*m^2");

}

}

Continuing from this point, we then looked to format and fundamentally change our individual
codes into one cohesive rough design. We created a program incorporating numerous methods
that represented each individual program. We also looked to merge our individual programming
conventions in terms of variable and method names into one product. More work in this would
still be required in terms of perfecting this as well as writing style in comments.

Combined Rough Draft Code With Methods

import java.util.*;

public class CombinedProject {

public static void main(String[] args) {

Scanner doubleScanner = new Scanner(System.in);

Scanner scanner = new Scanner(System.in);

System.out.println("Enter in the rpm of the weapon for the calculation of

the weapon speed");

double rpm = doubleScanner.nextDouble();

System.out.println("Enter in the rotational radius for the weapon for

calculation of the weapon speed");

double weaponRadius = doubleScanner.nextDouble();

System.out.println("Enter the number of teeth on the first gear (the driver

gear):");

int teethDriver = scanner.nextInt();

System.out.println("Enter the number of teeth on the second gear (the

driven gear):");

int teethDriven = scanner.nextInt();

System.out.println("Enter the shape (1 for disk, 2 for tube):");

int shape = scanner.nextInt();

if (shape == 1) {

DiskInertia();

System.out.println(KineticEnergy(rpm, DiskInertia()));

System.out.println(WeaponSpeed(rpm, weaponRadius));

} else if (shape == 2) {

TubeInertia();

System.out.println(KineticEnergy(rpm, TubeInertia()));

System.out.println(WeaponSpeed(rpm, weaponRadius));

} else {

System.out.println("Invalid shape selection.");

}

}



public static double DiskInertia() {

Scanner scanner = new Scanner(System.in);

// Ask for dimensions

System.out.println("Enter radius of the disk (in meters):");

double radius = scanner.nextDouble();

System.out.println("Enter length of the disk (in meters):");

double length = scanner.nextDouble();

// Ask for density

System.out.println("Enter density of the material (in kg/m^3):");

System.out.println("Common densities: Steel (7800), Titanium (4500),

Aluminum (2760)");

double density = scanner.nextDouble();

// Calculate volume

double volume = Math.PI * Math.pow(radius, 2) * length;

// Calculate mass

double mass = density * volume;

// Calculate inertia

double inertia = (0.25 * mass * Math.pow(radius, 2)) + (1.0 / 12 * mass *

Math.pow(length, 2));

// Print inertia

System.out.println("The Mass Moment of Inertia of the disk is: " + inertia

+ " kg*m^2");

return inertia;

}

public static double TubeInertia() {

Scanner scanner = new Scanner(System.in);

// Ask for dimensions

System.out.println("Enter length of the tube (in meters):");

double length = scanner.nextDouble();

System.out.println("Enter inner radius of the tube (in meters):");

double innerRadius = scanner.nextDouble();

System.out.println("Enter outer radius of the tube (in meters):");

double outerRadius = scanner.nextDouble();

// Ask for density



System.out.println("Enter density of the material (in kg/m^3):");

System.out.println("Common densities: Steel (7800), Titanium (4500),

Aluminum (2760)");

double density = scanner.nextDouble();

// Calculate volume

double volume = Math.PI * (Math.pow(outerRadius, 2) - Math.pow(innerRadius,

2)) * length;

// Calculate mass

double mass = density * volume;

// Calculate inertia

double inertia = 0.5 * mass * (Math.pow(outerRadius, 2) +

Math.pow(innerRadius, 2));

// Print inertia

System.out.println("The Mass Moment of Inertia of the tube is: " + inertia

+ " kg*m^2");

return inertia;

}

public static double KineticEnergy(double rpm, double momentInertia) {

double kineticEnergy;

//rotational kintetic energy = 1 / 2 * moment of inertia around the axis of

rotation * angular velocity (rotations per minute)

kineticEnergy = (1 / 2) * momentInertia * rpm * rpmToRadS;

return kineticEnergy;

}

public static double WeaponSpeed(double rpm, double weaponRadius) {

double kmhToMph = 1.609344;

double rpmToRadS = (Math.PI * 2) / 60;

double velocityMph, velocityMs, velocityKmh, wRads;

//Rotational velocity = rpm to radians constant * rpm

wRads = rpmToRadS * rpm;

//Velocity meters/second = rotational velocity * radius

velocityMs = wRads * weaponRadius;

//velocity kilometers/hour = meters/second to kilometers/hour constant *

velocity meters/second

velocityKmh = (3600 / 1000) * velocityMs;



//Velocity miles/hour = velocity kilometers/hour * kilometers/hour to

miles/hour constant

velocityMph = (velocityKmh / kmhToMph);

System.out.print(velocityMph);

return velocityMph;

}

public static double GearRatio(int teethDriver, int teethDriven)

{

// Calculate the gear ratio

double gearRatio = (double) teethDriver / teethDriven;

return gearRatio;

}

}

From this point, we produced the final code, with one style and design, as well as utilizing a
more effective and advanced structure. We moved away from one class with numerous methods
to multiple classes and subclasses with objects to more effectively complete our project. This
way is more reminiscent of advanced programming as well as taking advantage of the
object-oriented aspect of Java. We also spent time making sure the grammar, syntax and style of
variables, declarations, and comments are consistent. The result is a complete and cohesive
project that is effective at solving our problem.

Core Code

import java.util.*;

class WeaponSpeed

{

private double rpm, weaponRadius;

private String formattedVelocityMph;

//Constructor

public WeaponSpeed(double rpm, double weaponRadius)

{

this.rpm = rpm;

this.weaponRadius = weaponRadius;

}

//Method to calculate weapon speed

public void CalculateWeaponSpeed()



{

double kmhToMph = 1.609344;

double rpmToRadS = (Math.PI * 2) / 60;

double velocityMph, velocityMs, velocityKmh, wRads;

//Rotational velocity = rpm to radians constant * rpm

wRads = rpmToRadS * rpm;

//Velocity meters/second = rotational velocity * radius

velocityMs = wRads * weaponRadius;

//velocity kilometers/hour = meters/second to kilometers/hour constant *

velocity meters/second

velocityKmh = (3600 / 1000) * velocityMs;

//Velocity miles/hour = velocity kilometers/hour * kilometers/hour to

miles/hour constant

velocityMph = (velocityKmh / kmhToMph);

//Formats final velocity in miles/hour as a string to truncate after 4

decimal places

formattedVelocityMph = String.format("%.4f", velocityMph);

}

//Display calculations

public void DisplayInfo()

{

System.out.println("The velocity of the weapon in miles per hour is: " +

formattedVelocityMph);

}

}

class KineticEnergy

{

private double rpm, inertia;

private String formattedKineticEnergy;

//Constructor

public KineticEnergy(double rpm, double inertia)

{

this.rpm = rpm;

this.inertia = inertia;

}

//Method to calculate kinetic energy of the weapon

public void CalculateKineticEnergy()

{



double kineticEnergy;

//rotational kintetic energy = 1 / 2 * moment of inertia around the axis of

rotation * angular velocity (rotations per minute)

kineticEnergy = (1 / 2) * inertia * rpm * rpmToRadS;

//Formats final kinetic energy in miles/hour as a string to truncate after

4 decimal places

formattedKineticEnergy = String.format("%.4f", kineticEnergy);

}

//Display calculations

public void displayInfo()

{

System.out.println("The kinetic energy of the weapon in joules is: " +

formattedKineticEnergy);

}

}

class MomentInertia

{

private int type;

private double inertia;

//Constructor

public MomentInertia(int type)

{

this.type = type;

}

//Method to calculate the momentary rotational inertia

public void CalculateMomentInertia()

{

//Sorts calculations done by the given shape

if (type == 1)

{

CalculateDiskMomentInertia();

} else if (type == 2)

{

CalculateTubeMomentInertia();

} else

{

System.out.println("Invalid shape selection.");

}

}

//Method to continue calculations based on the shape of the weapon



public void CalculateDiskMomentInertia()

{

Scanner scanner = new Scanner(System.in);

// Ask for dimensions

System.out.println("Enter radius of the disk (in meters):");

double radius = scanner.nextDouble();

System.out.println("Enter length of the disk (in meters):");

double length = scanner.nextDouble();

// Ask for density

System.out.println("Enter density of the material (in kg/m^3):");

System.out.println("Common densities: Steel (7800), Titanium (4500),

Aluminum (2760)");

double density = scanner.nextDouble();

// Calculate volume

double volume = Math.PI * Math.pow(radius, 2) * length;

// Calculate mass

double mass = density * volume;

// Calculate inertia

inertia = (0.25 * mass * Math.pow(radius, 2)) + (1.0/12 * mass *

Math.pow(length, 2));

}

//Method to continue calculations based on the shape of the weapon

public void CalculateTubeMomentInertia()

{

Scanner scanner = new Scanner(System.in);

// Ask for dimensions

System.out.println("Enter length of the tube (in meters):");

double length = scanner.nextDouble();

System.out.println("Enter inner radius of the tube (in meters):");

double innerRadius = scanner.nextDouble();

System.out.println("Enter outer radius of the tube (in meters):");

double outerRadius = scanner.nextDouble();

// Ask for density

System.out.println("Enter density of the material (in kg/m^3):");

System.out.println("Common densities: Steel (7800), Titanium (4500),

Aluminum (2760)");



double density = scanner.nextDouble();

// Calculate volume

double volume = Math.PI * (Math.pow(outerRadius, 2) - Math.pow(innerRadius,

2)) * length;

// Calculate mass

double mass = density * volume;

// Calculate inertia

inertia = 0.5 * mass * (Math.pow(outerRadius, 2) + Math.pow(innerRadius,

2));

}

//Saves inertia to a method getInertia for access in future calculations

public double getInertia()

{

return inertia;

}

}

class GearRatio

{

private int teethDriver, teethDriven;

private String formattedGearRatio;

//Constructor

public GearRatio(int teethDriver, int teethDriven)

{

this.teethDriver = teethDriver;

this.teethDriven = teethDriven;

}

//Method to calculate the gear ratio of the drivetrain

public void CalculateGearRatio()

{

double gearRatio = (double) teethDriver / teethDriven;

formattedGearRatio = String.format("%.4f", gearRatio);

}

//Display calculations

public void displayInfo()

{

System.out.println("The gear ratio between the two given gears is: " +

formattedGearRatio + " : 1");

}

}



public class Main

{

public static void main(String[] args)

{

Scanner doubleScanner = new Scanner(System.in);

Scanner intScanner = new Scanner(System.in);

//Gathering of necessary variables for calculation

System.out.println("Enter in the rpm of the weapon for the calculation of

the weapon speed");

double rpm = doubleScanner.nextDouble();

System.out.println("Enter in the rotational radius for the weapon for

calculation of the weapon speed");

double weaponRadius = doubleScanner.nextDouble();

System.out.println("Enter the number of teeth on the first gear (the driver

gear):");

int teethDriver = intScanner.nextInt();

System.out.println("Enter the number of teeth on the second gear (the

driven gear):");

int teethDriven = intScanner.nextInt();

System.out.println("Enter the shape (1 for disk, 2 for tube):");

int type = intScanner.nextInt();

//Object instantation for an example weapon to calculate weapon speed

WeaponSpeed exampleWeapon = new WeaponSpeed(rpm, weaponRadius);

//Object instantation for an example weapon to calculate momentary

rotational inertia

MomentInertia exampleWeapon2 = new MomentInertia(type);

double foundInertia = exampleWeapon2.getInertia();

//Object instantation for an example weapon to calculate kinetic energy

KineticEnergy exampleWeapon3 = new KineticEnergy(rpm, foundInertia);

//Object instantation for an example weapon to calculate gear ratio

GearRatio exampleWeapon4 = new GearRatio(teethDriver, teethDriven);

}

}

Explanation of Core Code
Our code is divided into one main class and four subclasses designated with each

mathematical function of our project. Each subclass has a constructor method to instantiate the
necessary variables, as well as a calculation method in which the functions are computed. In the
Moment Inertia class, there are also two different methods for calculations based on the shape of



the object, which is user determined. That class also has a getInertia method so that the value can
be accessed in the main class for use in other calculations. The other three classes have a display
info method that prints the results as a truncated and formatted string. The main class has a block
of inputs for necessary variables entered by the user and ends with the objects being created so
that the calculations can run.

A brief explanation of the math is as follows: the gear ratio is found by dividing the teeth
of the driving gear by the teeth of the driven gear. The mass moment of inertia is found by first
determining the volume of the weapon using the dimensions provided by the user, then finding
the mass by multiplying the density by this volume. Finally, the mass moment of inertia is
calculated by incorporating the dimensions given by the user and the mass. The speed of the
weapon is found by converting rpm to rad/s, then rad/s to m/s, followed by m/s to km/h, and
finally km/h to mph. The rotational kinetic energy is found by squaring the rad/s and then
multiplying it by one half and the mass moment of inertia.

Challenges Faced

Throughout this project we faced many challenges and hurdles, which needed to be
overcome. Some of those challenges were typical group project issues like: sharing ideas with
others, time management, or meshing of our respective programming styles. However some of
the challenges came as a result of the project itself. For example, things like: the proper
implementation of the physics to both write the program and check its accuracy or learning new
classes (Scanner, Math, etc.) were problems that we faced. Overall, this project came with plenty
of challenges to keep us "on our toes” but we overcame them all.

Conclusion

Over the course of this project, we delved into the interconnected disciplines of
mathematics, physics, robotics, and data analysis with the goal of creating a program that would
help in the construction of a Battlebot. Beyond even these technical topics we explored how to
collaboratively code as this was a first time experience coding with others for all of us.
Additionally, we acquired proficiency in creating comprehensive reports and presentations,
refining our articulation and presentation abilities. These skills learned throughout this project's
course, hold significant value as we continue our future academic and professional pursuits,
equipping us to meet challenges with both confidence and adeptness.

Sources



● http://runamok.tech/AskAaron/tools.html
● https://lucidar.me/en/unit-converter/revolution-per-minute-to-miles-per-hour/
● https://www.omnicalculator.com/physics/gear-ratio
● http://runamok.tech/RunAmok/spincalc.html
● http://runamok.tech/squid/newtorquecalc.htm
● https://openstax.org/books/university-physics-volume-1/pages/10-4-moment-of-inertia-an

d-rotational-kinetic-energy

http://runamok.tech/AskAaron/tools.html
https://lucidar.me/en/unit-converter/revolution-per-minute-to-miles-per-hour/
https://www.omnicalculator.com/physics/gear-ratio
http://runamok.tech/RunAmok/spincalc.html
http://runamok.tech/squid/newtorquecalc.htm
https://openstax.org/books/university-physics-volume-1/pages/10-4-moment-of-inertia-and-rotational-kinetic-energy
https://openstax.org/books/university-physics-volume-1/pages/10-4-moment-of-inertia-and-rotational-kinetic-energy

