
  
Abstract� 

discriminative p
that are associa
disease). The m
following the tra
has been shown 
of the voxels a
statistical tests 
segments of the 
patterns. To dis
patterns to the
mapping of the t
fMRI data se
neuroanatomica
Alzheimer�s dis
that discrimina
results by pres
information extr
identified throu
temporal lobe be
classification ac
certain experim
great potential f
and can be valua

 
Keywords�

Hilbert space-fil
 
 

 
 The detect
structures and b
has been recogn
Brain Project [1
problem doma
functional brain
brain activation
obstacle in this
automatically cl
and quantitative
paper we propo
functional Mag
patterns. More
activation patte
disease. 
 
 
* This work was 
Pennsylvania Depa
responsibility for an

 

0-7803-7789-3
Detecting Discriminative Functional MRI Activation Patterns  
Using Space Filling Curves 

 
D. Kontos1,*, V. Megalooikonomou1,*, N. Ghubade1, C. Faloutsos2 

1 Department of Computer and Information Sciences, Temple University, Philadelphia, PA 
2 Department. of Computer Science, Carnegie Mellon University, Pittsburgh, PA 
We propose a novel approach for detecting 
atterns of functional MRI (fMRI) activation 
ted with non-spatial clinical variables (e.g. 
ain idea is to map the 3D volumes to 1D 
versal of the Hilbert space-filling curve, which 
to exhibit optimality in preserving the locality 
fter the domain transformation. We apply 
of significance on groups of points, i.e., 

transformed domain, to detect discriminative 
cover discriminative areas, we project these 
 initial 3D space by following the inverse 
ransformation. As a case study, we analyze an 
t obtained from a study that explores 
l correlates of semantic processing in 
ease. We seek to discover activation regions 
te controls from patients. We evaluate the 
enting classification experiments that utilize 
acted from these regions. The discovered areas 
gh back-projection are within the medial 
ing consistent with prior findings. The overall 
curacy ranged from 81% up to 100% for 
ental settings. The proposed approach has 
or elucidating structure-function relationships 
ble to human brain mapping. 

 activation patterns, classification, fMRI, 
ling curve, linear mapping. 

I.  INTRODUCTION 

ion of relationships between human brain 
rain functions (i.e., human brain mapping) 
ized as one of the main goals of the Human 
]. Several approaches have been used in this 
in [2]. One of the approaches used in 
 mapping is to seek associations between 
 patterns and tasks performed. A current 
 type of analysis is the lack of methods to 
assify such patterns (i.e., activation regions) 
ly measure levels of their similarity. In this 
se a technique for detecting and classifying 
netic Resonance Imaging (fMRI) activation 
 specifically, we seek to discover brain 
rns that are associated with a particular 
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      One of the most common approaches currently in use for 
analyzing fMRI activation is statistical parametric mapping 
(SPM)[3]. SPM analyzes each voxel�s changes independently 
and ascertains their significance by means of statistical tests. 
This can be computationally expensive for large volumes, 
since each voxel is being considered independently. A 
problem associated with this is the multiple comparison 
problem, which occurs when computing a statistic for many 
pairwise tests. Another approach for classifying fMRI 
activation is to model (estimate) the underlying activation 
distributions utilizing parametric, non-parametric or semi-
parametric techniques [4]. The main problem of these 
techniques is that real data are not accurately modeled using 
a simple mixture of Gaussian components, which is the 
approach that most of these approaches follow. Real data 
usually correspond to highly non-uniform distributions and 
estimating those in a multidimensional space is a difficult 
task to accomplish [5]. The additional dimensions represent 
more degrees of freedom in modeling the underlying 
activation distributions. This can easily mislead the 
estimation process to converge in local minima on the error 
surface of searching the best distribution hypothesis that can 
fit the observed activation data.   

To overcome these difficulties, we propose a technique 
that is based on a linear mapping of the multidimensional 
space. Several functions have been proposed in the literature 
for this domain transformation. The z-ordering is based on 
interleaving bits from coordinates [6] and can be improved 
using Gray coding on the interleaved bits [7]. Here, we use 
the Hilbert space-filling curve [8], which has been shown to 
be optimal in preserving the locality of the voxels after the 
domain transformation, compared to the other functions 
proposed in the literature for this domain transformation [9]. 
The Hilbert space-filling curve has been extensively used 
for improving indexing in multidimensional databases [10] 
and similarity searches in spatial databases [11]. To avoid 
the multiple comparison problem, we apply statistical tests 
of significance on groups of voxels (bins) in the transformed 
domain. It has been shown that reproducing fMRI 
activations at a regional level is more robust across sites, 
subjects, and techniques than considering only the most 
significant voxels [12,13]. Here we compare patterns across 
activation maps taking into account their spatial extent 
instead of just the location of the most significant peaks. To 
identify the areas defined by the indicated discriminative 
bins in the linear domain, we project them back to the initial 
3D space following the inverse mapping procedure. Finally, 
to evaluate  the discriminatory  significance of  the detected  
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 Fig. 1. (a) An example of the 3D traversal of the curve and (b)  the fractal like progress of the Hilbert space-filling curve in the 2D after a few iterations. 
  

patterns, we develop a classification model based on  Neural 
Networks that utilizes information extracted from the 
indicated regions to provide prediction and diagnosis. Here 
the goal is, given an fMRI image of a new subject, to 
determine the group to which it belongs, i.e., control versus 
various disease states such as Alzheimer�s disease (AD). 
 

II. METHODOLOGY 
 

We seek to discover regions that provide significant 
discriminative information with respect to non-spatial 
properties, such as class membership (controls vs. patients). 
In the discussion that follows we present the proposed 
method for a two-class problem although it can be easily 
extended to more than two classes. In order to evaluate the 
method we construct features (attributes) that we use to 
develop and train a classification model for prediction and 
diagnosis. The method is applied on activation contrast 
maps that are the output of SPM (operating on individual 
subjects independently). SPM creates 3D activation maps of 
contrast and statistical significance values for pairs of 
conditions. We replace the typical "second level" of SPM 
analysis (group model). 
 Our method is based on a linear mapping of the 3D 
space using space filling curves. Informally, a space filling 
curve defines a continuous path in a multidimensional grid, 
visiting each point exactly once and never crossing itself. A 
desired property is to preserve the distances, in other words 
the spatial locality of the initial domain. We propose using 
the Hilbert space-filling curve which, as mentioned earlier, 
has been shown to be optimal in preserving the clustering 
properties of the initial multidimensional points, compared 
to other functions that have been used for such a domain 
transformation [9]. The main idea of the traversal followed 
by the Hilbert curve in the 3D space is shown in Fig. 1 (a). 
For clarification purposes, a clearer demonstration of the 
fractal-like traversal followed by the curve is shown in Fig. 
1. (b) for the case of 2D. The procedure to derive higher 
orders of the curve, such as the 3D curve that we propose to 
use, is based on rotating and reflecting the curve at vertex 0 
and vertex 3. The traversal proceeds in a recursive manner, 
following the same rotation and reflection pattern at each 
vertex of the basic curve. A detailed algorithm on how to 
grow the curve can be found in [14]. 

We apply the 3D Hilbert space-filling curve to all the 
3D fMRI activation contrast maps of our dataset, mapping 
their voxels in the linear domain. We continue our statistical 
analysis in the linear domain. To reduce the dimensionality 

of the data and the effect of the multiple comparison 
problem, we employ an intermediate step of binning. For 
each subject we group together K consecutive points in the 
1D and use as a representative attribute of the corresponding 
bin their mean value, Vmean. These representative values are 
then used in further statistical processing. The process of 
binning introduces a static partitioning of the space and 
smoothing of the corresponding voxel values. Furthermore, 
viewing K as a product of K=k*k*k approximates a k*k*k 
neighborhood in the initial multidimensional space, since 
the Hilbert curve preserves locality. Depending on the size 
of k the proposed approach has the ability to introduce a 
significant dimensionality reduction.  

In order to detect discriminative activation patterns, we 
apply statistical tests of significance on the voxel bins. More 
specifically, for each separate bin we compare statistically 
the Vmean measurements (attributes) of all the samples 
belonging to one class to the corresponding Vmean 
measurements of the contrasting class. In other words, we 
estimate whether the Vmean distributions for each bin differ 
substantially in the separate classes. For this purpose several 
statistical tests can be applied. For example, this can be 
estimated using parametric (e.g. t-test) or non-parametric 
tests (e.g. Wilcoxon rank sum) [15]. Also, the Pearson 
correlation coefficient [15] between the class label 
(considered as a binary numeric value) and the attribute 
value Vmean for each sample bin can be computed (in this 
case an attribute is considered significant if the correlation 
coefficient is larger than a pre-determined threshold).   

The voxel activation of a specific bin is considered to 
differ substantially class-wise when the statistical 
significance of the divergence is above a certain predefined 
threshold θ. Divergence is estimated using one of the 
previously mentioned statistical tests on the distributions of 
the Vmean measurements. This statistical significance is 
assigned to all the voxels of the corresponding bin. A 
discriminatory spatial activation pattern is constructed by 
back-projecting the indicated significant groups of voxels, 
forming areas in 3D. 

 
III. RESULTS 

 
Our dataset consisted of 3D activation maps of 9 

controls and 9 Alzheimer�s disease patients on a category-
exemplar word pair. The task consisted of an auditory 
presentation of word pairs (categories and possible 
exemplars) requiring a semantic decision (match-mismatch) 
[16]. Prior to the application of the  proposed technique,  we  
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                         (a)             (b)               (c)             (d)                                             (e) 
Fig. 2.  Steps of the proposed technique on the AD fMRI contrast map dataset: (a) A 2D slice of the 3D fMRI brain activation map and (b) the traversal of 
the Hilbert space-filling curve through it. (c) The result of the linear mapping of a 3D fMRI scan and (d) the effect of binning by representing each bin with 
its Vmean measurement. (e) The discriminative voxels as indicated after applying the t-test with θ=0.05 in the transformed domain. 
 

TABLE I 
Classification Accuracies for t-test 

θ=0.05   θ=0.01  
k 

Controls Patients Overall Controls Patients Overall 
2 0.9444 0.9889 0.9667 1 1 1 
3 0.8667 1 0.9333 0.9556 1 0.9778 
4 0.9111 0.9889 0.9500 0.9667 1 0.9833 
5 0.8111 0.9778 0.8944 0.8667 0.9667 0.9167 
6 0.7889 1 0.8944 0.7556 0.9778 0.8667 
7 0.8889 0.9444 0.9167 0.8778 0.9222 0.9000 
8 0.9000 0.9222 0.9111 0.8556 0.7778 0.8167 
9 0.8556 0.9556 0.9056 0.8889 0.7444 0.8167 

10 0.8000 0.9778 0.8889 0.7889 0.8444 0.8167 
 
performed spatial normalization, i.e., registration of the 
scans to a standard template brain using the anatomical 
reference images. This was carried out in SPM99 [3]. Each 
subject's task-related activation was analyzed individually 
versus the subject�s rest condition, resulting in individual 
contrast maps giving a measurement of fMRI signal change 
at each voxel. First, we removed the effect of the 
background noise by subtracting the signal value measured 
in representative background voxels from  all the  voxels  of 
the 3D volume. Finally, we masked the data using a binary 
mask extracted from the T1 canonical atlas that was used as 
the template for the registration. Only signal within the 
binary mask was included in the analysis. 

After these preprocessing steps we first applied the 
linear transformation imposed by the 3D Hilbert space-
filling curve to all the sample 3D contrast maps (9 controls 
and 9 patients). For visualization purposes only, we 
illustrate the main idea for the traversal of the Hilbert space-
filling curve on a 2D slice of the activation maps in Fig. 2. 
(a) and (b), although the 3D curve was applied  on the fMRI 
volumes, providing a direct 3D to 1D linearization. To 
reduce the dimensionality of the dataset in the 1D space we 
experimented with a range of values for the bin size K, from 
K=2*2*2 (k=2) to K=10*10*10 (k=10). We used the t-test 
for detecting discriminative spatial patterns and 
experimented with significance thresholds θ=0.05 and 
θ=0.01. Fig. 2 shows the results of binning (d) and the 
discriminative bins detected by the application of the t-test 
(e) on the 1D transformation of a patient sample (c).  

To evaluate the predictive power and the association of 
the indicated patterns with the disease, we proceeded with 
classification experiments. As a classification model we  
used Neural Networks. To avoid overfitting due to a small  

 
training dataset we applied one-layer perceptron networks 
trained by the Pocket algorithm [17]. As inputs to the 
classifier we used the attributes Vmean corresponding to the 
discriminative bins. The output was a binary class label 
indicating the class of the samples (control vs. patient). To 
improve the neural network training, prior to feeding to the 
network, the attributes were standardized to have zero mean 
and unit standard deviation.  The leave-one-out approach 
was employed to evaluate classification performance on 
unseen data. Taking into consideration the stochastic nature 
of the Pocket algorithm, we repeated the process of training 
and testing the model in each of the leave-one-out loops 10 
times and averaged the percentage of the correct predictions 
to obtain the reported accuracy.  

The indicated regions forming discriminative spatial 
patterns that correspond to the best classification results for 
each θ selection are shown in Fig. 3 after being overlaid on 
the T1 anatomical template. The significance of each region 
is annotated using a color coding. 

Table I shows the classification results obtained for 
control and patient samples separately as well as the overall 
classification accuracy for each experiment. Very good 
classification was achieved, reaching even 100% for specific 
experimental settings. These results support the argument 
that the regions discovered by the proposed approach are 
indeed associated with AD, thus providing significant 
discriminative information. 

Fig. 3 shows that the majority of the significant regions 
determined by the proposed approach that could 
discriminate Alzheimer patients from controls were within 
the medial temporal lobe. This is consistent with other 
findings [18].   The   neuropathology   of   early   AD is 
relatively diffuse with atrophy in widespread cortical and 
subcortical areas, including the medial temporal lobes and 
temporal parietal and frontal cortical regions. On functional 
neuroimaging studies (fMRI and PET) patients with very 
early AD manifest as Mild Cognitive Impairment (MCI) 
often show compensatory activations outside of areas 
typically used by healthy elderly controls [18]. This is 
thought to represent the brain's recruitment of  proximal and 
possibly distal neural units to maintain performance in the 
face of progressive pathology.  Therefore, our findings of 
multiple distributed regions that differentiate patients and 
controls may be consistent with a distributed reorganization 
of networks subserving the semantic memory task [16].                               
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(a) 

(b) 
Fig. 3. Transaxial slices of the  T1  canonical  atlas  showing  the  areas  discovered  by  the  proposed  method  when  applied with significance threshold (a)  
θ = 0.05, (b) θ=0.01. The colorbar shows the significance. 
  

IV. CONCLUSIONS 
 

 We proposed and evaluated methods for the analysis    
of brain activation scans potentially suitable for the  
effective  discovery  of  spatial  activation  patterns  that  are 
discriminative among different groups of subjects. The 
methods are applied on activation maps that are the output 
of SPM (operating on individual subjects independently). 
We replace the typical "second level" of SPM analysis 
(group model). The proposed approach is based on a      
mapping of the 3D space to the 1D space introduced by the 
traversal of the Hilbert space-filling curve. We applied 
statistical tests of significance in the linear domain to detect 
discriminative activation patterns.  The proposed technique 
considers groups of voxels (spatial sub-domains) and 
effectively reduces the computational cost introduced by 
repeated statistical tests (multiple comparison problem). It is 
also more robust than methods that perform voxel-wise 
analysis which are more prone to registration errors and 
variability of individual voxel values across runs, subjects, 
and analysis techniques. This is due to the fact that it seeks 
for activation patterns on a regional level by introducing the 
intermediate step of voxel binning (static partitioning of the 
space). Work in progress includes experiments aimed to 
combining the regions discovered when using different 
statistical tests. Finally, we plan to explore the ability of the 
proposed technique as a tool for mining spatial patterns and 
associations related to other diseases and disorders in the 
framework of the human brain structure and function. 
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