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ABSTRACT

Visual codebook has been popular in object classification
as well as action analysis. However, its performance is of-
ten sensitive to the codebook size that is usually predefined.
Moreover, the codebook generated by unsupervised methods,
e.g., K-means, often suffers from the problem of ambiguity
and weak efficiency. In other words, the visual codebook
contains a lot of noisy and/or ambiguous words. In this pa-
per, we propose a novel method to address these issues by
constructing a compact but effective visual codebook using
sparse reconstruction. Given a large codebook generated by
K-means, we reformulate it in a sparse manner, and learn the
weight of each word in the original visual codebook. Since
the weights are sparse, they naturally introduce a new com-
pact codebook. We apply this compact codebook to action
recognition tasks and verify it on the widely used Weizmann
action database. The experimental results show clearly the
benefits of the proposed solution.

Index Terms— Codebook, sparse representation, action
recognition

1. INTRODUCTION

Bag of visual words has become an important framework in
many computer vision areas, due to their robustness and sim-
plicity, as well as reported excellent performance on visual
recognition tasks such as object recognition, scene identifica-
tion, and action understanding [1, 2, 3, 4]. The basic idea is
to construct a visual codebook on the statistics of the various
features in videos and images, which can be used to represent
a target. In recent years, the K-means algorithm has been fre-
quently used to construct the visual codebook because of its
effectiveness and simplicity. The centroid of a cluster corre-
sponds to a word in the visual codebook. However, K-means
has two major shortcomings. First, we need to set the number
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of clusters in advance, which has a decisive role in the perfor-
mance in the consequent recognition tasks. Second, there is
no guarantee that every word from K-means carries a seman-
tic meaning, in that it is a purely unsupervised method. Thus
the resulting visual codebook often contains a lot of noisy and
ambiguous words.

In this paper, we add an additional layer of compression
after the traditional codebook construction to overcome these
drawbacks, as shown in Fig. 1. First, we generate a sparse rep-
resentation of the training data based on the old visual code-
book. Second, we learn the weight of each word in the old
visual codebook from the sparse representation. At last the
compression can be done based on the weights.

We test the proposed approach on the Weizmann action
database [5]. Interestingly, the new visual codebook, half the
size of the old visual codebook, has the same performance as
the one built by K-means .

The rest of the paper is organized as follows: in the next
subsection we discuss the related work, and the sparse rep-
resentation method is introduction in Section 2. The action
feature extraction and recognition methods are presented in
Section 3, and the experimental results are shown in Section
4. Section 5 is devoted to conclusion.

1.1. Related work

To optimize the initial visual codebook, many approaches
have been proposed in the literature. For instance, Farquhar
et al. built their codebook based on maximum-a-posterior
[6]. Moosmann et al. constructed visual codebooks using
randomized clustering forests [7]. Winn et al. learned an
optimally compact visual dictionary by pair-wise merging of
visual words from an initially large dictionary [3]. Yang et al.
unified the visual codebook generation with classifier training
[1]. The algorithms mentioned above are used to generate a
discriminative codebook. In this paper, we focus on reducing
the size of the visual codebook but without compromising
performance.

Another piece of closely related area is sparse representa-
tion in computer vision. It has gained much attention in recent



Fig. 1. Flowchart of the usage of visual codebook (Dashed part is additional)

years due to its compact and robust representation power and
it has been widely applied in many computer vision tasks,
such as face recognition [8], tracking [9], background sub-
traction [10], texture segmentation [11], lighting estimation
[12], etc.

2. SPARSE REPRESENTATION OF ACTION

When we use the space-time interest point [13] as the motion
feature, there are many interest points that are extremely sim-
ilar, because of the periodic nature of human motion and the
similarity of different people doing the same motion. There-
fore, a feature point (word) usually can be represented by a
linear combination of some typical points (words). Given a
visual codebook V = [v1, v2, · · · , vn] ∈ Rd×n, containing n
motion words vi ∈ Rd, a new motion word t can be approxi-
mated by a linear combination of the words,

t ≈ V x = x1v1 + x2v2 + · · ·+ xnvn, (1)

where x = (x1, x2, · · · , xn)T is the coefficient vector. When
the codebook is big enough, x = [0, · · · , 0, β, · · · , 0, · · · , 0]T

is a sparse vector, forming the sparse representation of t on
V . We can find the sparsest solution to t = V x, by solving
the following optimization problem:

x = arg min ||x||0 subject to V x = t, (2)

where ||.||0 denotes the `0 norms. This could be essentially
treated as an `1-regularized least squares problem [14].

2.1. Sparse Representation of Codebook

Our goal of constructing codebook is to use fewer words to
represent more motions, while consistent with the sparse rep-
resentation in Eqn. (2). Thus we compress the visual code-
book using sparse representation, after the construction of the
visual codebook, as shown in the Fig. 1.

The old visual codebook Vold is built by K-means, then
according to Eqn. (1), the new target t can be represented by

Voldxold = t. (3)

Our goal is to build a compact visual codebook

Vnew = VoldS, (4)

where Vnew = [v1, v2, · · · , vm] ∈ Rd×m(m < n) is the new
codebook which contains fewer words than the old one. Then
Eqn. (3) can be reformulated as

Vnewxnew = t. (5)

Ideally, xold is a sparse vector. xold = xnew, when we add
many 0 to xnew to make it have the same dimension as xold

does. Meanwhile, S is a diagonal matrix, with 0 and 1 on
its main diagonal. S satisfies VoldSxnew = t, so the ideal
codebook for t is Vnew = VoldS. Therefore, we can use a
large number of t to get a compact Vnew.

In another word, x is the sparse representation of t on V
in Eqn. (1). The non-zero element in x, β, means that its
corresponding word is used to represent t. So, it is one of the
words we need.

The first step of our approach to compressing the old vi-
sual book is to solve

min ||Voldsri − featurei||22 + λ||sri||1, (6)

where featurei is one of the action features, whose corre-
sponding sparse representation is sri ∈ Rn. It means we
use the old visual codebook to sparsely represent the training
data following Eqn. (6) that is solvable via an interior-point
method1 [14].

The second step of our approach is to learn the weight of
each word in the old visual codebook, from the sparse repre-
sentation of the entire action features. Then we generate the
new visual codebook through six different algorithms. The
first two are extensions of SRC, whose details can be found
in [8]. For sri ∈ Rn, δj(sri) is a new vector whose only
non-zero element is the jth element in sri. Then we can ap-
proximate the given test sample featurei as featurei =
Voldδj(sri). We then identify the major words in the lin-
ear combination of featurei by Eqn. (7). Here (.)j(j ∈
[1, · · · , d]) denotes the value on the jth dimension in (.).

arg min
j

||featurei − Voldδj(sri)||2 (7)

Algorithms 3 and 4 choose the biggest coefficients associated
with the corresponding word as the major word in the linear
combination of featurei. The last two algorithms count sev-
eral largest values that are similar as choosing eigenvectors in
PCA.

The six algorithms can be divided into two categories.
One focuses on `1 distance and the other uses `0 distance. The
inputs of the six algorithms are Vold, sr, and feature, while
the output is W ∈ Rd. W are the weights of words in the old
visual codebook. The bigger values in W correspond to the
more important words. In this paper, a new visual codebook
is built from W through Algorithm 7, where α is a parame-
ter controlling the compression rate. When α = 1, the new
codebook is same as the old codebook.

1http://www.stanford.edu/ boyd/l1 ls/



1 for i = 1; i ≤ total do
2 r(featurei) = ||featurei − Voldδj(sri)||2;
3 temp = arg min

j
r(featurei);

4 wtemp = wtemp + ||(sri)temp||1;
5 end

Algorithm 1: SRC+`1

1 for i = 1; i ≤ total do
2 r(featurei) = ||featurei − Voldδj(sri)||2;
3 temp = arg min

j
r(featurei);

4 wtemp = wtemp + ||(sri)temp||0;
5 end

Algorithm 2: SRC+`0

1 for i = 1; i ≤ total do
2 temp = arg max

j
(sri)j ;

3 wtemp = wtemp + ||(sri)temp||1;
4 end

Algorithm 3: MAX+`1

1 for i = 1; i ≤ total do
2 temp = arg max

j
(sri)j ;

3 wtemp = wtemp + ||(sri)temp||0;
4 end

Algorithm 4: MAX+`0

1 for i = 1; i ≤ total do
2 [value, index] = sort((sri)j ,

′ descend′);

3

temp∑
k=1

(value)k

n∑
j=1

(value)j

> 90%;

4 windex(1:temp) =
windex(1:temp) + ||(sri)index(1:temp)||1;

5 end
Algorithm 5: MAXS+`1

3. ACTION RECOGNITION

Our main framework for action recognition follows [15]. In
the training stage, we build the old visual codebook using K-
means. Then we generate the new visual codebook based on
sparse representation and learn the probability table from the
new visual words to action classes. In the testing stage, we
class the action features to words in the new visual codebook
and sum the probabilities from word to action of all action
features in one video which can be found in the probability

1 for i = 1; i ≤ total do
2 [value, index] = sort((sri)j ,

′ descend′);

3

temp∑
k=1

(value)k

n∑
j=1

(value)j

> 90%;

4 windex(1:temp) =
windex(1:temp) + ||(sri)index(1:temp)||0;

5 end
Algorithm 6: MAXS+`0

Input: Vold, W , α
1 for i = 1; i ≤ total do
2 [value, index] = sort(W,′ descend′);

3

temp∑
k=1

Wk

n∑
j=1

Wj

> α;

4 choose the largest temp weights corresponding to
words

5 end
Output: Vnew

Algorithm 7: Construct New Codebook

table. The largest value leads to our prediction of the action
class.

The space-time interest point is used for a compact repre-
sentation of video data and robust to occlusions, background
clutter, significant scale changes, and high action irregulari-
ties. They have been successfully used as action features in
the action recognition tasks [2, 16]. In our work, we detect
space-time interest points using the Harris operator detector,
with hog+hof as descriptors, using a publicly available code.2

The Euclidean distance metric is adopted to evaluate the sim-
ilarity of two features.

4. EXPERIMENTS

We evaluate our approach on the Weizmann action database
[5]. It contains 81 low-resolution video sequences from nine
different people. Each sequence shows one person perform-
ing one of the nine natural actions: “running”, “walking”,
“jumping”, “jumping forward on two legs”, “jumping in place
on two legs”, “galloping sideways”, “waving two hands”,
“waving one hand”, and “bending”. The video sequences
have 180 × 144 pixel resolution and 25 frames per second.
We perform the leave-one-out-cross-validation (LOOCV),
which means 80 videos are used for training and the rest one
for testing.

We first test our algorithm with different values of α and
different numbers of words in the old visual codebook. The
results are shown in Table 1. We can see that the more words

2http://www.irisa.fr/vista/Equipe/People/Laptev/download.html



Table 1. Recognition rate vs. the number of words in the new
visual codebook, with different α. Results are the average of
six algorithms.

# of words 1000 800 400 200
α = 1 90.12% 87.65% 83.95% 75.84%

0.9 780 624 316 161
89.51% 87.24% 81.89% 71.81%

0.8 637 510 260 133
89.51% 84.16% 80.25% 71.40%

0.7 518 415 213 109
89.30% 84.16% 76.75% 66.67%

0.6 414 333 171 88
84.65% 81.69% 70.37% 59.46%

the old visual codebook has, the better performance our ap-
proach achieves.

In Table 2, our old codebook has 1000 words, with a
recognition rate of 90.12% (73 out of 81 times). We com-
press the number of words with different α, and we can see
that the number of words drops sharply, while the recogni-
tion rate decreases just slightly. Furthermore, when α = 0.7,
Algorithm 2 gets the highest recognition rate that is two per-
centage points higher than the old codebook with the original
word size, and it only needs 499 words, just half the size of
the old codebook. Overall, the six algorithms of building the
new visual codebook get very comparable recognition rates
(70-75 out of 81 times). It can be explained by that when sri

is indeed sparse, the results are roughly the same across the
6 algorithms. In another word, the distribution of the data of
interest is indeed consistent with our conjecture. Compared
with the old codebook containing 1000 words, our new visual
codebook is half in size and has better performance.

5. CONCLUSION

In this paper we proposed a method using sparse represen-
tation to compress the visual codebook. We first represent
the training data using sparse representation of the old visual
codebook, and then learn the weight of every word that is
used for compression. We tested our approach on the Weiz-
mann action database, and showed that the sparse represen-
tation could help optimize the visual codebook learnt by K-
means to fewer words while with stable performance.
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