
PostgreSQL Programmer’s Guide

The PostgreSQL Development Team

Edited by

Thomas Lockhart

PostgreSQL Programmer’s Guide
by The PostgreSQL Development Team

Edited by Thomas Lockhart

PostgreSQL
 is Copyright © 1996-9 by the Postgres Global Development Group.

i

Table of Contents

Summary ..i

1. Introduction ..1

Resources ..1
Terminology..2
Notation ..3
Y2K Statement..3
Copyrights and Trademarks ..4

2. Architecture ..5

Postgres Architectural Concepts ...5

3. Extending SQL: An Overview...7

How Extensibility Works..7
The Postgres Type System..7
About the Postgres System Catalogs ..8

4. Extending SQL: Functions ..11

Query Language (SQL) Functions ..11
SQL Functions on Base Types ..11
SQL Functions on Composite Types...12

Programming Language Functions ...13
Programming Language Functions on Base Types ...13
Programming Language Functions on Composite Types..15
Caveats ..16

5. Extending SQL: Types ...18

User-Defined Types ..18
Functions Needed for a User-Defined Type..18
Large Objects ..19

6. Extending SQL: Operators..20

Operator Optimization Information ..21
COMMUTATOR ..21
NEGATOR..22
RESTRICT..22
JOIN ...23
HASHES ...23
SORT1 and SORT2...24

7. Extending SQL: Aggregates ..26

8. The Postgres Rule System..28

What is a Querytree?...28
The Parts of a Querytree..28

Views and the Rule System ..30
Implementation of Views in Postgres..30
How SELECT Rules Work ...30
View Rules in Non-SELECT Statements..35
The Power of Views in Postgres ...36

ii

Benefits ..36
Concerns ..36

Implementation Side Effects ...37
Rules on INSERT, UPDATE and DELETE...38

Differences to View Rules ..38
How These Rules Work ..38

A First Rule Step by Step ..39
Cooperation with Views..42

Rules and Permissions ..48
Rules versus Triggers..49

9. Interfacing Extensions To Indices...52

10. GiST Indices..59

11. Procedural Languages..61

Installing Procedural Languages...61
PL/pgSQL ...62

Overview ...62
Description ..63

Structure of PL/pgSQL ..63
Comments ..63
Declarations ...63
Data Types ...64
Expressions ..65
Statements..66
Trigger Procedures...68
Exceptions..69

Examples ...69
Some Simple PL/pgSQL Functions ...70
PL/pgSQL Function on Composite Type...70
PL/pgSQL Trigger Procedure ..70

PL/Tcl ...71
Overview ...71
Description ..71

Postgres Functions and Tcl Procedure Names ...71
Defining Functions in PL/Tcl ..71
Global Data in PL/Tcl..72
Trigger Procedures in PL/Tcl...72
Database Access from PL/Tcl..74

12. Linking Dynamically-Loaded Functions ..76

ULTRIX..77
DEC OSF/1 ...77
SunOS 4.x, Solaris 2.x and HP-UX ..78

13. Triggers ...79

Trigger Creation..79
Interaction with the Trigger Manager ...80
Visibility of Data Changes..81
Examples...82

14. Server Programming Interface ...85

Interface Functions ...86

iii

SPI_connect...86
SPI_finish ..87
SPI_exec..89
SPI_prepare ...91
SPI_saveplan ...92
SPI_execp..93

Interface Support Functions ..95
SPI_copytuple ...95
SPI_modifytuple..96
SPI_fnumber..97
SPI_fname ...98
SPI_getvalue..99
SPI_getbinval ..100
SPI_gettype ...100
SPI_gettypeid ..102
SPI_getrelname ...103
SPI_palloc ...104
SPI_repalloc ..105
SPI_pfree...106

Memory Management...106
Visibility of Data Changes..107
Examples...107

15. Large Objects..110

Historical Note..110
Inversion Large Objects ..110
Large Object Interfaces...110

Creating a Large Object ..111
Importing a Large Object ..111
Exporting a Large Object ..111
Opening an Existing Large Object ..111
Writing Data to a Large Object ...111
Seeking on a Large Object ..112
Closing a Large Object Descriptor ..112

Built in registered functions..112
Accessing Large Objects from LIBPQ ...112
Sample Program..113

16. libpq...117

Database Connection Functions..117
Query Execution Functions...120
Asynchronous Query Processing ..124
Fast Path..126
Asynchronous Notification ...126
Functions Associated with the COPY Command ...127
libpq Tracing Functions ..129
libpq Control Functions ..129
User Authentication Functions..129
Environment Variables ...130
Caveats..131
Sample Programs ..131

Sample Program 1 ...131

iv

Sample Program 2 ...133
Sample Program 3 ...134

17. libpq C++ Binding ..138

Control and Initialization ..138
Environment Variables..138

libpq++ Classes...139
Connection Class: PgConnection ..139
Database Class: PgDatabase ...139

Database Connection Functions..140
Query Execution Functions...140
Asynchronous Notification ...144
Functions Associated with the COPY Command ...144
Caveats..145

18. pgtcl ...146

Commands ..146
Examples...147
pgtcl Command Reference Information..147

pg_connect ..147
pg_disconnect..149
pg_conndefaults...150
pg_exec ...151
pg_result ..152
pg_select..153
pg_listen ..155
pg_lo_creat ..156
pg_lo_open ..157
pg_lo_close..158
pg_lo_read...158
pg_lo_write..160
pg_lo_lseek..161
pg_lo_tell...162
pg_lo_unlink..162
pg_lo_import ...163
pg_lo_export..164

19. ecpg - Embedded SQL in C ...165

Why Embedded SQL? ..165
The Concept..165
How To Use egpc ...165

Preprocessor ..165
Library...166
Error handling ...166

Limitations..168
Porting From Other RDBMS Packages ..168
Installation ..169
For the Developer ...169

ToDo List ..169
The Preprocessor ...170
A Complete Example ..173
The Library..173

v

20. ODBC Interface..175

Background...175
Windows Applications..175

Writing Applications ...175
Unix Installation ...176

Building the Driver..176
Configuration Files ...179
ApplixWare...180

Configuration ..180
Common Problems ..181
Debugging ApplixWare ODBC Connections..181
Running the ApplixWare Demo..182
Useful Macros ...183
Supported Platforms ..183

21. JDBC Interface ...184

Building the JDBC Interface...184
Compiling the Driver...184
Installing the Driver ..184

Preparing the Database for JDBC ...184
Using the Driver..185
Importing JDBC..185
Loading the Driver..185
Connecting to the Database ..186
Issuing a Query and Processing the Result ...186

Using the Statement Interface ...186
Using the ResultSet Interface ..187

Performing Updates ..187
Closing the Connection...187
Using Large Objects ...187
Postgres Extensions to the JDBC API ..188
Further Reading ..189

22. Overview of PostgreSQL Internals ...190

The Path of a Query ..190
How Connections are Established...191
The Parser Stage ...191

Parser...191
Transformation Process ...193

The Postgres Rule System ..193
The Rewrite System ..193

Techniques To Implement Views ..194
Planner/Optimizer...195

Generating Possible Plans ...195
Data Structure of the Plan ...195

Executor ..196

23. pg_options ...197

24. Genetic Query Optimization in Database Systems..200

Query Handling as a Complex Optimization Problem..200
Genetic Algorithms (GA) ...200
Genetic Query Optimization (GEQO) in Postgres..201

vi

Future Implementation Tasks for Postgres GEQO ...202
Basic Improvements ..202

Improve freeing of memory when query is already processed.....................202
Improve genetic algorithm parameter settings...202
Find better solution for integer overflow ...202
Find solution for exhausted memory ...202

References ...202

25. Frontend/Backend Protocol...203

Overview...203
Protocol...203

Startup ...204
Query...205
Function Call ...206
Notification Responses..207
Cancelling Requests in Progress ...207
Termination ...208

Message Data Types ...208
Message Formats ..209

26. Postgres Signals ..217

27. gcc Default Optimizations..219

28. Backend Interface...220

BKI File Format..220
General Commands...220
Macro Commands...221
Debugging Commands..222
Example ..222

29. Page Files...223

Page Structure ...223
Files ..224
Bugs ..224

DG1. The CVS Repository...225

CVS Tree Organization...225
Getting The Source Via Anonymous CVS ...226
Getting The Source Via CVSup..228

Preparing A CVSup Client System ...228
Running a CVSup Client ...228
Installing CVSup ...230
Installation from Sources...230

DG2. Documentation..233

Documentation Roadmap..233
The Documentation Project ..234
Documentation Sources ..234

Document Structure...235
Styles and Conventions ...236
SGML Authoring Tools ..236

emacs/psgml ..236
Building Documentation...237
Hardcopy Generation for v6.5 ..237

vii

RTF Cleanup Procedure ..238
Toolsets...238

RPM installation on Linux ..239
Manual installation of tools...239

Prerequisites...239
Installing Jade ..239
Installing the DocBook DTD Kit ...240
Installing Norman Walsh’s DSSSL Style Sheets...241
Installing PSGML..241
Installing JadeTeX ...242

Alternate Toolsets ...243

Bibliography ...244

viii

List of Tables

3-1. Postgres System Catalogs ...8
9-1. Index Schema..52
9-2. B-tree Strategies..53
9-3. pg_amproc Schema ...56
18-1. pgtcl Commands..146
26-1. Postgres Signals ..217
29-1. Sample Page Layout..223
DG2-1. Postgres Documentation Products ...233

ix

List of Figures

2-1. How a connection is established ...6
3-1. The major Postgres system catalogs..9

i

Summary

 Postgres, developed originally in the UC Berkeley Computer Science Department, pioneered
many of the object-relational concepts now becoming available in some commercial databases.
It provides SQL92/SQL3 language support, transaction integrity, and type extensibility.
PostgreSQL is a public-domain, open source descendant of this original Berkeley code.

1

Chapter 1. Introduction

 This document is the programmer’s manual for the PostgreSQL (http://postgresql.org/)
database management system, originally developed at the University of California at Berkeley.
PostgreSQL is based on Postgres release 4.2
(http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/postgres.html). The Postgres project, led by
Professor Michael Stonebraker, has been sponsored by the Defense Advanced Research
Projects Agency (DARPA), the Army Research Office (ARO), the National Science
Foundation (NSF), and ESL, Inc.

 The first part of this manual explains the Postgres approach to extensibility and describe how
users can extend Postgres by adding user-defined types, operators, aggregates, and both query
language and programming language functions. After a discussion of the Postgres rule system,
we discuss the trigger and SPI interfaces. The manual concludes with a detailed description of
the programming interfaces and support libraries for various languages.

 We assume proficiency with UNIX and C programming.

Resources

This manual set is organized into several parts:

Tutorial

 An introduction for new users. Does not cover advanced features.

User’s Guide

 General information for users, including available commands and data types.

Programmer’s Guide

 Advanced information for application programmers. Topics include type and function
extensibility, library interfaces, and application design issues.

Administrator’s Guide

 Installation and management information. List of supported machines.

Developer’s Guide

 Information for Postgres developers. This is intended for those who are contributing to the
Postgres project; application development information should appear in the Programmer’s
Guide. Currently included in the Programmer’s Guide.

Reference Manual

 Detailed reference information on command syntax. Currently included in the User’s
Guide.

Chapter 1. Introduction

2

In addition to this manual set, there are other resources to help you with Postgres installation
and use:

man pages

 The man pages have general information on command syntax.

FAQs

 The Frequently Asked Questions (FAQ) documents address both general issues and some
platform-specific issues.

READMEs

 README files are available for some contributed packages.

Web Site

 The Postgres (postgresql.org) web site has some information not appearing in the
distribution. There is a mhonarc catalog of mailing list traffic which is a rich resource for
many topics.

Mailing Lists

 The Postgres Questions (mailto:questions@postgresql.org) mailing list is a good place to
have user questions answered. Other mailing lists are available; consult the web page for
details.

Yourself!

 Postgres is an open source product. As such, it depends on the user community for
ongoing support. As you begin to use Postgres, you will rely on others for help, either
through the documentation or through the mailing lists. Consider contributing your
knowledge back. If you learn something which is not in the documentation, write it up and
contribute it. If you add features to the code, contribute it. Even those without a lot of
experience can provide corrections and minor changes in the documentation, and that is a
good way to start. The Postgres Documentation (mailto:docs@postgresql.org) mailing list
is the place to get going.

Terminology

 In the following documentation, site may be interpreted as the host machine on which Postgres
is installed. Since it is possible to install more than one set of Postgres databases on a single
host, this term more precisely denotes any particular set of installed Postgres binaries and
databases.

 The Postgres superuser is the user named postgres who owns the Postgres binaries and
database files. As the database superuser, all protection mechanisms may be bypassed and any
data accessed arbitrarily. In addition, the Postgres superuser is allowed to execute some support
programs which are generally not available to all users. Note that the Postgres superuser is not
the same as the Unix superuser (which will be referred to as root). The superuser should have a
non-zero user identifier (UID) for security reasons.

Chapter 1. Introduction

3

 The database administrator or DBA, is the person who is responsible for installing Postgres
with mechanisms to enforce a security policy for a site. The DBA can add new users by the
method described below and maintain a set of template databases for use by createdb.

 The postmaster is the process that acts as a clearing-house for requests to the Postgres system.
Frontend applications connect to the postmaster, which keeps tracks of any system errors and
communication between the backend processes. The postmaster can take several command-line
arguments to tune its behavior. However, supplying arguments is necessary only if you intend
to run multiple sites or a non-default site.

 The Postgres backend (the actual executable program postgres) may be executed directly from
the user shell by the Postgres super-user (with the database name as an argument). However,
doing this bypasses the shared buffer pool and lock table associated with a postmaster/site,
therefore this is not recommended in a multiuser site.

Notation

 ... or /usr/local/pgsql/ at the front of a file name is used to represent the path to the Postgres
superuser’s home directory.

 In a command synopsis, brackets ([and]) indicate an optional phrase or keyword. Anything in
braces ({ and }) and containing vertical bars (|) indicates that you must choose one.

 In examples, parentheses ((and)) are used to group boolean expressions. | is the boolean
operator OR.

 Examples will show commands executed from various accounts and programs. Commands
executed from the root account will be preceeded with > . Commands executed from the
Postgres superuser account will be preceeded with % , while commands executed from an
unprivileged user’s account will be preceeded with $. SQL commands will be preceeded with
=> or will have no leading prompt, depending on the context.

Note: At the time of writing (Postgres v6.5) the notation for flagging commands is not
universally consistant throughout the documentation set. Please report problems to the
Documentation Mailing List (mailto:docs@postgresql.org).

Y2K Statement

Author: Written by Thomas Lockhart (mailto:lockhart@alumni.caltech.edu) on 1998-10-22.

 The PostgreSQL Global Development Team provides the Postgres software code tree as a
public service, without warranty and without liability for it’s behavior or performance.
However, at the time of writing:

 The author of this statement, a volunteer on the Postgres support team since November,
1996, is not aware of any problems in the Postgres code base related to time transitions
around Jan 1, 2000 (Y2K).

 The author of this statement is not aware of any reports of Y2K problems uncovered in
regression testing or in other field use of recent or current versions of Postgres. We might
have expected to hear about problems if they existed, given the installed base and the active
participation of users on the support mailing lists.

Chapter 1. Introduction

4

 To the best of the author’s knowledge, the assumptions Postgres makes about dates
specified with a two-digit year are documented in the current User’s Guide
(http://www.postgresql.org/docs/user/datatype.htm) in the chapter on data types. For
two-digit years, the significant transition year is 1970, not 2000; e.g. 70-01-01 is interpreted
as 1970-01-01 , whereas 69-01-01 is interpreted as 2069-01-01 .

 Any Y2K problems in the underlying OS related to obtaining "the current time" may
propagate into apparent Y2K problems in Postgres.

 Refer to The Gnu Project (http://www.gnu.org/software/year2000.html) and The Perl Institute
(http://language.perl.com/news/y2k.html) for further discussion of Y2K issues, particularly as it
relates to open source, no fee software.

Copyrights and Trademarks

 PostgreSQL is © 1996-9 by the PostgreSQL Global Development Group, and is distributed
under the terms of the Berkeley license.

 Postgres95 is © 1994-5 by the Regents of the University of California. Permission to use,
copy, modify, and distribute this software and its documentation for any purpose, without fee,
and without a written agreement is hereby granted, provided that the above copyright notice
and this paragraph and the following two paragraphs appear in all copies.

 In no event shall the University of California be liable to any party for direct, indirect, special,
incidental, or consequential damages, including lost profits, arising out of the use of this
software and its documentation, even if the University of California has been advised of the
possibility of such damage.

 The University of California specifically disclaims any warranties, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. The software
provided hereunder is on an "as-is" basis, and the University of California has no obligations to
provide maintainance, support, updates, enhancements, or modifications.

 UNIX is a trademark of X/Open, Ltd. Sun4, SPARC, SunOS and Solaris are trademarks of Sun
Microsystems, Inc. DEC, DECstation, Alpha AXP and ULTRIX are trademarks of Digital
Equipment Corp. PA-RISC and HP-UX are trademarks of Hewlett-Packard Co. OSF/1 is a
trademark of the Open Software Foundation.

5

Chapter 2. Architecture

Postgres Architectural Concepts

 Before we continue, you should understand the basic Postgres system architecture.
Understanding how the parts of Postgres interact will make the next chapter somewhat clearer.
In database jargon, Postgres uses a simple "process per-user" client/server model. A Postgres
session consists of the following cooperating UNIX processes (programs):

 A supervisory daemon process (postmaster),

 the user’s frontend application (e.g., the psql program), and

 the one or more backend database servers (the postgres process itself).

 A single postmaster manages a given collection of databases on a single host. Such a collection
of databases is called an installation or site. Frontend applications that wish to access a given
database within an installation make calls to the library. The library sends user requests over
the network to the postmaster (How a connection is established(a)), which in turn starts a new
backend server process (How a connection is established(b)) and connects the frontend process
to the new server (How a connection is established(c)). From that point on, the frontend
process and the backend server communicate without intervention by the postmaster. Hence,
the postmaster is always running, waiting for requests, whereas frontend and backend processes
come and go. The libpq library allows a single frontend to make multiple connections to
backend processes. However, the frontend application is still a single-threaded process.
Multithreaded frontend/backend connections are not currently supported in libpq. One
implication of this architecture is that the postmaster and the backend always run on the same
machine (the database server), while the frontend application may run anywhere. You should
keep this in mind, because the files that can be accessed on a client machine may not be
accessible (or may only be accessed using a different filename) on the database server machine.
You should also be aware that the postmaster and postgres servers run with the user-id of the
Postgres "superuser." Note that the Postgres superuser does not have to be a special user (e.g., a
user named "postgres"), although many systems are installed that way. Furthermore, the
Postgres superuser should definitely not be the UNIX superuser, "root"! In any case, all files
relating to a database should belong to this Postgres superuser.

Chapter 2. Architecture

6

Figure 2-1. How a connection is established

(a) frontend sends request to postmaster
 via well-known network socket

POSTMASTER

SERVER

server host

client host

User
App LIBPQ

POSTMASTER

SERVER

server host

client host

User
App LIBPQ

POSTMASTER

SERVER

server host

client host

User
App LIBPQ

POSTMASTER

server host

client host

User
App LIBPQ

(b) postmaster creates backend server

(c) frontend connected to backend server

POSTMASTER

SERVER

server host

(d) frontend connected
 to multiple backend servers

And multiple connections
can be established...

7

Chapter 3. Extending SQL: An Overview

 In the sections that follow, we will discuss how you can extend the Postgres SQL query
language by adding:

 functions
 types
 operators
 aggregates

How Extensibility Works

 Postgres is extensible because its operation is catalog-driven. If you are familiar with standard
relational systems, you know that they store information about databases, tables, columns, etc.,
in what are commonly known as system catalogs. (Some systems call this the data dictionary).
The catalogs appear to the user as classes, like any other, but the DBMS stores its internal
bookkeeping in them. One key difference between Postgres and standard relational systems is
that Postgres stores much more information in its catalogs -- not only information about tables
and columns, but also information about its types, functions, access methods, and so on. These
classes can be modified by the user, and since Postgres bases its internal operation on these
classes, this means that Postgres can be extended by users. By comparison, conventional
database systems can only be extended by changing hardcoded procedures within the DBMS or
by loading modules specially-written by the DBMS vendor.

 Postgres is also unlike most other data managers in that the server can incorporate user-written
code into itself through dynamic loading. That is, the user can specify an object code file (e.g.,
a compiled .o file or shared library) that implements a new type or function and Postgres will
load it as required. Code written in SQL are even more trivial to add to the server. This ability
to modify its operation "on the fly" makes Postgres uniquely suited for rapid prototyping of
new applications and storage structures.

The Postgres Type System

 The Postgres type system can be broken down in several ways. Types are divided into base
types and composite types. Base types are those, like int4, that are implemented in a language
such as C. They generally correspond to what are often known as "abstract data types";
Postgres can only operate on such types through methods provided by the user and only
understands the behavior of such types to the extent that the user describes them. Composite
types are created whenever the user creates a class. EMP is an example of a composite type.

 Postgres stores these types in only one way (within the file that stores all instances of the class)
but the user can "look inside" at the attributes of these types from the query language and
optimize their retrieval by (for example) defining indices on the attributes. Postgres base types
are further divided into built-in types and user-defined types. Built-in types (like int4) are those
that are compiled into the system. User-defined types are those created by the user in the
manner to be described below.

Chapter 3. Extending SQL: An Overview

8

About the Postgres System Catalogs

 Having introduced the basic extensibility concepts, we can now take a look at how the catalogs
are actually laid out. You can skip this section for now, but some later sections will be
incomprehensible without the information given here, so mark this page for later reference. All
system catalogs have names that begin with pg_. The following classes contain information
that may be useful to the end user. (There are many other system catalogs, but there should
rarely be a reason to query them directly.)

Table 3-1. Postgres System Catalogs

Catalog Name Description

pg_database databases

pg_class classes

pg_attribute class attributes

pg_index secondary indices

pg_proc procedures (both C and SQL)

pg_type types (both base and complex)

pg_operator operators

pg_aggregate aggregates and aggregate functions

pg_am access methods

pg_amop access method operators

pg_amproc access method support functions

pg_opclass access method operator classes

Chapter 3. Extending SQL: An Overview

9

Figure 3-1. The major Postgres system catalogs

[8]

[8]

REFERS-TO

non-key

1

0:N

identified by the non-oid primary key in other contexts).

1

3:N

10:N

1

0:N

111

0:N

0:N

11

0:N

1

0:N

0:N

1

0:N

1

0:N

1

0:N

10:1

optional

mandatory

0:1

0:N

0:N

1

1

0:N
0:N

1

1

1

0:N

0:N

0:N

0:N

1

1

0:N

KEY:

atttypid

typrelid

typinput

typoutput

typreceive

typsend

indexrelid

amopselect

amopnpages

prolang

amproc

oprcom

oprnegate

oprlsortop

oprrsortop

oprcode

oprrest

oprjoin

amgettuple

aminsert

amdelete

amgetattr

ambeginscan

amrescan

amendscan

ammarkpos

amrestrpos

ambuild

DEPENDENT

INDEPENDENT

pg_attribute

pg_class

pg_index

pg_type

pg_am

pg_proc

pg_language

pg_amop

pg_opclass

pg_amproc

pg_operator

attrelid

attnum

relam

oid

indrelid

indkey

indproc

indpred

oid

oid

oid

oid

amopid

amopclaid

amopopr

oid

amid

amopclaid

amprocnumoid

primary key

foreign key

non-oid primary

key (if any)

oprname

oprleft

oprright

oprresult

proname

prorettype

proargtypes

indicates these key values are alternate primary keys

(i.e., this class is generally identified by oid but may be

The Reference Manual gives a more detailed explanation of these catalogs and their attributes.
However, The major Postgres system catalogs shows the major entities and their relationships
in the system catalogs. (Attributes that do not refer to other entities are not shown unless they
are part of a primary key.) This diagram is more or less incomprehensible until you actually

Chapter 3. Extending SQL: An Overview

10

start looking at the contents of the catalogs and see how they relate to each other. For now, the
main things to take away from this diagram are as follows:

 In several of the sections that follow, we will present various join queries on the system
catalogs that display information we need to extend the system. Looking at this diagram
should make some of these join queries (which are often three- or four-way joins) more
understandable, because you will be able to see that the attributes used in the queries form
foreign keys in other classes.
 Many different features (classes, attributes, functions, types, access methods, etc.) are
tightly integrated in this schema. A simple create command may modify many of these
catalogs.
 Types and procedures are central to the schema.

Note: We use the words procedure and function more or less interchangably.

 Nearly every catalog contains some reference to instances in one or both of these classes.
For example, Postgres frequently uses type signatures (e.g., of functions and operators) to
identify unique instances of other catalogs.
 There are many attributes and relationships that have obvious meanings, but there are many
(particularly those that have to do with access methods) that do not. The relationships
between pg_am, pg_amop, pg_amproc, pg_operator and pg_opclass are particularly hard to
understand and will be described in depth (in the section on interfacing types and operators
to indices) after we have discussed basic extensions.

11

Chapter 4. Extending SQL: Functions

 As it turns out, part of defining a new type is the definition of functions that describe its
behavior. Consequently, while it is possible to define a new function without defining a new
type, the reverse is not true. We therefore describe how to add new functions to Postgres before
describing how to add new types. Postgres SQL provides two types of functions: query
language functions (functions written in SQL and programming language functions (functions
written in a compiled programming language such as C.) Either kind of function can take a
base type, a composite type or some combination as arguments (parameters). In addition, both
kinds of functions can return a base type or a composite type. It’s easier to define SQL
functions, so we’ll start with those. Examples in this section can also be found in funcs.sql and
funcs.c.

Query Language (SQL) Functions

SQL Functions on Base Types

 The simplest possible SQL function has no arguments and simply returns a base type, such as
int4:

 CREATE FUNCTION one() RETURNS int4
 AS ’SELECT 1 as RESULT’ LANGUAGE ’sql’;

 SELECT one() AS answer;

 +-------+
 |answer |
 +-------+
 |1 |
 +-------+

 Notice that we defined a target list for the function (with the name RESULT), but the target
list of the query that invoked the function overrode the function’s target list. Hence, the result is
labelled answer instead of one.

 It’s almost as easy to define SQL functions that take base types as arguments. In the example
below, notice how we refer to the arguments within the function as $1 and $2.

 CREATE FUNCTION add_em(int4, int4) RETURNS int4
 AS ’SELECT $1 + $2;’ LANGUAGE ’sql’;

 SELECT add_em(1, 2) AS answer;

 +-------+
 |answer |
 +-------+
 |3 |
 +-------+

Chapter 4. Extending SQL: Functions

12

SQL Functions on Composite Types

 When specifying functions with arguments of composite types (such as EMP), we must not
only specify which argument we want (as we did above with $1 and $2) but also the attributes
of that argument. For example, take the function double_salary that computes what your salary
would be if it were doubled.

 CREATE FUNCTION double_salary(EMP) RETURNS int4
 AS ’SELECT $1.salary * 2 AS salary;’ LANGUAGE ’sql’;

 SELECT name, double_salary(EMP) AS dream
 FROM EMP
 WHERE EMP.cubicle ~= ’(2,1)’::point;

 +-----+-------+
 |name | dream |
 +-----+-------+
 |Sam | 2400 |
 +-----+-------+

 Notice the use of the syntax $1.salary. Before launching into the subject of functions that
return composite types, we must first introduce the function notation for projecting attributes.
The simple way to explain this is that we can usually use the notation attribute(class) and
class.attribute interchangably.

 --
 -- this is the same as:
 -- SELECT EMP.name AS youngster FROM EMP WHERE EMP.age < 30
 --
 SELECT name(EMP) AS youngster
 FROM EMP
 WHERE age(EMP) < 30;

 +----------+
 |youngster |
 +----------+
 |Sam |
 +----------+

 As we shall see, however, this is not always the case. This function notation is important when
we want to use a function that returns a single instance. We do this by assembling the entire
instance within the function, attribute by attribute. This is an example of a function that returns
a single EMP instance:

 CREATE FUNCTION new_emp() RETURNS EMP
 AS ’SELECT \’None\’::text AS name,
 1000 AS salary,
 25 AS age,
 \’(2,2)\’::point AS cubicle’
 LANGUAGE ’sql’;

 In this case we have specified each of the attributes with a constant value, but any computation
or expression could have been substituted for these constants. Defining a function like this can
be tricky. Some of the more important caveats are as follows:

 The target list order must be exactly the same as that in which the attributes appear in the
CREATE TABLE statement (or when you execute a .* query).

You must typecast the expressions (using ::) very carefully or you will see the following
error:

Chapter 4. Extending SQL: Functions

13

 WARN::function declared to return type EMP does not retrieve
(EMP.*)

When calling a function that returns an instance, we cannot retrieve the entire instance. We
must either project an attribute out of the instance or pass the entire instance into another
function.

 SELECT name(new_emp()) AS nobody;

 +-------+
 |nobody |
 +-------+
 |None |
 +-------+

The reason why, in general, we must use the function syntax for projecting attributes of
function return values is that the parser just doesn’t understand the other (dot) syntax for
projection when combined with function calls.

 SELECT new_emp().name AS nobody;
 WARN:parser: syntax error at or near "."

 Any collection of commands in the SQL query language can be packaged together and defined
as a function. The commands can include updates (i.e., insert, update and delete) as well as
select queries. However, the final command must be a select that returns whatever is specified
as the function’s returntype.

 CREATE FUNCTION clean_EMP () RETURNS int4
 AS ’DELETE FROM EMP WHERE EMP.salary <= 0;
 SELECT 1 AS ignore_this’
 LANGUAGE ’sql’;

 SELECT clean_EMP();

 +--+
 |x |
 +--+
 |1 |
 +--+

Programming Language Functions

Programming Language Functions on Base Types

 Internally, Postgres regards a base type as a "blob of memory." The user-defined functions that
you define over a type in turn define the way that Postgres can operate on it. That is, Postgres
will only store and retrieve the data from disk and use your user-defined functions to input,
process, and output the data. Base types can have one of three internal formats:

pass by value, fixed-length

pass by reference, fixed-length

pass by reference, variable-length

 By-value types can only be 1, 2 or 4 bytes in length (even if your computer supports by-value
types of other sizes). Postgres itself only passes integer types by value. You should be careful
to define your types such that they will be the same size (in bytes) on all architectures. For
example, the long type is dangerous because it is 4 bytes on some machines and 8 bytes on

Chapter 4. Extending SQL: Functions

14

others, whereas int type is 4 bytes on most UNIX machines (though not on most personal
computers). A reasonable implementation of the int4 type on UNIX machines might be:

 /* 4-byte integer, passed by value */
 typedef int int4;

 On the other hand, fixed-length types of any size may be passed by-reference. For example,
here is a sample implementation of a Postgres type:

 /* 16-byte structure, passed by reference */
 typedef struct
 {
 double x, y;
 } Point;

 Only pointers to such types can be used when passing them in and out of Postgres functions.
Finally, all variable-length types must also be passed by reference. All variable-length types
must begin with a length field of exactly 4 bytes, and all data to be stored within that type must
be located in the memory immediately following that length field. The length field is the total
length of the structure (i.e., it includes the size of the length field itself). We can define the text
type as follows:

 typedef struct {
 int4 length;
 char data[1];
 } text;

 Obviously, the data field is not long enough to hold all possible strings -- it’s impossible to
declare such a structure in C. When manipulating variable-length types, we must be careful to
allocate the correct amount of memory and initialize the length field. For example, if we
wanted to store 40 bytes in a text structure, we might use a code fragment like this:

 #include "postgres.h"
 ...
 char buffer[40]; /* our source data */
 ...
 text *destination = (text *) palloc(VARHDRSZ + 40);
 destination->length = VARHDRSZ + 40;
 memmove(destination->data, buffer, 40);
 ...

 Now that we’ve gone over all of the possible structures for base types, we can show some
examples of real functions. Suppose funcs.c look like:

 #include <string.h>
 #include "postgres.h"

 /* By Value */

 int
 add_one(int arg)
 {
 return(arg + 1);
 }

 /* By Reference, Fixed Length */

 Point *
 makepoint(Point *pointx, Point *pointy)
 {
 Point *new_point = (Point *) palloc(sizeof(Point));

 new_point->x = pointx->x;
 new_point->y = pointy->y;

Chapter 4. Extending SQL: Functions

15

 return new_point;
 }

 /* By Reference, Variable Length */

 text *
 copytext(text *t)
 {
 /*
 * VARSIZE is the total size of the struct in bytes.
 */
 text *new_t = (text *) palloc(VARSIZE(t));
 memset(new_t, 0, VARSIZE(t));
 VARSIZE(new_t) = VARSIZE(t);
 /*
 * VARDATA is a pointer to the data region of the struct.
 */
 memcpy((void *) VARDATA(new_t), /* destination */
 (void *) VARDATA(t), /* source */
 VARSIZE(t)-VARHDRSZ); /* how many bytes */
 return(new_t);
 }

 text *
 concat_text(text *arg1, text *arg2)
 {
 int32 new_text_size = VARSIZE(arg1) + VARSIZE(arg2) -
VARHDRSZ;
 text *new_text = (text *) palloc(new_text_size);

 memset((void *) new_text, 0, new_text_size);
 VARSIZE(new_text) = new_text_size;
 strncpy(VARDATA(new_text), VARDATA(arg1),
VARSIZE(arg1)-VARHDRSZ);
 strncat(VARDATA(new_text), VARDATA(arg2),
VARSIZE(arg2)-VARHDRSZ);
 return (new_text);
 }

 On OSF/1 we would type:

 CREATE FUNCTION add_one(int4) RETURNS int4
 AS ’PGROOT/tutorial/funcs.so’ LANGUAGE ’c’;

 CREATE FUNCTION makepoint(point, point) RETURNS point
 AS ’PGROOT/tutorial/funcs.so’ LANGUAGE ’c’;

 CREATE FUNCTION concat_text(text, text) RETURNS text
 AS ’PGROOT/tutorial/funcs.so’ LANGUAGE ’c’;

 CREATE FUNCTION copytext(text) RETURNS text
 AS ’PGROOT/tutorial/funcs.so’ LANGUAGE ’c’;

 On other systems, we might have to make the filename end in .sl (to indicate that it’s a shared
library).

Programming Language Functions on Composite Types

 Composite types do not have a fixed layout like C structures. Instances of a composite type
may contain null fields. In addition, composite types that are part of an inheritance hierarchy
may have different fields than other members of the same inheritance hierarchy. Therefore,
Postgres provides a procedural interface for accessing fields of composite types from C. As
Postgres processes a set of instances, each instance will be passed into your function as an
opaque structure of type TUPLE. Suppose we want to write a function to answer the query

Chapter 4. Extending SQL: Functions

16

 * SELECT name, c_overpaid(EMP, 1500) AS overpaid
 FROM EMP
 WHERE name = ’Bill’ or name = ’Sam’;

 In the query above, we can define c_overpaid as:

 #include "postgres.h"
 #include "executor/executor.h" /* for GetAttributeByName() */

 bool
 c_overpaid(TupleTableSlot *t, /* the current instance of EMP
*/
 int4 limit)
 {
 bool isnull = false;
 int4 salary;
 salary = (int4) GetAttributeByName(t, "salary", &isnull);
 if (isnull)
 return (false);
 return(salary > limit);
 }

 GetAttributeByName is the Postgres system function that returns attributes out of the current
instance. It has three arguments: the argument of type TUPLE passed into the function, the
name of the desired attribute, and a return parameter that describes whether the attribute is null.
GetAttributeByName will align data properly so you can cast its return value to the desired
type. For example, if you have an attribute name which is of the type name, the
GetAttributeByName call would look like:

 char *str;
 ...
 str = (char *) GetAttributeByName(t, "name", &isnull)

 The following query lets Postgres know about the c_overpaid function:

 * CREATE FUNCTION c_overpaid(EMP, int4) RETURNS bool
 AS ’PGROOT/tutorial/obj/funcs.so’ LANGUAGE ’c’;

 While there are ways to construct new instances or modify existing instances from within a C
function, these are far too complex to discuss in this manual.

Caveats

 We now turn to the more difficult task of writing programming language functions. Be
warned: this section of the manual will not make you a programmer. You must have a good
understanding of C (including the use of pointers and the malloc memory manager) before
trying to write C functions for use with Postgres. While it may be possible to load functions
written in languages other than C into Postgres, this is often difficult (when it is possible at all)
because other languages, such as FORTRAN and Pascal often do not follow the same "calling
convention" as C. That is, other languages do not pass argument and return values between
functions in the same way. For this reason, we will assume that your programming language
functions are written in C. The basic rules for building C functions are as follows:

 Most of the header (include) files for Postgres should already be installed in
PGROOT/include (see Figure 2). You should always include

 -I$PGROOT/include

Chapter 4. Extending SQL: Functions

17

 on your cc command lines. Sometimes, you may find that you require header files that are in
the server source itself (i.e., you need a file we neglected to install in include). In those cases
you may need to add one or more of

 -I$PGROOT/src/backend
 -I$PGROOT/src/backend/include
 -I$PGROOT/src/backend/port/<PORTNAME>
 -I$PGROOT/src/backend/obj

 (where <PORTNAME> is the name of the port, e.g., alpha or sparc).

 When allocating memory, use the Postgres routines palloc and pfree instead of the
corresponding C library routines malloc and free. The memory allocated by palloc will be
freed automatically at the end of each transaction, preventing memory leaks.

 Always zero the bytes of your structures using memset or bzero. Several routines (such as
the hash access method, hash join and the sort algorithm) compute functions of the raw bits
contained in your structure. Even if you initialize all fields of your structure, there may be
several bytes of alignment padding (holes in the structure) that may contain garbage values.

 Most of the internal Postgres types are declared in postgres.h, so it’s a good idea to always
include that file as well. Including postgres.h will also include elog.h and palloc.h for you.

 Compiling and loading your object code so that it can be dynamically loaded into Postgres
always requires special flags. See Appendix A for a detailed explanation of how to do it for
your particular operating system.

18

Chapter 5. Extending SQL: Types

 As previously mentioned, there are two kinds of types in Postgres: base types (defined in a
programming language) and composite types (instances). Examples in this section up to
interfacing indices can be found in complex.sql and complex.c. Composite examples are in
funcs.sql.

User-Defined Types

Functions Needed for a User-Defined Type

 A user-defined type must always have input and output functions. These functions determine
how the type appears in strings (for input by the user and output to the user) and how the type is
organized in memory. The input function takes a null-delimited character string as its input and
returns the internal (in memory) representation of the type. The output function takes the
internal representation of the type and returns a null delimited character string. Suppose we
want to define a complex type which represents complex numbers. Naturally, we choose to
represent a complex in memory as the following C structure:

 typedef struct Complex {
 double x;
 double y;
 } Complex;

 and a string of the form (x,y) as the external string representation. These functions are usually
not hard to write, especially the output function. However, there are a number of points to
remember:

 When defining your external (string) representation, remember that you must eventually
write a complete and robust parser for that representation as your input function!

 Complex *
 complex_in(char *str)
 {
 double x, y;
 Complex *result;
 if (sscanf(str, " (%lf , %lf)", &x, &y) != 2) {
 elog(WARN, "complex_in: error in parsing
 return NULL;
 }
 result = (Complex *)palloc(sizeof(Complex));
 result->x = x;
 result->y = y;
 return (result);
 }

 The output function can simply be:

 char *
 complex_out(Complex *complex)
 {
 char *result;
 if (complex == NULL)
 return(NULL);
 result = (char *) palloc(60);

Chapter 5. Extending SQL: Types

19

 sprintf(result, "(%g,%g)", complex->x,
complex->y);
 return(result);
 }

 You should try to make the input and output functions inverses of each other. If you do not,
you will have severe problems when you need to dump your data into a file and then read it
back in (say, into someone else’s database on another computer). This is a particularly
common problem when floating-point numbers are involved.

 To define the complex type, we need to create the two user-defined functions complex_in and
complex_out before creating the type:

 CREATE FUNCTION complex_in(opaque)
 RETURNS complex
 AS ’PGROOT/tutorial/obj/complex.so’
 LANGUAGE ’c’;

 CREATE FUNCTION complex_out(opaque)
 RETURNS opaque
 AS ’PGROOT/tutorial/obj/complex.so’
 LANGUAGE ’c’;

 CREATE TYPE complex (
 internallength = 16,
 input = complex_in,
 output = complex_out
);

 As discussed earlier, Postgres fully supports arrays of base types. Additionally, Postgres
supports arrays of user-defined types as well. When you define a type, Postgres automatically
provides support for arrays of that type. For historical reasons, the array type has the same
name as the user-defined type with the underscore character _ prepended. Composite types do
not need any function defined on them, since the system already understands what they look
like inside.

Large Objects

 The types discussed to this point are all "small" objects -- that is, they are smaller than 8KB in
size.

Note: 1024 longwords == 8192 bytes. In fact, the type must be considerably smaller than
8192 bytes, since the Postgres tuple and page overhead must also fit into this 8KB
limitation. The actual value that fits depends on the machine architecture.

 If you require a larger type for something like a document retrieval system or for storing
bitmaps, you will need to use the Postgres large object interface.

20

Chapter 6. Extending SQL: Operators

 Postgres supports left unary, right unary and binary operators. Operators can be overloaded;
that is, the same operator name can be used for different operators that have different numbers
and types of arguments. If there is an ambiguous situation and the system cannot determine the
correct operator to use, it will return an error. You may have to typecast the left and/or right
operands to help it understand which operator you meant to use.

 Every operator is "syntactic sugar" for a call to an underlying function that does the real work;
so you must first create the underlying function before you can create the operator. However,
an operator is not merely syntactic sugar, because it carries additional information that helps
the query planner optimize queries that use the operator. Much of this chapter will be devoted
to explaining that additional information.

 Here is an example of creating an operator for adding two complex numbers. We assume
we’ve already created the definition of type complex. First we need a function that does the
work; then we can define the operator:

CREATE FUNCTION complex_add(complex, complex)
 RETURNS complex
 AS ’$PWD/obj/complex.so’
 LANGUAGE ’c’;

CREATE OPERATOR + (
 leftarg = complex,
 rightarg = complex,
 procedure = complex_add,
 commutator = +
);

 Now we can do:

SELECT (a + b) AS c FROM test_complex;

+----------------+
|c |
+----------------+
|(5.2,6.05) |
+----------------+
|(133.42,144.95) |
+----------------+

 We’ve shown how to create a binary operator here. To create unary operators, just omit one of
leftarg (for left unary) or rightarg (for right unary). The procedure clause and the argument
clauses are the only required items in CREATE OPERATOR. The COMMUTATOR clause
shown in the example is an optional hint to the query optimizer. Further details about
COMMUTATOR and other optimizer hints appear below.

Chapter 6. Extending SQL: Operators

21

Operator Optimization Information

Author: Written by Tom Lane.

 A Postgres operator definition can include several optional clauses that tell the system useful
things about how the operator behaves. These clauses should be provided whenever
appropriate, because they can make for considerable speedups in execution of queries that use
the operator. But if you provide them, you must be sure that they are right! Incorrect use of an
optimization clause can result in backend crashes, subtly wrong output, or other Bad Things.
You can always leave out an optimization clause if you are not sure about it; the only
consequence is that queries might run slower than they need to.

 Additional optimization clauses might be added in future versions of Postgres. The ones
described here are all the ones that release 6.5 understands.

COMMUTATOR

 The COMMUTATOR clause, if provided, names an operator that is the commutator of the
operator being defined. We say that operator A is the commutator of operator B if (x A y)
equals (y B x) for all possible input values x,y. Notice that B is also the commutator of A. For
example, operators ’<’ and ’>’ for a particular datatype are usually each others’ commutators,
and operator ’+’ is usually commutative with itself. But operator ’-’ is usually not commutative
with anything.

 The left argument type of a commuted operator is the same as the right argument type of its
commutator, and vice versa. So the name of the commutator operator is all that Postgres needs
to be given to look up the commutator, and that’s all that need be provided in the
COMMUTATOR clause.

 When you are defining a self-commutative operator, you just do it. When you are defining a
pair of commutative operators, things are a little trickier: how can the first one to be defined
refer to the other one, which you haven’t defined yet? There are two solutions to this problem:

 One way is to omit the COMMUTATOR clause in the first operator that you define, and
then provide one in the second operator’s definition. Since Postgres knows that commutative
operators come in pairs, when it sees the second definition it will automatically go back and
fill in the missing COMMUTATOR clause in the first definition.

 The other, more straightforward way is just to include COMMUTATOR clauses in both
definitions. When Postgres processes the first definition and realizes that COMMUTATOR
refers to a non-existent operator, the system will make a dummy entry for that operator in the
system’s pg_operator table. This dummy entry will have valid data only for the operator
name, left and right argument types, and result type, since that’s all that Postgres can deduce
at this point. The first operator’s catalog entry will link to this dummy entry. Later, when you
define the second operator, the system updates the dummy entry with the additional
information from the second definition. If you try to use the dummy operator before it’s been
filled in, you’ll just get an error message. (Note: this procedure did not work reliably in
Postgres versions before 6.5, but it is now the recommended way to do things.)

Chapter 6. Extending SQL: Operators

22

NEGATOR

 The NEGATOR clause, if provided, names an operator that is the negator of the operator being
defined. We say that operator A is the negator of operator B if both return boolean results and
(x A y) equals NOT (x B y) for all possible inputs x,y. Notice that B is also the negator of A.
For example, ’<’ and ’>=’ are a negator pair for most datatypes. An operator can never be
validly be its own negator.

 Unlike COMMUTATOR, a pair of unary operators could validly be marked as each others’
negators; that would mean (A x) equals NOT (B x) for all x, or the equivalent for right-unary
operators.

 An operator’s negator must have the same left and/or right argument types as the operator
itself, so just as with COMMUTATOR, only the operator name need be given in the
NEGATOR clause.

 Providing NEGATOR is very helpful to the query optimizer since it allows expressions like
NOT (x = y) to be simplified into x <> y. This comes up more often than you might think,
because NOTs can be inserted as a consequence of other rearrangements.

 Pairs of negator operators can be defined using the same methods explained above for
commutator pairs.

RESTRICT

 The RESTRICT clause, if provided, names a restriction selectivity estimation function for the
operator (note that this is a function name, not an operator name). RESTRICT clauses only
make sense for binary operators that return boolean. The idea behind a restriction selectivity
estimator is to guess what fraction of the rows in a table will satisfy a WHERE-clause
condition of the form

 field OP constant

 for the current operator and a particular constant value. This assists the optimizer by giving it
some idea of how many rows will be eliminated by WHERE clauses that have this form. (What
happens if the constant is on the left, you may be wondering? Well, that’s one of the things that
COMMUTATOR is for...)

 Writing new restriction selectivity estimation functions is far beyond the scope of this chapter,
but fortunately you can usually just use one of the system’s standard estimators for many of
your own operators. These are the standard restriction estimators:

 eqsel for =
 neqsel for <>
 intltsel for < or <=
 intgtsel for > or >=

 It might seem a little odd that these are the categories, but they make sense if you think about
it. ’=’ will typically accept only a small fraction of the rows in a table; ’<>’ will typically reject
only a small fraction. ’<’ will accept a fraction that depends on where the given constant falls
in the range of values for that table column (which, it just so happens, is information collected
by VACUUM ANALYZE and made available to the selectivity estimator). ’<=’ will accept a
slightly larger fraction than ’<’ for the same comparison constant, but they’re close enough to

Chapter 6. Extending SQL: Operators

23

not be worth distinguishing, especially since we’re not likely to do better than a rough guess
anyhow. Similar remarks apply to ’>’ and ’>=’.

 You can frequently get away with using either eqsel or neqsel for operators that have very high
or very low selectivity, even if they aren’t really equality or inequality. For example, the
regular expression matching operators (~, ~*, etc) use eqsel on the assumption that they’ll
usually only match a small fraction of the entries in a table.

JOIN

 The JOIN clause, if provided, names a join selectivity estimation function for the operator
(note that this is a function name, not an operator name). JOIN clauses only make sense for
binary operators that return boolean. The idea behind a join selectivity estimator is to guess
what fraction of the rows in a pair of tables will satisfy a WHERE-clause condition of the form

 table1.field1 OP table2.field2

 for the current operator. As with the RESTRICT clause, this helps the optimizer very
substantially by letting it figure out which of several possible join sequences is likely to take
the least work.

 As before, this chapter will make no attempt to explain how to write a join selectivity
estimator function, but will just suggest that you use one of the standard estimators if one is
applicable:

 eqjoinsel for =
 neqjoinsel for <>
 intltjoinsel for < or <=
 intgtjoinsel for > or >=

HASHES

 The HASHES clause, if present, tells the system that it is OK to use the hash join method for a
join based on this operator. HASHES only makes sense for binary operators that return
boolean, and in practice the operator had better be equality for some data type.

 The assumption underlying hash join is that the join operator can only return TRUE for pairs
of left and right values that hash to the same hash code. If two values get put in different hash
buckets, the join will never compare them at all, implicitly assuming that the result of the join
operator must be FALSE. So it never makes sense to specify HASHES for operators that do not
represent equality.

 In fact, logical equality is not good enough either; the operator had better represent pure
bitwise equality, because the hash function will be computed on the memory representation of
the values regardless of what the bits mean. For example, equality of time intervals is not
bitwise equality; the interval equality operator considers two time intervals equal if they have
the same duration, whether or not their endpoints are identical. What this means is that a join
using "=" between interval fields would yield different results if implemented as a hash join
than if implemented another way, because a large fraction of the pairs that should match will
hash to different values and will never be compared by the hash join. But if the optimizer chose
to use a different kind of join, all the pairs that the equality operator says are equal will be

Chapter 6. Extending SQL: Operators

24

found. We don’t want that kind of inconsistency, so we don’t mark interval equality as
hashable.

 There are also machine-dependent ways in which a hash join might fail to do the right thing.
For example, if your datatype is a structure in which there may be uninteresting pad bits, it’s
unsafe to mark the equality operator HASHES. (Unless, perhaps, you write your other
operators to ensure that the unused bits are always zero.) Another example is that the FLOAT
datatypes are unsafe for hash joins. On machines that meet the IEEE floating point standard,
minus zero and plus zero are different values (different bit patterns) but they are defined to
compare equal. So, if float equality were marked HASHES, a minus zero and a plus zero would
probably not be matched up by a hash join, but they would be matched up by any other join
process.

 The bottom line is that you should probably only use HASHES for equality operators that are
(or could be) implemented by memcmp().

SORT1 and SORT2

 The SORT clauses, if present, tell the system that it is permissible to use the merge join
method for a join based on the current operator. Both must be specified if either is. The current
operator must be equality for some pair of data types, and the SORT1 and SORT2 clauses
name the ordering operator (’<’ operator) for the left and right-side data types respectively.

 Merge join is based on the idea of sorting the left and righthand tables into order and then
scanning them in parallel. So, both data types must be capable of being fully ordered, and the
join operator must be one that can only succeed for pairs of values that fall at the "same place"
in the sort order. In practice this means that the join operator must behave like equality. But
unlike hashjoin, where the left and right data types had better be the same (or at least bitwise
equivalent), it is possible to mergejoin two distinct data types so long as they are logically
compatible. For example, the int2-versus-int4 equality operator is mergejoinable. We only need
sorting operators that will bring both datatypes into a logically compatible sequence.

 When specifying merge sort operators, the current operator and both referenced operators must
return boolean; the SORT1 operator must have both input datatypes equal to the current
operator’s left argument type, and the SORT2 operator must have both input datatypes equal to
the current operator’s right argument type. (As with COMMUTATOR and NEGATOR, this
means that the operator name is sufficient to specify the operator, and the system is able to
make dummy operator entries if you happen to define the equality operator before the other
ones.)

 In practice you should only write SORT clauses for an ’=’ operator, and the two referenced
operators should always be named ’<’. Trying to use merge join with operators named anything
else will result in hopeless confusion, for reasons we’ll see in a moment.

 There are additional restrictions on operators that you mark mergejoinable. These restrictions
are not currently checked by CREATE OPERATOR, but a merge join may fail at runtime if
any are not true:

 The mergejoinable equality operator must have a commutator (itself if the two data types are
the same, or a related equality operator if they are different).

 There must be ’<’ and ’>’ ordering operators having the same left and right input datatypes
as the mergejoinable operator itself. These operators must be named ’<’ and ’>’; you do not
have any choice in the matter, since there is no provision for specifying them explicitly. Note
that if the left and right data types are different, neither of these operators is the same as

Chapter 6. Extending SQL: Operators

25

either SORT operator. But they had better order the data values compatibly with the SORT
operators, or mergejoin will fail to work.

26

Chapter 7. Extending SQL: Aggregates

 Aggregates in Postgres are expressed in terms of state transition functions. That is, an
aggregate can be defined in terms of state that is modified whenever an instance is processed.
Some state functions look at a particular value in the instance when computing the new state
(sfunc1 in the create aggregate syntax) while others only keep track of their own internal state
(sfunc2). If we define an aggregate that uses only sfunc1, we define an aggregate that computes
a running function of the attribute values from each instance. "Sum" is an example of this kind
of aggregate. "Sum" starts at zero and always adds the current instance’s value to its running
total. We will use the int4pl that is built into Postgres to perform this addition.

CREATE AGGREGATE complex_sum (
 sfunc1 = complex_add,
 basetype = complex,
 stype1 = complex,
 initcond1 = ’(0,0)’
);

SELECT complex_sum(a) FROM test_complex;

 +------------+
 |complex_sum |
 +------------+
 |(34,53.9) |
 +------------+

 If we define only sfunc2, we are specifying an aggregate that computes a running function that
is independent of the attribute values from each instance. "Count" is the most common example
of this kind of aggregate. "Count" starts at zero and adds one to its running total for each
instance, ignoring the instance value. Here, we use the built-in int4inc routine to do the work
for us. This routine increments (adds one to) its argument.

CREATE AGGREGATE my_count (
 sfunc2 = int4inc, -- add one
 basetype = int4,
 stype2 = int4,
 initcond2 = ’0’
);

SELECT my_count(*) as emp_count from EMP;

 +----------+
 |emp_count |
 +----------+
 |5 |
 +----------+

 "Average" is an example of an aggregate that requires both a function to compute the running
sum and a function to compute the running count. When all of the instances have been
processed, the final answer for the aggregate is the running sum divided by the running count.
We use the int4pl and int4inc routines we used before as well as the Postgres integer division
routine, int4div, to compute the division of the sum by the count.

CREATE AGGREGATE my_average (
 sfunc1 = int4pl, -- sum
 basetype = int4,
 stype1 = int4,
 sfunc2 = int4inc, -- count

Chapter 7. Extending SQL: Aggregates

27

 stype2 = int4,
 finalfunc = int4div, -- division
 initcond1 = ’0’,
 initcond2 = ’0’
);

SELECT my_average(salary) as emp_average FROM EMP;

 +------------+
 |emp_average |
 +------------+
 |1640 |
 +------------+

28

Chapter 8. The Postgres Rule System

 Production rule systems are conceptually simple, but there are many subtle points involved in
actually using them. Some of these points and the theoretical foundations of the Postgres rule
system can be found in [Stonebraker et al, ACM, 1990].

 Some other database systems define active database rules. These are usually stored procedures
and triggers and are implemented in Postgres as functions and triggers.

 The query rewrite rule system (the "rule system" from now on) is totally different from stored
procedures and triggers. It modifies queries to take rules into consideration, and then passes the
modified query to the query optimizer for execution. It is very powerful, and can be used for
many things such as query language procedures, views, and versions. The power of this rule
system is discussed in [Ong and Goh, 1990] as well as [Stonebraker et al, ACM, 1990].

What is a Querytree?

 To understand how the rule system works it is necessary to know when it is invoked and what
it’s input and results are.

 The rule system is located between the query parser and the optimizer. It takes the output of
the parser, one querytree, and the rewrite rules from the pg_rewrite catalog, which are
querytrees too with some extra information, and creates zero or many querytrees as result. So
it’s input and output are always things the parser itself could have produced and thus, anything
it sees is basically representable as an SQL statement.

 Now what is a querytree? It is an internal representation of an SQL statement where the single
parts that built it are stored separately. These querytrees are visible when starting the Postgres
backend with debuglevel 4 and typing queries into the interactive backend interface. The rule
actions in the pg_rewrite system catalog are also stored as querytrees. They are not formatted
like the debug output, but they contain exactly the same information.

 Reading a querytree requires some experience and it was a hard time when I started to work on
the rule system. I can remember that I was standing at the coffee machine and I saw the cup in
a targetlist, water and coffee powder in a rangetable and all the buttons in a qualification
expression. Since SQL representations of querytrees are sufficient to understand the rule
system, this document will not teach how to read them. It might help to learn it and the naming
conventions are required in the later following descriptions.

The Parts of a Querytree

 When reading the SQL representations of the querytrees in this document it is necessary to be
able to identify the parts the statement is broken into when it is in the querytree structure. The
parts of a querytree are

 the commandtype

 This is a simple value telling which command (SELECT, INSERT, UPDATE, DELETE)
produced the parsetree.

Chapter 8. The Postgres Rule System

29

 the rangetable

 The rangtable is a list of relations that are used in the query. In a SELECT statement that
are the relations given after the FROM keyword.

 Every rangetable entry identifies a table or view and tells by which name it is called in the
other parts of the query. In the querytree the rangetable entries are referenced by index
rather than by name, so here it doesn’t matter if there are duplicate names as it would in an
SQL statement. This can happen after the rangetables of rules have been merged in. The
examples in this document will not have this situation.

 the resultrelation

 This is an index into the rangetable that identifies the relation where the results of the
query go.

 SELECT queries normally don’t have a result relation. The special case of a SELECT
INTO is mostly identical to a CREATE TABLE, INSERT ... SELECT sequence and is not
discussed separately here.

 On INSERT, UPDATE and DELETE queries the resultrelation is the table (or view!)
where the changes take effect.

 the targetlist

 The targetlist is a list of expressions that define the result of the query. In the case of a
SELECT, the expressions are what builds the final output of the query. They are the
expressions between the SELECT and the FROM keywords (* is just an abbreviation for
all the attribute names of a relation).

 DELETE queries don’t need a targetlist because they don’t produce any result. In fact the
optimizer will add a special entry to the empty targetlist. But this is after the rule system
and will be discussed later. For the rule system the targetlist is empty.

 In INSERT queries the targetlist describes the new rows that should go into the
resultrelation. Missing columns of the resultrelation will be added by the optimizer with a
constant NULL expression. It is the expressions in the VALUES clause or the ones from
the SELECT clause on INSERT ... SELECT.

 On UPDATE queries, it describes the new rows that should replace the old ones. Here
now the optimizer will add missing columns by inserting expressions that put the values
from the old rows into the new one. And it will add the special entry like for DELETE too.
It is the expressions from the SET attribute = expression part of the query.

 Every entry in the targetlist contains an expression that can be a constant value, a variable
pointing to an attribute of one of the relations in the rangetable, a parameter or an
expression tree made of function calls, constants, variables, operators etc.

 the qualification

 The queries qualification is an expression much like one of those contained in the
targetlist entries. The result value of this expression is a boolean that tells if the operation
(INSERT, UPDATE, DELETE or SELECT) for the final result row should be executed or
not. It is the WHERE clause of an SQL statement.

Chapter 8. The Postgres Rule System

30

 the others

 The other parts of the querytree like the ORDER BY clause arent of interest here. The
rule system substitutes entries there while applying rules, but that doesn’t have much to do
with the fundamentals of the rule system. GROUP BY is a special thing when it appears in
a view definition and still needs to be documented.

Views and the Rule System

Implementation of Views in Postgres

 Views in Postgres are implemented using the rule system. In fact there is absolutely no
difference between a

 CREATE VIEW myview AS SELECT * FROM mytab;

 compared against the two commands

 CREATE TABLE myview (same attribute list as for mytab);
 CREATE RULE "_RETmyview" AS ON SELECT TO myview DO INSTEAD
 SELECT * FROM mytab;

 because this is exactly what the CREATE VIEW command does internally. This has some side
effects. One of them is that the information about a view in the Postgres system catalogs is
exactly the same as it is for a table. So for the query parsers, there is absolutely no difference
between a table and a view. They are the same thing - relations. That is the important one for
now.

How SELECT Rules Work

 Rules ON SELECT are applied to all queries as the last step, even if the command given is an
INSERT, UPDATE or DELETE. And they have different semantics from the others in that they
modify the parsetree in place instead of creating a new one. So SELECT rules are described
first.

 Currently, there could be only one action and it must be a SELECT action that is INSTEAD.
This restriction was required to make rules safe enough to open them for ordinary users and it
restricts rules ON SELECT to real view rules.

 The example for this document are two join views that do some calculations and some more
views using them in turn. One of the two first views is customized later by adding rules for
INSERT, UPDATE and DELETE operations so that the final result will be a view that behaves
like a real table with some magic functionality. It is not such a simple example to start from
and this makes things harder to get into. But it’s better to have one example that covers all the
points discussed step by step rather than having many different ones that might mix up in mind.

 The database needed to play on the examples is named al_bundy. You’ll see soon why this is
the database name. And it needs the procedural language PL/pgSQL installed, because we need
a little min() function returning the lower of 2 integer values. We create that as

 CREATE FUNCTION min(integer, integer) RETURNS integer AS
 ’BEGIN
 IF $1 < $2 THEN

Chapter 8. The Postgres Rule System

31

 RETURN $1;
 END IF;
 RETURN $2;
 END;’
 LANGUAGE ’plpgsql’;

 The real tables we need in the first two rule system descripitons are these:

 CREATE TABLE shoe_data (
 shoename char(10), -- primary key
 sh_avail integer, -- available # of pairs
 slcolor char(10), -- preferred shoelace color
 slminlen float, -- miminum shoelace length
 slmaxlen float, -- maximum shoelace length
 slunit char(8) -- length unit
);

 CREATE TABLE shoelace_data (
 sl_name char(10), -- primary key
 sl_avail integer, -- available # of pairs
 sl_color char(10), -- shoelace color
 sl_len float, -- shoelace length
 sl_unit char(8) -- length unit
);

 CREATE TABLE unit (
 un_name char(8), -- the primary key
 un_fact float -- factor to transform to cm
);

 I think most of us wear shoes and can realize that this is really useful data. Well there are
shoes out in the world that don’t require shoelaces, but this doesn’t make Al’s life easier and so
we ignore it.

 The views are created as

 CREATE VIEW shoe AS
 SELECT sh.shoename,
 sh.sh_avail,
 sh.slcolor,
 sh.slminlen,
 sh.slminlen * un.un_fact AS slminlen_cm,
 sh.slmaxlen,
 sh.slmaxlen * un.un_fact AS slmaxlen_cm,
 sh.slunit
 FROM shoe_data sh, unit un
 WHERE sh.slunit = un.un_name;

 CREATE VIEW shoelace AS
 SELECT s.sl_name,
 s.sl_avail,
 s.sl_color,
 s.sl_len,
 s.sl_unit,
 s.sl_len * u.un_fact AS sl_len_cm
 FROM shoelace_data s, unit u
 WHERE s.sl_unit = u.un_name;

 CREATE VIEW shoe_ready AS
 SELECT rsh.shoename,
 rsh.sh_avail,
 rsl.sl_name,
 rsl.sl_avail,
 min(rsh.sh_avail, rsl.sl_avail) AS total_avail
 FROM shoe rsh, shoelace rsl
 WHERE rsl.sl_color = rsh.slcolor
 AND rsl.sl_len_cm >= rsh.slminlen_cm
 AND rsl.sl_len_cm <= rsh.slmaxlen_cm;

Chapter 8. The Postgres Rule System

32

 The CREATE VIEW command for the shoelace view (which is the simplest one we have) will
create a relation shoelace and an entry in pg_rewrite that tells that there is a rewrite rule that
must be applied whenever the relation shoelace is referenced in a queries rangetable. The rule
has no rule qualification (discussed in the non SELECT rules since SELECT rules currently
cannot have them) and it is INSTEAD. Note that rule qualifications are not the same as query
qualifications! The rules action has a qualification.

 The rules action is one querytree that is an exact copy of the SELECT statement in the view
creation command.

Note: The two extra range table entries for NEW and OLD (named *NEW* and
CURRENT for historical reasons in the printed querytree) you can see in the pg_rewrite
entry aren’t of interest for SELECT rules.

 Now we populate unit, shoe_data and shoelace_data and Al types the first SELECT in his life:

 al_bundy=> INSERT INTO unit VALUES (’cm’, 1.0);
 al_bundy=> INSERT INTO unit VALUES (’m’, 100.0);
 al_bundy=> INSERT INTO unit VALUES (’inch’, 2.54);
 al_bundy=>
 al_bundy=> INSERT INTO shoe_data VALUES
 al_bundy-> (’sh1’, 2, ’black’, 70.0, 90.0, ’cm’);
 al_bundy=> INSERT INTO shoe_data VALUES
 al_bundy-> (’sh2’, 0, ’black’, 30.0, 40.0, ’inch’);
 al_bundy=> INSERT INTO shoe_data VALUES
 al_bundy-> (’sh3’, 4, ’brown’, 50.0, 65.0, ’cm’);
 al_bundy=> INSERT INTO shoe_data VALUES
 al_bundy-> (’sh4’, 3, ’brown’, 40.0, 50.0, ’inch’);
 al_bundy=>
 al_bundy=> INSERT INTO shoelace_data VALUES
 al_bundy-> (’sl1’, 5, ’black’, 80.0, ’cm’);
 al_bundy=> INSERT INTO shoelace_data VALUES
 al_bundy-> (’sl2’, 6, ’black’, 100.0, ’cm’);
 al_bundy=> INSERT INTO shoelace_data VALUES
 al_bundy-> (’sl3’, 0, ’black’, 35.0 , ’inch’);
 al_bundy=> INSERT INTO shoelace_data VALUES
 al_bundy-> (’sl4’, 8, ’black’, 40.0 , ’inch’);
 al_bundy=> INSERT INTO shoelace_data VALUES
 al_bundy-> (’sl5’, 4, ’brown’, 1.0 , ’m’);
 al_bundy=> INSERT INTO shoelace_data VALUES
 al_bundy-> (’sl6’, 0, ’brown’, 0.9 , ’m’);
 al_bundy=> INSERT INTO shoelace_data VALUES
 al_bundy-> (’sl7’, 7, ’brown’, 60 , ’cm’);
 al_bundy=> INSERT INTO shoelace_data VALUES
 al_bundy-> (’sl8’, 1, ’brown’, 40 , ’inch’);
 al_bundy=>
 al_bundy=> SELECT * FROM shoelace;
 sl_name |sl_avail|sl_color |sl_len|sl_unit |sl_len_cm
 ----------+--------+----------+------+--------+---------
 sl1 | 5|black | 80|cm | 80
 sl2 | 6|black | 100|cm | 100
 sl7 | 7|brown | 60|cm | 60
 sl3 | 0|black | 35|inch | 88.9
 sl4 | 8|black | 40|inch | 101.6
 sl8 | 1|brown | 40|inch | 101.6
 sl5 | 4|brown | 1|m | 100
 sl6 | 0|brown | 0.9|m | 90
 (8 rows)

 It’s the simplest SELECT Al can do on our views, so we take this to explain the basics of view
rules. The ’SELECT * FROM shoelace’ was interpreted by the parser and produced the
parsetree

 SELECT shoelace.sl_name, shoelace.sl_avail,
 shoelace.sl_color, shoelace.sl_len,

Chapter 8. The Postgres Rule System

33

 shoelace.sl_unit, shoelace.sl_len_cm
 FROM shoelace shoelace;

 and this is given to the rule system. The rule system walks through the rangetable and checks if
there are rules in pg_rewrite for any relation. When processing the rangetable entry for
shoelace (the only one up to now) it finds the rule ’_RETshoelace’ with the parsetree

 SELECT s.sl_name, s.sl_avail,
 s.sl_color, s.sl_len, s.sl_unit,
 float8mul(s.sl_len, u.un_fact) AS sl_len_cm
 FROM shoelace *OLD*, shoelace *NEW*,
 shoelace_data s, unit u
 WHERE bpchareq(s.sl_unit, u.un_name);

 Note that the parser changed the calculation and qualification into calls to the appropriate
functions. But in fact this changes nothing. The first step in rewriting is merging the two
rangetables. The resulting parsetree then reads

 SELECT shoelace.sl_name, shoelace.sl_avail,
 shoelace.sl_color, shoelace.sl_len,
 shoelace.sl_unit, shoelace.sl_len_cm
 FROM shoelace shoelace, shoelace *OLD*,
 shoelace *NEW*, shoelace_data s,
 unit u;

 In step 2 it adds the qualification from the rule action to the parsetree resulting in

 SELECT shoelace.sl_name, shoelace.sl_avail,
 shoelace.sl_color, shoelace.sl_len,
 shoelace.sl_unit, shoelace.sl_len_cm
 FROM shoelace shoelace, shoelace *OLD*,
 shoelace *NEW*, shoelace_data s,
 unit u
 WHERE bpchareq(s.sl_unit, u.un_name);

 And in step 3 it replaces all the variables in the parsetree, that reference the rangetable entry
(the one for shoelace that is currently processed) by the corresponding targetlist expressions
from the rule action. This results in the final query

 SELECT s.sl_name, s.sl_avail,
 s.sl_color, s.sl_len,
 s.sl_unit, float8mul(s.sl_len, u.un_fact) AS sl_len_cm
 FROM shoelace shoelace, shoelace *OLD*,
 shoelace *NEW*, shoelace_data s,
 unit u
 WHERE bpchareq(s.sl_unit, u.un_name);

 Turning this back into a real SQL statement a human user would type reads

 SELECT s.sl_name, s.sl_avail,
 s.sl_color, s.sl_len,
 s.sl_unit, s.sl_len * u.un_fact AS sl_len_cm
 FROM shoelace_data s, unit u
 WHERE s.sl_unit = u.un_name;

 That was the first rule applied. While this was done, the rangetable has grown. So the rule
system continues checking the range table entries. The next one is number 2 (shoelace *OLD*).
Relation shoelace has a rule, but this rangetable entry isn’t referenced in any of the variables of
the parsetree, so it is ignored. Since all the remaining rangetable entries either have no rules in
pg_rewrite or aren’t referenced, it reaches the end of the rangetable. Rewriting is complete and
the above is the final result given into the optimizer. The optimizer ignores the extra rangetable
entries that aren’t referenced by variables in the parsetree and the plan produced by the

Chapter 8. The Postgres Rule System

34

planner/optimizer would be exactly the same as if Al had typed the above SELECT query
instead of the view selection.

 Now we face Al with the problem that the Blues Brothers appear in his shop and want to buy
some new shoes, and as the Blues Brothers are, they want to wear the same shoes. And they
want to wear them immediately, so they need shoelaces too.

 Al needs to know for which shoes currently in the store he has the matching shoelaces (color
and size) and where the total number of exactly matching pairs is greater or equal to two. We
theach him how to do and he asks his database:

 al_bundy=> SELECT * FROM shoe_ready WHERE total_avail >= 2;
 shoename |sh_avail|sl_name |sl_avail|total_avail
 ----------+--------+----------+--------+-----------
 sh1 | 2|sl1 | 5| 2
 sh3 | 4|sl7 | 7| 4
 (2 rows)

 Al is a shoe guru and so he knows that only shoes of type sh1 would fit (shoelace sl7 is brown
and shoes that need brown shoelaces aren’t shoes the Blues Brothers would ever wear).

 The output of the parser this time is the parsetree

 SELECT shoe_ready.shoename, shoe_ready.sh_avail,
 shoe_ready.sl_name, shoe_ready.sl_avail,
 shoe_ready.total_avail
 FROM shoe_ready shoe_ready
 WHERE int4ge(shoe_ready.total_avail, 2);

 The first rule applied will be that one for the shoe_ready relation and it results in the parsetree

 SELECT rsh.shoename, rsh.sh_avail,
 rsl.sl_name, rsl.sl_avail,
 min(rsh.sh_avail, rsl.sl_avail) AS total_avail
 FROM shoe_ready shoe_ready, shoe_ready *OLD*,
 shoe_ready *NEW*, shoe rsh,
 shoelace rsl
 WHERE int4ge(min(rsh.sh_avail, rsl.sl_avail), 2)
 AND (bpchareq(rsl.sl_color, rsh.slcolor)
 AND float8ge(rsl.sl_len_cm, rsh.slminlen_cm)
 AND float8le(rsl.sl_len_cm, rsh.slmaxlen_cm)
);

 In reality the AND clauses in the qualification will be operator nodes of type AND with a left
and right expression. But that makes it lesser readable as it already is, and there are more rules
to apply. So I only put them into some parantheses to group them into logical units in the order
they where added and we continue with the rule for relation shoe as it is the next rangetable
entry that is referenced and has a rule. The result of applying it is

 SELECT sh.shoename, sh.sh_avail,
 rsl.sl_name, rsl.sl_avail,
 min(sh.sh_avail, rsl.sl_avail) AS total_avail,
 FROM shoe_ready shoe_ready, shoe_ready *OLD*,
 shoe_ready *NEW*, shoe rsh,
 shoelace rsl, shoe *OLD*,
 shoe *NEW*, shoe_data sh,
 unit un
 WHERE (int4ge(min(sh.sh_avail, rsl.sl_avail), 2)
 AND (bpchareq(rsl.sl_color, sh.slcolor)
 AND float8ge(rsl.sl_len_cm,
 float8mul(sh.slminlen, un.un_fact))
 AND float8le(rsl.sl_len_cm,
 float8mul(sh.slmaxlen, un.un_fact))
)
)

Chapter 8. The Postgres Rule System

35

 AND bpchareq(sh.slunit, un.un_name);

 And finally we apply the already well known rule for shoelace (this time on a parsetree that is
a little more complex) and get

 SELECT sh.shoename, sh.sh_avail,
 s.sl_name, s.sl_avail,
 min(sh.sh_avail, s.sl_avail) AS total_avail
 FROM shoe_ready shoe_ready, shoe_ready *OLD*,
 shoe_ready *NEW*, shoe rsh,
 shoelace rsl, shoe *OLD*,
 shoe *NEW*, shoe_data sh,
 unit un, shoelace *OLD*,
 shoelace *NEW*, shoelace_data s,
 unit u
 WHERE ((int4ge(min(sh.sh_avail, s.sl_avail), 2)
 AND (bpchareq(s.sl_color, sh.slcolor)
 AND float8ge(float8mul(s.sl_len, u.un_fact),
 float8mul(sh.slminlen, un.un_fact))
 AND float8le(float8mul(s.sl_len, u.un_fact),
 float8mul(sh.slmaxlen, un.un_fact))
)
)
 AND bpchareq(sh.slunit, un.un_name)
)
 AND bpchareq(s.sl_unit, u.un_name);

 Again we reduce it to a real SQL statement that is equivalent to the final output of the rule
system:

 SELECT sh.shoename, sh.sh_avail,
 s.sl_name, s.sl_avail,
 min(sh.sh_avail, s.sl_avail) AS total_avail
 FROM shoe_data sh, shoelace_data s, unit u, unit un
 WHERE min(sh.sh_avail, s.sl_avail) >= 2
 AND s.sl_color = sh.slcolor
 AND s.sl_len * u.un_fact >= sh.slminlen * un.un_fact
 AND s.sl_len * u.un_fact <= sh.slmaxlen * un.un_fact
 AND sh.sl_unit = un.un_name
 AND s.sl_unit = u.un_name;

 Recursive processing of rules rewrote one SELECT from a view into a parsetree, that is
equivalent to exactly that what Al had to type if there would be no views at all.

Note: There is currently no recursion stopping mechanism for view rules in the rule system
(only for the other rules). This doesn’t hurt much, because the only way to push this into an
endless loop (blowing up the backend until it reaches the memory limit) is to create tables
and then setup the view rules by hand with CREATE RULE in such a way, that one selects
from the other that selects from the one. This could never happen if CREATE VIEW is
used because on the first CREATE VIEW, the second relation does not exist and thus the
first view cannot select from the second.

View Rules in Non-SELECT Statements

 Two details of the parsetree aren’t touched in the description of view rules above. These are
the commandtype and the resultrelation. In fact, view rules don’t need these informations.

 There are only a few differences between a parsetree for a SELECT and one for any other
command. Obviously they have another commandtype and this time the resultrelation points to
the rangetable entry where the result should go. Anything else is absolutely the same. So
having two tables t1 and t2 with attributes a and b, the parsetrees for the two statements

 SELECT t2.b FROM t1, t2 WHERE t1.a = t2.a;

Chapter 8. The Postgres Rule System

36

 UPDATE t1 SET b = t2.b WHERE t1.a = t2.a;

 are nearly identical.

 The rangetables contain entries for the tables t1 and t2.

 The targetlists contain one variable that points to attribute b of the rangetable entry for table
t2.

 The qualification expressions compare the attributes a of both ranges for equality.

 The consequence is, that both parsetrees result in similar execution plans. They are both joins
over the two tables. For the UPDATE the missing columns from t1 are added to the targetlist
by the optimizer and the final parsetree will read as

 UPDATE t1 SET a = t1.a, b = t2.b WHERE t1.a = t2.a;

 and thus the executor run over the join will produce exactly the same result set as a

 SELECT t1.a, t2.b FROM t1, t2 WHERE t1.a = t2.a;

 will do. But there is a little problem in UPDATE. The executor does not care what the results
from the join it is doing are meant for. It just produces a result set of rows. The difference that
one is a SELECT command and the other is an UPDATE is handled in the caller of the
executor. The caller still knows (looking at the parsetree) that this is an UPDATE, and he
knows that this result should go into table t1. But which of the 666 rows that are there has to be
replaced by the new row? The plan executed is a join with a qualification that potentially could
produce any number of rows between 0 and 666 in unknown order.

 To resolve this problem, another entry is added to the targetlist in UPDATE and DELETE
statements. The current tuple ID (ctid). This is a system attribute with a special feature. It
contains the block and position in the block for the row. Knowing the table, the ctid can be used
to find one specific row in a 1.5GB sized table containing millions of rows by fetching one
single data block. After adding the ctid to the targetlist, the final result set could be defined as

 SELECT t1.a, t2.b, t1.ctid FROM t1, t2 WHERE t1.a = t2.a;

 Now another detail of Postgres enters the stage. At this moment, table rows aren’t overwritten
and this is why ABORT TRANSACTION is fast. In an UPDATE, the new result row is
inserted into the table (after stripping ctid) and in the tuple header of the row that ctid pointed
to the cmax and xmax entries are set to the current command counter and current transaction
ID. Thus the old row is hidden and after the transaction commited the vacuum cleaner can
really move it out.

 Knowing that all, we can simply apply view rules in absolutely the same way to any command.
There is no difference.

The Power of Views in Postgres

 The above demonstrates how the rule system incorporates view definitions into the original
parsetree. In the second example a simple SELECT from one view created a final parsetree that
is a join of 4 tables (unit is used twice with different names).

Chapter 8. The Postgres Rule System

37

Benefits

 The benefit of implementing views with the rule system is, that the optimizer has all the
information about which tables have to be scanned plus the relationships between these tables
plus the restrictive qualifications from the views plus the qualifications from the original query
in one single parsetree. And this is still the situation when the original query is already a join
over views. Now the optimizer has to decide which is the best path to execute the query. The
more information the optimizer has, the better this decision can be. And the rule system as
implemented in Postgres ensures, that this is all information available about the query up to
now.

Concerns

 There was a long time where the Postgres rule system was considered broken. The use of rules
was not recommended and the only part working where view rules. And also these view rules
made problems because the rule system wasn’t able to apply them properly on other statements
than a SELECT (for example an UPDATE that used data from a view didn’t work).

 During that time, development moved on and many features where added to the parser and
optimizer. The rule system got more and more out of sync with their capabilities and it became
harder and harder to start fixing it. Thus, noone did.

 For 6.4, someone locked the door, took a deep breath and shuffled that damned thing up. What
came out was a rule system with the capabilities described in this document. But there are still
some constructs not handled and some where it fails due to things that are currently not
supported by the Postgres query optimizer.

 Views with aggregate columns have bad problems. Aggregate expressions in qualifications
must be used in subselects. Currently it is not possible to do a join of two views, each having
an aggregate column, and compare the two aggregate values in the qualification. In the
meantime it is possible to put these aggregate expressions into functions with the appropriate
arguments and use them in the view definition.

 Views of unions are currently not supported. Well it’s easy to rewrite a simple SELECT into
a union. But it is a little difficult if the view is part of a join doing an update.

 ORDER BY clauses in view definitions aren’t supported.

 DISTINCT isn’t supported in view definitions.

 There is no good reason why the optimizer should not handle parsetree constructs that the
parser could never produce due to limitations in the SQL syntax. The author hopes that these
items disappear in the future.

Implementation Side Effects

 Using the described rule system to implement views has a funny side effect. The following
does not seem to work:

 al_bundy=> INSERT INTO shoe (shoename, sh_avail, slcolor)
 al_bundy-> VALUES (’sh5’, 0, ’black’);
 INSERT 20128 1
 al_bundy=> SELECT shoename, sh_avail, slcolor FROM shoe_data;
 shoename |sh_avail|slcolor
 ----------+--------+----------
 sh1 | 2|black

Chapter 8. The Postgres Rule System

38

 sh3 | 4|brown
 sh2 | 0|black
 sh4 | 3|brown
 (4 rows)

 The interesting thing is that the return code for INSERT gave us an object ID and told that 1
row has been inserted. But it doesn’t appear in shoe_data. Looking into the database directory
we can see, that the database file for the view relation shoe seems now to have a data block.
And that is definitely the case.

 We can also issue a DELETE and if it does not have a qualification, it tells us that rows have
been deleted and the next vacuum run will reset the file to zero size.

 The reason for that behaviour is, that the parsetree for the INSERT does not reference the shoe
relation in any variable. The targetlist contains only constant values. So there is no rule to apply
and it goes down unchanged into execution and the row is inserted. And so for the DELETE.

 To change this we can define rules that modify the behaviour of non-SELECT queries. This is
the topic of the next section.

Rules on INSERT, UPDATE and DELETE

Differences to View Rules

 Rules that are defined ON INSERT, UPDATE and DELETE are totally different from the
view rules described in the previous section. First, their CREATE RULE command allows
more:

 They can have no action.

 They can have multiple actions.

 The keyword INSTEAD is optional.

 The pseudo relations NEW and OLD become useful.

 They can have rule qualifications.

 Second, they don’t modify the parsetree in place. Instead they create zero or many new
parsetrees and can throw away the original one.

How These Rules Work

 Keep the syntax

 CREATE RULE rule_name AS ON event
 TO object [WHERE rule_qualification]
 DO [INSTEAD] [action | (actions) | NOTHING];

 in mind. In the following, "update rules" means rules that are defined ON INSERT, UPDATE
or DELETE.

 Update rules get applied by the rule system when the result relation and the commandtype of a
parsetree are equal to the object and event given in the CREATE RULE command. For update
rules, the rule system creates a list of parsetrees. Initially the parsetree list is empty. There can
be zero (NOTHING keyword), one or multiple actions. To simplify, we look at a rule with one
action. This rule can have a qualification or not and it can be INSTEAD or not.

Chapter 8. The Postgres Rule System

39

 What is a rule qualification? It is a restriction that tells when the actions of the rule should be
done and when not. This qualification can only reference the NEW and/or OLD pseudo
relations which are basically the relation given as object (but with a special meaning).

 So we have four cases that produce the following parsetrees for a one-action rule.

 No qualification and not INSTEAD:

 The parsetree from the rule action where the original parsetrees qualification has been
added.

 No qualification but INSTEAD:

 The parsetree from the rule action where the original parsetrees qualification has been
added.

 Qualification given and not INSTEAD:

 The parsetree from the rule action where the rule qualification and the original parsetrees
qualification have been added.

 Qualification given and INSTEAD:

 The parsetree from the rule action where the rule qualification and the original parsetrees
qualification have been added.

 The original parsetree where the negated rule qualification has been added.

 Finally, if the rule is not INSTEAD, the unchanged original parsetree is added to the list. Since
only qualified INSTEAD rules already add the original parsetree, we end up with a total
maximum of two parsetrees for a rule with one action.

 The parsetrees generated from rule actions are thrown into the rewrite system again and maybe
more rules get applied resulting in more or less parsetrees. So the parsetrees in the rule actions
must have either another commandtype or another resultrelation. Otherwise this recursive
process will end up in a loop. There is a compiled in recursion limit of currently 10 iterations.
If after 10 iterations there are still update rules to apply the rule system assumes a loop over
multiple rule definitions and aborts the transaction.

 The parsetrees found in the actions of the pg_rewrite system catalog are only templates. Since
they can reference the rangetable entries for NEW and OLD, some substitutions have to be
made before they can be used. For any reference to NEW, the targetlist of the original query is
searched for a corresponding entry. If found, that entries expression is placed into the reference.
Otherwise NEW means the same as OLD. Any reference to OLD is replaced by a reference to
the rangetable entry which is the resultrelation.

A First Rule Step by Step

 We want to trace changes to the sl_avail column in the shoelace_data relation. So we setup a
log table and a rule that writes us entries every time and UPDATE is performed on
shoelace_data.

Chapter 8. The Postgres Rule System

40

 CREATE TABLE shoelace_log (
 sl_name char(10), -- shoelace changed
 sl_avail integer, -- new available value
 log_who name, -- who did it
 log_when datetime -- when
);

 CREATE RULE log_shoelace AS ON UPDATE TO shoelace_data
 WHERE NEW.sl_avail != OLD.sl_avail
 DO INSERT INTO shoelace_log VALUES (
 NEW.sl_name,
 NEW.sl_avail,
 getpgusername(),
 ’now’::text
);

 One interesting detail is the casting of ’now’ in the rules INSERT action to type text. Without
that, the parser would see at CREATE RULE time, that the target type in shoelace_log is a
datetime and tries to make a constant from it - with success. So a constant datetime value
would be stored in the rule action and all log entries would have the time of the CREATE
RULE statement. Not exactly what we want. The casting causes that the parser constructs a
datetime(’now’::text) from it and this will be evaluated when the rule is executed.

 Now Al does

 al_bundy=> UPDATE shoelace_data SET sl_avail = 6
 al_bundy-> WHERE sl_name = ’sl7’;

 and we look at the logtable.

 al_bundy=> SELECT * FROM shoelace_log;
 sl_name |sl_avail|log_who|log_when
 ----------+--------+-------+--------------------------------
 sl7 | 6|Al |Tue Oct 20 16:14:45 1998 MET DST
 (1 row)

 That’s what we expected. What happened in the background is the following. The parser
created the parsetree (this time the parts of the original parsetree are highlighted because the
base of operations is the rule action for update rules).

 UPDATE shoelace_data SET sl_avail = 6
 FROM shoelace_data shoelace_data
 WHERE bpchareq(shoelace_data.sl_name, ’sl7’);

 There is a rule ’log_shoelace’ that is ON UPDATE with the rule qualification expression

 int4ne(NEW.sl_avail, OLD.sl_avail)

 and one action

 INSERT INTO shoelace_log SELECT
 NEW.sl_name, *NEW*.sl_avail,
 getpgusername(), datetime(’now’::text)
 FROM shoelace_data *NEW*, shoelace_data *OLD*,
 shoelace_log shoelace_log;

 Don’t trust the output of the pg_rules system view. It specially handles the situation that there
are only references to NEW and OLD in the INSERT and outputs the VALUES format of
INSERT. In fact there is no difference between an INSERT ... VALUES and an INSERT ...
SELECT on parsetree level. They both have rangetables, targetlists and maybe qualifications
etc. The optimizer later decides, if to create an execution plan of type result, seqscan,

Chapter 8. The Postgres Rule System

41

indexscan, join or whatever for that parsetree. If there are no references to rangetable entries
leftin the parsetree , it becomes a result execution plan (the INSERT ... VALUES version). The
rule action above can truely result in both variants.

 The rule is a qualified non-INSTEAD rule, so the rule system has to return two parsetrees. The
modified rule action and the original parsetree. In the first step the rangetable of the original
query is incorporated into the rules action parsetree. This results in

 INSERT INTO shoelace_log SELECT
 NEW.sl_name, *NEW*.sl_avai,
 getpgusername(), datetime(’now’::text)
 FROM shoelace_data shoelace_data, shoelace_data *NEW*,
 shoelace_data *OLD*, shoelace_log shoelace_log;

 In step 2 the rule qualification is added to it, so the result set is restricted to rows where
sl_avail changes.

 INSERT INTO shoelace_log SELECT
 NEW.sl_name, *NEW*.sl_avai,
 getpgusername(), datetime(’now’::text)
 FROM shoelace_data shoelace_data, shoelace_data *NEW*,
 shoelace_data *OLD*, shoelace_log shoelace_log
 WHERE int4ne(*NEW*.sl_avail, *OLD*.sl_avail);

 In step 3 the original parsetrees qualification is added, restricting the resultset further to only
the rows touched by the original parsetree.

 INSERT INTO shoelace_log SELECT
 NEW.sl_name, *NEW*.sl_avai,
 getpgusername(), datetime(’now’::text)
 FROM shoelace_data shoelace_data, shoelace_data *NEW*,
 shoelace_data *OLD*, shoelace_log shoelace_log
 WHERE int4ne(*NEW*.sl_avail, *OLD*.sl_avail)
 AND bpchareq(shoelace_data.sl_name, ’sl7’);

 Step 4 substitutes NEW references by the targetlist entries from the original parsetree or with
the matching variable references from the result relation.

 INSERT INTO shoelace_log SELECT
 shoelace_data.sl_name, 6,
 getpgusername(), datetime(’now’::text)
 FROM shoelace_data shoelace_data, shoelace_data *NEW*,
 shoelace_data *OLD*, shoelace_log shoelace_log
 WHERE int4ne(6, *OLD*.sl_avail)
 AND bpchareq(shoelace_data.sl_name, ’sl7’);

 Step 5 replaces OLD references into resultrelation references.

 INSERT INTO shoelace_log SELECT
 shoelace_data.sl_name, 6,
 getpgusername(), datetime(’now’::text)
 FROM shoelace_data shoelace_data, shoelace_data *NEW*,
 shoelace_data *OLD*, shoelace_log shoelace_log
 WHERE int4ne(6, shoelace_data.sl_avail)
 AND bpchareq(shoelace_data.sl_name, ’sl7’);

 That’s it. So reduced to the max the return from the rule system is a list of two parsetrees that
are the same as the statements:

 INSERT INTO shoelace_log SELECT
 shoelace_data.sl_name, 6,
 getpgusername(), ’now’
 FROM shoelace_data
 WHERE 6 != shoelace_data.sl_avail

Chapter 8. The Postgres Rule System

42

 AND shoelace_data.sl_name = ’sl7’;

 UPDATE shoelace_data SET sl_avail = 6
 WHERE sl_name = ’sl7’;

 These are executed in this order and that is exactly what the rule defines. The subtitutions and
the qualifications added ensure, that if the original query would be an

 UPDATE shoelace_data SET sl_color = ’green’
 WHERE sl_name = ’sl7’;

 No log entry would get written because due to the fact that this time the original parsetree does
not contain a targetlist entry for sl_avail, NEW.sl_avail will get replaced by
shoelace_data.sl_avail resulting in the extra query

 INSERT INTO shoelace_log SELECT
 shoelace_data.sl_name, shoelace_data.sl_avail,
 getpgusername(), ’now’
 FROM shoelace_data
 WHERE shoelace_data.sl_avail != shoelace_data.sl_avail
 AND shoelace_data.sl_name = ’sl7’;

 and that qualification will never be true. Since the is no difference on parsetree level between
an INSERT ... SELECT, and an INSERT ... VALUES, it will also work if the original query
modifies multiple rows. So if Al would issue the command

 UPDATE shoelace_data SET sl_avail = 0
 WHERE sl_color = ’black’;

 four rows in fact get updated (sl1, sl2, sl3 and sl4). But sl3 already has sl_avail = 0. This time,
the original parsetrees qualification is different and that results in the extra parsetree

 INSERT INTO shoelace_log SELECT
 shoelace_data.sl_name, 0,
 getpgusername(), ’now’
 FROM shoelace_data
 WHERE 0 != shoelace_data.sl_avail
 AND shoelace_data.sl_color = ’black’;

 This parsetree will surely insert three new log entries. And that’s absolutely correct.

 It is important, that the original parsetree is executed last. The Postgres "traffic cop" does a
command counter increment between the execution of the two parsetrees so the second one can
see changes made by the first. If the UPDATE would have been executed first, all the rows are
already set to zero, so the logging INSERT would not find any row where 0 !=
shoelace_data.sl_avail.

Cooperation with Views

 A simple way to protect view relations from the mentioned possibility that someone can
INSERT, UPDATE and DELETE invisible data on them is to let those parsetrees get thrown
away. We create the rules

 CREATE RULE shoe_ins_protect AS ON INSERT TO shoe
 DO INSTEAD NOTHING;
 CREATE RULE shoe_upd_protect AS ON UPDATE TO shoe
 DO INSTEAD NOTHING;
 CREATE RULE shoe_del_protect AS ON DELETE TO shoe
 DO INSTEAD NOTHING;

Chapter 8. The Postgres Rule System

43

 If Al now tries to do any of these operations on the view relation shoe, the rule system will
apply the rules. Since the rules have no actions and are INSTEAD, the resulting list of
parsetrees will be empty and the whole query will become nothing because there is nothing left
to be optimized or executed after the rule system is done with it.

Note: This fact might irritate frontend applications because absolutely nothing happened
on the database and thus, the backend will not return anything for the query. Not even a
PGRES_EMPTY_QUERY or so will be available in libpq. In psql, nothing happens. This
might change in the future.

 A more sophisticated way to use the rule system is to create rules that rewrite the parsetree into
one that does the right operation on the real tables. To do that on the shoelace view, we create
the following rules:

 CREATE RULE shoelace_ins AS ON INSERT TO shoelace
 DO INSTEAD
 INSERT INTO shoelace_data VALUES (
 NEW.sl_name,
 NEW.sl_avail,
 NEW.sl_color,
 NEW.sl_len,
 NEW.sl_unit);

 CREATE RULE shoelace_upd AS ON UPDATE TO shoelace
 DO INSTEAD
 UPDATE shoelace_data SET
 sl_name = NEW.sl_name,
 sl_avail = NEW.sl_avail,
 sl_color = NEW.sl_color,
 sl_len = NEW.sl_len,
 sl_unit = NEW.sl_unit
 WHERE sl_name = OLD.sl_name;

 CREATE RULE shoelace_del AS ON DELETE TO shoelace
 DO INSTEAD
 DELETE FROM shoelace_data
 WHERE sl_name = OLD.sl_name;

 Now there is a pack of shoelaces arriving in Al’s shop and it has a big partlist. Al is not that
good in calculating and so we don’t want him to manually update the shoelace view. Instead we
setup two little tables, one where he can insert the items from the partlist and one with a special
trick. The create commands for anything are:

 CREATE TABLE shoelace_arrive (
 arr_name char(10),
 arr_quant integer
);

 CREATE TABLE shoelace_ok (
 ok_name char(10),
 ok_quant integer
);

 CREATE RULE shoelace_ok_ins AS ON INSERT TO shoelace_ok
 DO INSTEAD
 UPDATE shoelace SET
 sl_avail = sl_avail + NEW.ok_quant
 WHERE sl_name = NEW.ok_name;

 Now Al can sit down and do whatever until

 al_bundy=> SELECT * FROM shoelace_arrive;
 arr_name |arr_quant
 ----------+---------

Chapter 8. The Postgres Rule System

44

 sl3 | 10
 sl6 | 20
 sl8 | 20
 (3 rows)

 is exactly that what’s on the part list. We take a quick look at the current data,

 al_bundy=> SELECT * FROM shoelace ORDER BY sl_name;
 sl_name |sl_avail|sl_color |sl_len|sl_unit |sl_len_cm
 ----------+--------+----------+------+--------+---------
 sl1 | 5|black | 80|cm | 80
 sl2 | 6|black | 100|cm | 100
 sl7 | 6|brown | 60|cm | 60
 sl3 | 0|black | 35|inch | 88.9
 sl4 | 8|black | 40|inch | 101.6
 sl8 | 1|brown | 40|inch | 101.6
 sl5 | 4|brown | 1|m | 100
 sl6 | 0|brown | 0.9|m | 90
 (8 rows)

 move the arrived shoelaces in

 al_bundy=> INSERT INTO shoelace_ok SELECT * FROM shoelace_arrive;

 and check the results

 al_bundy=> SELECT * FROM shoelace ORDER BY sl_name;
 sl_name |sl_avail|sl_color |sl_len|sl_unit |sl_len_cm
 ----------+--------+----------+------+--------+---------
 sl1 | 5|black | 80|cm | 80
 sl2 | 6|black | 100|cm | 100
 sl7 | 6|brown | 60|cm | 60
 sl4 | 8|black | 40|inch | 101.6
 sl3 | 10|black | 35|inch | 88.9
 sl8 | 21|brown | 40|inch | 101.6
 sl5 | 4|brown | 1|m | 100
 sl6 | 20|brown | 0.9|m | 90
 (8 rows)

 al_bundy=> SELECT * FROM shoelace_log;
 sl_name |sl_avail|log_who|log_when
 ----------+--------+-------+--------------------------------
 sl7 | 6|Al |Tue Oct 20 19:14:45 1998 MET DST
 sl3 | 10|Al |Tue Oct 20 19:25:16 1998 MET DST
 sl6 | 20|Al |Tue Oct 20 19:25:16 1998 MET DST
 sl8 | 21|Al |Tue Oct 20 19:25:16 1998 MET DST
 (4 rows)

 It’s a long way from the one INSERT ... SELECT to these results. And it’s description will be
the last in this document (but not the last example :-). First there was the parsers output

 INSERT INTO shoelace_ok SELECT
 shoelace_arrive.arr_name, shoelace_arrive.arr_quant
 FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok;

 Now the first rule ’shoelace_ok_ins’ is applied and turns it into

 UPDATE shoelace SET
 sl_avail = int4pl(shoelace.sl_avail,
shoelace_arrive.arr_quant)
 FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
 shoelace_ok *OLD*, shoelace_ok *NEW*,
 shoelace shoelace
 WHERE bpchareq(shoelace.sl_name, showlace_arrive.arr_name);

 and throws away the original INSERT on shoelace_ok. This rewritten query is passed to the
rule system again and the second applied rule ’shoelace_upd’ produced

Chapter 8. The Postgres Rule System

45

 UPDATE shoelace_data SET
 sl_name = shoelace.sl_name,
 sl_avail = int4pl(shoelace.sl_avail,
shoelace_arrive.arr_quant),
 sl_color = shoelace.sl_color,
 sl_len = shoelace.sl_len,
 sl_unit = shoelace.sl_unit
 FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
 shoelace_ok *OLD*, shoelace_ok *NEW*,
 shoelace shoelace, shoelace *OLD*,
 shoelace *NEW*, shoelace_data showlace_data
 WHERE bpchareq(shoelace.sl_name, showlace_arrive.arr_name)
 AND bpchareq(shoelace_data.sl_name, shoelace.sl_name);

 Again it’s an INSTEAD rule and the previous parsetree is trashed. Note that this query sill
uses the view shoelace But the rule system isn’t finished with this loop so it continues and
applies the rule ’_RETshoelace’ on it and we get

 UPDATE shoelace_data SET
 sl_name = s.sl_name,
 sl_avail = int4pl(s.sl_avail, shoelace_arrive.arr_quant),
 sl_color = s.sl_color,
 sl_len = s.sl_len,
 sl_unit = s.sl_unit
 FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
 shoelace_ok *OLD*, shoelace_ok *NEW*,
 shoelace shoelace, shoelace *OLD*,
 shoelace *NEW*, shoelace_data showlace_data,
 shoelace *OLD*, shoelace *NEW*,
 shoelace_data s, unit u
 WHERE bpchareq(s.sl_name, showlace_arrive.arr_name)
 AND bpchareq(shoelace_data.sl_name, s.sl_name);

 Again an update rule has been applied and so the wheel turns on and we are in rewrite round 3.
This time rule ’log_shoelace’ gets applied what produces the extra parsetree

 INSERT INTO shoelace_log SELECT
 s.sl_name,
 int4pl(s.sl_avail, shoelace_arrive.arr_quant),
 getpgusername(),
 datetime(’now’::text)
 FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
 shoelace_ok *OLD*, shoelace_ok *NEW*,
 shoelace shoelace, shoelace *OLD*,
 shoelace *NEW*, shoelace_data showlace_data,
 shoelace *OLD*, shoelace *NEW*,
 shoelace_data s, unit u,
 shoelace_data *OLD*, shoelace_data *NEW*
 shoelace_log shoelace_log
 WHERE bpchareq(s.sl_name, showlace_arrive.arr_name)
 AND bpchareq(shoelace_data.sl_name, s.sl_name);
 AND int4ne(int4pl(s.sl_avail, shoelace_arrive.arr_quant),
 s.sl_avail);

Chapter 8. The Postgres Rule System

46

 After that the rule system runs out of rules and returns the generated parsetrees. So we end up
with two final parsetrees that are equal to the SQL statements

 INSERT INTO shoelace_log SELECT
 s.sl_name,
 s.sl_avail + shoelace_arrive.arr_quant,
 getpgusername(),
 ’now’
 FROM shoelace_arrive shoelace_arrive,
 shoelace_data shoelace_data,
 shoelace_data s
 WHERE s.sl_name = shoelace_arrive.arr_name
 AND shoelace_data.sl_name = s.sl_name
 AND s.sl_avail + shoelace_arrive.arr_quant != s.sl_avail;

 UPDATE shoelace_data SET
 sl_avail = shoelace_data.sl_avail +
shoelace_arrive.arr_quant
 FROM shoelace_arrive shoelace_arrive, shoelace_data shoelace_data,
 shoelace_data s
 WHERE s.sl_name = shoelace_arrive.sl_name
 AND shoelace_data.sl_name = s.sl_name;

 The result is that data coming from one relation inserted into another, changed into updates on
a third, changed into updating a fourth plus logging that final update in a fifth gets reduced into
two queries.

 There is a little detail that’s a bit ugly. Looking at the two queries turns out, that the
shoelace_data relation appears twice in the rangetable where it could definitely be reduced to
one. The optimizer does not handle it and so the execution plan for the rule systems output of
the INSERT will be

Nested Loop
 -> Merge Join
 -> Seq Scan
 -> Sort
 -> Seq Scan on s
 -> Seq Scan
 -> Sort
 -> Seq Scan on shoelace_arrive
 -> Seq Scan on shoelace_data

 while omitting the extra rangetable entry would result in a

Merge Join
 -> Seq Scan
 -> Sort
 -> Seq Scan on s
 -> Seq Scan
 -> Sort
 -> Seq Scan on shoelace_arrive

 that totally produces the same entries in the log relation. Thus, the rule system caused one
extra scan on the shoelace_data relation that is absolutely not necessary. And the same obsolete
scan is done once more in the UPDATE. But it was a really hard job to make that all possible at
all.

 A final demonstration of the Postgres rule system and it’s power. There is a cute blonde that
sells shoelaces. And what Al could never realize, she’s not only cute, she’s smart too - a little
too smart. Thus, it happens from time to time that Al orders shoelaces that are absolutely not
sellable. This time he ordered 1000 pairs of magenta shoelaces and since another kind is

Chapter 8. The Postgres Rule System

47

currently not available but he committed to buy some, he also prepared his database for pink
ones.

 al_bundy=> INSERT INTO shoelace VALUES
 al_bundy-> (’sl9’, 0, ’pink’, 35.0, ’inch’, 0.0);
 al_bundy=> INSERT INTO shoelace VALUES
 al_bundy-> (’sl10’, 1000, ’magenta’, 40.0, ’inch’, 0.0);

 Since this happens often, we must lookup for shoelace entries, that fit for absolutely no shoe
sometimes. We could do that in a complicated statement every time, or we can setup a view for
it. The view for this is

 CREATE VIEW shoelace_obsolete AS
 SELECT * FROM shoelace WHERE NOT EXISTS
 (SELECT shoename FROM shoe WHERE slcolor = sl_color);

 It’s output is

 al_bundy=> SELECT * FROM shoelace_obsolete;
 sl_name |sl_avail|sl_color |sl_len|sl_unit |sl_len_cm
 ----------+--------+----------+------+--------+---------
 sl9 | 0|pink | 35|inch | 88.9
 sl10 | 1000|magenta | 40|inch | 101.6

 For the 1000 magenta shoelaces we must debt Al before we can throw ’em away, but that’s
another problem. The pink entry we delete. To make it a little harder for Postgres, we don’t
delete it directly. Instead we create one more view

 CREATE VIEW shoelace_candelete AS
 SELECT * FROM shoelace_obsolete WHERE sl_avail = 0;

 and do it this way:

 DELETE FROM shoelace WHERE EXISTS
 (SELECT * FROM shoelace_candelete
 WHERE sl_name = shoelace.sl_name);

 Voila:

 al_bundy=> SELECT * FROM shoelace;
 sl_name |sl_avail|sl_color |sl_len|sl_unit |sl_len_cm
 ----------+--------+----------+------+--------+---------
 sl1 | 5|black | 80|cm | 80
 sl2 | 6|black | 100|cm | 100
 sl7 | 6|brown | 60|cm | 60
 sl4 | 8|black | 40|inch | 101.6
 sl3 | 10|black | 35|inch | 88.9
 sl8 | 21|brown | 40|inch | 101.6
 sl10 | 1000|magenta | 40|inch | 101.6
 sl5 | 4|brown | 1|m | 100
 sl6 | 20|brown | 0.9|m | 90
 (9 rows)

 A DELETE on a view, with a subselect qualification that in total uses 4 nesting/joined views,
where one of them itself has a subselect qualification containing a view and where calculated
view columns are used, gets rewritten into one single parsetree that deletes the requested data
from a real table.

 I think there are only a few situations out in the real world, where such a construct is
necessary. But it makes me feel comfortable that it works.

The truth is: Doing this I found one more bug while writing this document. But after fixing
that I was a little amazed that it works at all.

Chapter 8. The Postgres Rule System

48

Rules and Permissions

 Due to rewriting of queries by the Postgres rule system, other tables/views than those used in
the original query get accessed. Using update rules, this can include write access to tables.

 Rewrite rules don’t have a separate owner. The owner of a relation (table or view) is
automatically the owner of the rewrite rules that are defined for it. The Postgres rule system
changes the behaviour of the default access control system. Relations that are used due to rules
get checked during the rewrite against the permissions of the relation owner, the rule is defined
on. This means, that a user does only need the required permissions for the tables/views he
names in his queries.

 For example: A user has a list of phone numbers where some of them are private, the others
are of interest for the secretary of the office. He can construct the following:

 CREATE TABLE phone_data (person text, phone text, private bool);
 CREATE VIEW phone_number AS
 SELECT person, phone FROM phone_data WHERE NOT private;
 GRANT SELECT ON phone_number TO secretary;

 Nobody except him (and the database superusers) can access the phone_data table. But due to
the GRANT, the secretary can SELECT from the phone_number view. The rule system will
rewrite the SELECT from phone_number into a SELECT from phone_data and add the
qualification that only entries where private is false are wanted. Since the user is the owner of
phone_number, the read access to phone_data is now checked against his permissions and the
query is considered granted. The check for accessing phone_number is still performed, so
nobody than the secretary can use it.

 The permissions are checked rule by rule. So the secretary is for now the only one who can see
the public phone numbers. But the secretary can setup another view and grant access to that to
public. Then, anyone can see the phone_number data through the secretaries view. What the
secretary cannot do is to create a view that directly accesses phone_data (actually he can, but it
will not work since every access aborts the transaction during the permission checks). And as
soon as the user will notice, that the secretary opened his phone_number view, he can
REVOKE his access. Immediately any access to the secretaries view will fail.

 Someone might think that this rule by rule checking is a security hole, but in fact it isn’t. If this
would not work, the secretary could setup a table with the same columns as phone_number and
copy the data to there once per day. Then it’s his own data and he can grant access to everyone
he wants. A GRANT means "I trust you". If someone you trust does the thing above, it’s time
to think it over and then REVOKE.

 This mechanism does also work for update rules. In the examples of the previous section, the
owner of the tables in Al’s database could GRANT SELECT, INSERT, UPDATE and
DELETE on the shoelace view to al. But only SELECT on shoelace_log. The rule action to
write log entries will still be executed successfull. And Al could see the log entries. But he
cannot create fake entries, nor could he manipulate or remove existing ones.

Warning: GRANT ALL currently includes RULE permission. This means the granted user
could drop the rule, do the changes and reinstall it. I think this should get changed quickly.

Chapter 8. The Postgres Rule System

49

Rules versus Triggers

 Many things that can be done using triggers can also be implemented using the Postgres rule
system. What currently cannot be implemented by rules are some kinds of constraints. It is
possible, to place a qualified rule that rewrites a query to NOTHING if the value of a column
does not appear in another table. But then the data is silently thrown away and that’s not a good
idea. If checks for valid values are required, and in the case of an invalid value an error
message should be generated, it must be done by a trigger for now.

 On the other hand a trigger that is fired on INSERT on a view can do the same as a rule, put
the data somewhere else and suppress the insert in the view. But it cannot do the same thing on
UPDATE or DELETE, because there is no real data in the view relation that could be scanned
and thus the trigger would never get called. Only a rule will help.

 For the things that can be implemented by both, it depends on the usage of the database, which
is the best. A trigger is fired for any row affected once. A rule manipulates the parsetree or
generates an additional one. So if many rows are affected in one statement, a rule issuing one
extra query would usually do a better job than a trigger that is called for any single row and
must execute his operations this many times.

 For example: There are two tables

 CREATE TABLE computer (
 hostname text -- indexed
 manufacturer text -- indexed
);

 CREATE TABLE software (
 software text, -- indexed
 hostname text -- indexed
);

 Both tables have many thousands of rows and the index on hostname is unique. The hostname
column contains the full qualified domain name of the computer. The rule/trigger should
constraint delete rows from software that reference the deleted host. Since the trigger is called
for each individual row deleted from computer, it can use the statement

 DELETE FROM software WHERE hostname = $1;

 in a prepared and saved plan and pass the hostname in the parameter. The rule would be
written as

 CREATE RULE computer_del AS ON DELETE TO computer
 DO DELETE FROM software WHERE hostname = OLD.hostname;

 Now we look at different types of deletes. In the case of a

 DELETE FROM computer WHERE hostname = ’mypc.local.net’;

 the table computer is scanned by index (fast) and the query issued by the trigger would also be
an index scan (fast too). The extra query from the rule would be a

 DELETE FROM software WHERE computer.hostname = ’mypc.local.net’
 AND software.hostname = computer.hostname;

Chapter 8. The Postgres Rule System

50

 Since there are appropriate indices setup, the optimizer will create a plan of

 Nestloop
 -> Index Scan using comp_hostidx on computer
 -> Index Scan using soft_hostidx on software

 So there would be not that much difference in speed between the trigger and the rule
implementation. With the next delete we want to get rid of all the 2000 computers where the
hostname starts with ’old’. There are two possible queries to do that. One is

 DELETE FROM computer WHERE hostname >= ’old’
 AND hostname < ’ole’

 Where the plan for the rule query will be a

 Hash Join
 -> Seq Scan on software
 -> Hash
 -> Index Scan using comp_hostidx on computer

 The other possible query is a

 DELETE FROM computer WHERE hostname ~ ’^old’;

 with the execution plan

 Nestloop
 -> Index Scan using comp_hostidx on computer
 -> Index Scan using soft_hostidx on software

 This shows, that the optimizer does not realize that the qualification for the hostname on
computer could also be used for an index scan on software when there are multiple
qualification expressions combined with AND, what he does in the regexp version of the query.
The trigger will get invoked once for any of the 2000 old computers that have to be deleted and
that will result in one index scan over computer and 2000 index scans for the software. The rule
implementation will do it with two queries over indices. And it depends on the overall size of
the software table if the rule will still be faster in the seqscan situation. 2000 query executions
over the SPI manager take some time, even if all the index blocks to look them up will soon
appear in the cache.

 The last query we look at is a

 DELETE FROM computer WHERE manufacurer = ’bim’;

 Again this could result in many rows to be deleted from computer. So the trigger will again
fire many queries into the executor. But the rule plan will again be the Nestloop over two
IndexScan’s. Only using another index on computer:

 Nestloop
 -> Index Scan using comp_manufidx on computer
 -> Index Scan using soft_hostidx on software

 resulting from the rules query

 DELETE FROM software WHERE computer.manufacurer = ’bim’
 AND software.hostname = computer.hostname;

 In any of these cases, the extra queries from the rule system will be more or less independent
from the number of affected rows in a query.

Chapter 8. The Postgres Rule System

51

 Another situation are cases on UPDATE where it depends on the change of an attribute if an
action should be performed or not. In Postgres version 6.4, the attribute specification for rule
events is disabled (it will have it’s comeback latest in 6.5, maybe earlier - stay tuned). So for
now the only way to create a rule as in the shoelace_log example is to do it with a rule
qualification. That results in an extra query that is performed allways, even if the attribute of
interest cannot change at all because it does not appear in the targetlist of the initial query.
When this is enabled again, it will be one more advantage of rules over triggers. Optimization
of a trigger must fail by definition in this case, because the fact that it’s actions will only be
done when a specific attribute is updated is hidden in it’s functionality. The definition of a
trigger only allows to specify it on row level, so whenever a row is touched, the trigger must be
called to make it’s decision. The rule system will know it by looking up the targetlist and will
suppress the additional query completely if the attribute isn’t touched. So the rule, qualified or
not, will only do it’s scan’s if there ever could be something to do.

 Rules will only be significant slower than triggers if their actions result in large and bad
qualified joins, a situation where the optimizer fails. They are a big hammer. Using a big
hammer without caution can cause big damage. But used with the right touch, they can hit any
nail on the head.

52

Chapter 9. Interfacing Extensions To Indices

 The procedures described thus far let you define a new type, new functions and new operators.
However, we cannot yet define a secondary index (such as a B-tree, R-tree or hash access
method) over a new type or its operators.

 Look back at The major Postgres system catalogs. The right half shows the catalogs that we
must modify in order to tell Postgres how to use a user-defined type and/or user-defined
operators with an index (i.e., pg_am, pg_amop, pg_amproc, pg_operator and pg_opclass).
Unfortunately, there is no simple command to do this. We will demonstrate how to modify
these catalogs through a running example: a new operator class for the B-tree access method
that stores and sorts complex numbers in ascending absolute value order.

 The pg_am class contains one instance for every user defined access method. Support for the
heap access method is built into Postgres, but every other access method is described here. The
schema is

Table 9-1. Index Schema

Attribute Description

amname name of the access method

amowner object id of the owner’s instance in pg_user

amkind not used at present, but set to ’o’ as a place
holder

amstrategies number of strategies for this access method (see
below)

amsupport number of support routines for this access
method (see below)

amgettuple

aminsert

... procedure identifiers for interface routines to the
access method. For example, regproc ids for
opening, closing, and getting instances from the
access method appear here.

 The object ID of the instance in pg_am is used as a foreign key in lots of other classes. You
don’t need to add a new instance to this class; all you’re interested in is the object ID of the
access method instance you want to extend:

Chapter 9. Interfacing Extensions To Indices

53

SELECT oid FROM pg_am WHERE amname = ’btree’;

 +----+
 |oid |
 +----+
 |403 |
 +----+

 We will use that SELECT in a WHERE clause later.

 The amstrategies attribute exists to standardize comparisons across data types. For example,
B-trees impose a strict ordering on keys, lesser to greater. Since Postgres allows the user to
define operators, Postgres cannot look at the name of an operator (eg, ">" or "<") and tell what
kind of comparison it is. In fact, some access methods don’t impose any ordering at all. For
example, R-trees express a rectangle-containment relationship, whereas a hashed data structure
expresses only bitwise similarity based on the value of a hash function. Postgres needs some
consistent way of taking a qualification in your query, looking at the operator and then deciding
if a usable index exists. This implies that Postgres needs to know, for example, that the "<="
and ">" operators partition a B-tree. Postgres uses strategies to express these relationships
between operators and the way they can be used to scan indices.

 Defining a new set of strategies is beyond the scope of this discussion, but we’ll explain how
B-tree strategies work because you’ll need to know that to add a new operator class. In the
pg_am class, the amstrategies attribute is the number of strategies defined for this access
method. For B-trees, this number is 5. These strategies correspond to

Table 9-2. B-tree Strategies

Operation Index

less than 1

less than or equal 2

equal 3

greater than or equal 4

greater than 5

 The idea is that you’ll need to add procedures corresponding to the comparisons above to the
pg_amop relation (see below). The access method code can use these strategy numbers,
regardless of data type, to figure out how to partition the B-tree, compute selectivity, and so on.
Don’t worry about the details of adding procedures yet; just understand that there must be a set
of these procedures for int2, int4, oid, and every other data type on which a B-tree can operate.

 Sometimes, strategies aren’t enough information for the system to figure out how to use an
index. Some access methods require other support routines in order to work. For example, the
B-tree access method must be able to compare two keys and determine whether one is greater
than, equal to, or less than the other. Similarly, the R-tree access method must be able to
compute intersections, unions, and sizes of rectangles. These operations do not correspond to
user qualifications in SQL queries; they are administrative routines used by the access methods,
internally.

Chapter 9. Interfacing Extensions To Indices

54

 In order to manage diverse support routines consistently across all Postgres access methods,
pg_am includes an attribute called amsupport. This attribute records the number of support
routines used by an access method. For B-trees, this number is one -- the routine to take two
keys and return -1, 0, or +1, depending on whether the first key is less than, equal to, or greater
than the second.

Note: Strictly speaking, this routine can return a negative number (< 0), 0, or a non-zero
positive number (> 0).

 The amstrategies entry in pg_am is just the number of strategies defined for the access method
in question. The procedures for less than, less equal, and so on don’t appear in pg_am.
Similarly, amsupport is just the number of support routines required by the access method. The
actual routines are listed elsewhere.

 The next class of interest is pg_opclass. This class exists only to associate a name and default
type with an oid. In pg_amop, every B-tree operator class has a set of procedures, one through
five, above. Some existing opclasses are int2_ops, int4_ops, and oid_ops. You need to add an
instance with your opclass name (for example, complex_abs_ops) to pg_opclass. The oid of
this instance is a foreign key in other classes.

INSERT INTO pg_opclass (opcname, opcdeftype)
 SELECT ’complex_abs_ops’, oid FROM pg_type WHERE typname =
’complex_abs’;

SELECT oid, opcname, opcdeftype
 FROM pg_opclass
 WHERE opcname = ’complex_abs_ops’;

 +------+-----------------+------------+
 |oid | opcname | opcdeftype |
 +------+-----------------+------------+
 |17314 | complex_abs_ops | 29058 |
 +------+-----------------+------------+

 Note that the oid for your pg_opclass instance will be different! Don’t worry about this though.
We’ll get this number from the system later just like we got the oid of the type here.

 So now we have an access method and an operator class. We still need a set of operators; the
procedure for defining operators was discussed earlier in this manual. For the complex_abs_ops
operator class on Btrees, the operators we require are:

 absolute value less-than
 absolute value less-than-or-equal
 absolute value equal
 absolute value greater-than-or-equal
 absolute value greater-than

 Suppose the code that implements the functions defined is stored in the file
PGROOT/src/tutorial/complex.c

 Part of the code look like this: (note that we will only show the equality operator for the rest of
the examples. The other four operators are very similar. Refer to complex.c or complex.source
for the details.)

#define Mag(c) ((c)->x*(c)->x + (c)->y*(c)->y)

Chapter 9. Interfacing Extensions To Indices

55

 bool
 complex_abs_eq(Complex *a, Complex *b)
 {
 double amag = Mag(a), bmag = Mag(b);
 return (amag==bmag);
 }

 There are a couple of important things that are happening below.

 First, note that operators for less-than, less-than-or equal, equal, greater-than-or-equal, and
greater-than for int4 are being defined. All of these operators are already defined for int4 under
the names <, <=, =, >=, and >. The new operators behave differently, of course. In order to
guarantee that Postgres uses these new operators rather than the old ones, they need to be
named differently from the old ones. This is a key point: you can overload operators in
Postgres, but only if the operator isn’t already defined for the argument types. That is, if you
have < defined for (int4, int4), you can’t define it again. Postgres does not check this when you
define your operator, so be careful. To avoid this problem, odd names will be used for the
operators. If you get this wrong, the access methods are likely to crash when you try to do
scans.

 The other important point is that all the operator functions return Boolean values. The access
methods rely on this fact. (On the other hand, the support function returns whatever the
particular access method expects -- in this case, a signed integer.) The final routine in the file is
the "support routine" mentioned when we discussed the amsupport attribute of the pg_am class.
We will use this later on. For now, ignore it.

CREATE FUNCTION complex_abs_eq(complex_abs, complex_abs)
 RETURNS bool
 AS ’PGROOT/tutorial/obj/complex.so’
 LANGUAGE ’c’;

 Now define the operators that use them. As noted, the operator names must be unique among
all operators that take two int4 operands. In order to see if the operator names listed below are
taken, we can do a query on pg_operator:

 /*
 * this query uses the regular expression operator (~)
 * to find three-character operator names that end in
 * the character &
 */
 SELECT *
 FROM pg_operator
 WHERE oprname ~ ’^..&$’::text;

 to see if your name is taken for the types you want. The important things here are the
procedure (which are the C functions defined above) and the restriction and join selectivity
functions. You should just use the ones used below--note that there are different such functions
for the less-than, equal, and greater-than cases. These must be supplied, or the access method

Chapter 9. Interfacing Extensions To Indices

56

will crash when it tries to use the operator. You should copy the names for restrict and join, but
use the procedure names you defined in the last step.

CREATE OPERATOR = (
 leftarg = complex_abs, rightarg = complex_abs,
 procedure = complex_abs_eq,
 restrict = eqsel, join = eqjoinsel
)

 Notice that five operators corresponding to less, less equal, equal, greater, and greater equal
are defined.

 We’re just about finished. the last thing we need to do is to update the pg_amop relation. To do
this, we need the following attributes:

Table 9-3. pg_amproc Schema

Attribute Description

amopid the oid of the pg_am instance for B-tree (== 403,
see above)

amopclaid the oid of the pg_opclass instance for
complex_abs_ops (== whatever you got instead
of 17314, see above)

amopopr the oids of the operators for the opclass (which
we’ll get in just a minute)

amopselect, amopnpages cost functions

 The cost functions are used by the query optimizer to decide whether or not to use a given
index in a scan. Fortunately, these already exist. The two functions we’ll use are btreesel,
which estimates the selectivity of the B-tree, and btreenpage, which estimates the number of
pages a search will touch in the tree.

 So we need the oids of the operators we just defined. We’ll look up the names of all the
operators that take two complexes, and pick ours out:

 SELECT o.oid AS opoid, o.oprname
 INTO TABLE complex_ops_tmp
 FROM pg_operator o, pg_type t
 WHERE o.oprleft = t.oid and o.oprright = t.oid
 and t.typname = ’complex_abs’;

 +------+---------+
 |oid | oprname |
 +------+---------+
 |17321 | < |
 +------+---------+
 |17322 | <= |
 +------+---------+
 |17323 | = |
 +------+---------+
 |17324 | >= |
 +------+---------+
 |17325 | > |
 +------+---------+

Chapter 9. Interfacing Extensions To Indices

57

 (Again, some of your oid numbers will almost certainly be different.) The operators we are
interested in are those with oids 17321 through 17325. The values you get will probably be
different, and you should substitute them for the values below. We will do this with a select
statement.

 Now we’re ready to update pg_amop with our new operator class. The most important thing in
this entire discussion is that the operators are ordered, from less equal through greater equal, in
pg_amop. We add the instances we need:

 INSERT INTO pg_amop (amopid, amopclaid, amopopr, amopstrategy,
 amopselect, amopnpages)
 SELECT am.oid, opcl.oid, c.opoid, 1,
 ’btreesel’::regproc, ’btreenpage’::regproc
 FROM pg_am am, pg_opclass opcl, complex_abs_ops_tmp c
 WHERE amname = ’btree’ AND
 opcname = ’complex_abs_ops’ AND
 c.oprname = ’<’;

 Now do this for the other operators substituting for the "1" in the third line above and the "<"
in the last line. Note the order: "less than" is 1, "less than or equal" is 2, "equal" is 3, "greater
than or equal" is 4, and "greater than" is 5.

 The next step is registration of the "support routine" previously described in our discussion of
pg_am. The oid of this support routine is stored in the pg_amproc class, keyed by the access
method oid and the operator class oid. First, we need to register the function in Postgres (recall
that we put the C code that implements this routine in the bottom of the file in which we
implemented the operator routines):

 CREATE FUNCTION complex_abs_cmp(complex, complex)
 RETURNS int4
 AS ’PGROOT/tutorial/obj/complex.so’
 LANGUAGE ’c’;

 SELECT oid, proname FROM pg_proc
 WHERE proname = ’complex_abs_cmp’;

 +------+-----------------+
 |oid | proname |
 +------+-----------------+
 |17328 | complex_abs_cmp |
 +------+-----------------+

 (Again, your oid number will probably be different and you should substitute the value you see
for the value below.) We can add the new instance as follows:

 INSERT INTO pg_amproc (amid, amopclaid, amproc, amprocnum)
 SELECT a.oid, b.oid, c.oid, 1
 FROM pg_am a, pg_opclass b, pg_proc c
 WHERE a.amname = ’btree’ AND
 b.opcname = ’complex_abs_ops’ AND
 c.proname = ’complex_abs_cmp’;

 Now we need to add a hashing strategy to allow the type to be indexed. We do this by using
another type in pg_am but we reuse the sames ops.

 INSERT INTO pg_amop (amopid, amopclaid, amopopr, amopstrategy,
 amopselect, amopnpages)

Chapter 9. Interfacing Extensions To Indices

58

 SELECT am.oid, opcl.oid, c.opoid, 1,
 ’hashsel’::regproc, ’hashnpage’::regproc
 FROM pg_am am, pg_opclass opcl, complex_abs_ops_tmp c
 WHERE amname = ’hash’ AND
 opcname = ’complex_abs_ops’ AND
 c.oprname = ’=’;

 In order to use this index in a where clause, we need to modify the pg_operator class as
follows.

 UPDATE pg_operator
 SET oprrest = ’eqsel’::regproc, oprjoin = ’eqjoinsel’
 WHERE oprname = ’=’ AND
 oprleft = oprright AND
 oprleft = (SELECT oid FROM pg_type WHERE typname =
’complex_abs’);

 UPDATE pg_operator
 SET oprrest = ’neqsel’::regproc, oprjoin = ’neqjoinsel’
 WHERE oprname = ’’ AND
 oprleft = oprright AND
 oprleft = (SELECT oid FROM pg_type WHERE typname = ’complex_abs’);

 UPDATE pg_operator
 SET oprrest = ’neqsel’::regproc, oprjoin = ’neqjoinsel’
 WHERE oprname = ’’ AND
 oprleft = oprright AND
 oprleft = (SELECT oid FROM pg_type WHERE typname = ’complex_abs’);

 UPDATE pg_operator
 SET oprrest = ’intltsel’::regproc, oprjoin = ’intltjoinsel’
 WHERE oprname = ’<’ AND
 oprleft = oprright AND
 oprleft = (SELECT oid FROM pg_type WHERE typname = ’complex_abs’);

 UPDATE pg_operator
 SET oprrest = ’intltsel’::regproc, oprjoin = ’intltjoinsel’
 WHERE oprname = ’<=’ AND
 oprleft = oprright AND
 oprleft = (SELECT oid FROM pg_type WHERE typname = ’complex_abs’);

 UPDATE pg_operator
 SET oprrest = ’intgtsel’::regproc, oprjoin = ’intgtjoinsel’
 WHERE oprname = ’>’ AND
 oprleft = oprright AND
 oprleft = (SELECT oid FROM pg_type WHERE typname = ’complex_abs’);

 UPDATE pg_operator
 SET oprrest = ’intgtsel’::regproc, oprjoin = ’intgtjoinsel’
 WHERE oprname = ’>=’ AND
 oprleft = oprright AND
 oprleft = (SELECT oid FROM pg_type WHERE typname =
’complex_abs’);

 And last (Finally!) we register a description of this type.

 INSERT INTO pg_description (objoid, description)
 SELECT oid, ’Two part G/L account’
 FROM pg_type WHERE typname = ’complex_abs’;

59

Chapter 10. GiST Indices

The information about GIST is at http://GiST.CS.Berkeley.EDU:8000/gist/ with more on
different indexing and sorting schemes at http://s2k-ftp.CS.Berkeley.EDU:8000/personal/jmh/
And there is more interesting reading at the Berkely database site at
http://epoch.cs.berkeley.edu:8000/.

Author: This extraction from an e-mail sent by Eugene Selkov Jr.
(mailto:selkovjr@mcs.anl.gov) contains good information on GiST. Hopefully we will learn
more in the future and update this information. - thomas 1998-03-01

Well, I can’t say I quite understand what’s going on, but at least I (almost) succeeded in porting
GiST examples to linux. The GiST access method is already in the postgres tree
(src/backend/access/gist).

Examples at Berkeley (ftp://s2k-ftp.cs.berkeley.edu/pub/gist/pggist/pggist.tgz) come with an
overview of the methods and demonstrate spatial index mechanisms for 2D boxes, polygons,
integer intervals and text (see also GiST at Berkeley (http://gist.cs.berkeley.edu:8000/gist/)). In
the box example, we are supposed to see a performance gain when using the GiST index; it did
work for me but I do not have a reasonably large collection of boxes to check that. Other
examples also worked, except polygons: I got an error doing

test=> create index pix on polytmp
test-> using gist (p:box gist_poly_ops) with (islossy);
ERROR: cannot open pix

(PostgreSQL 6.3 Sun Feb 1 14:57:30 EST 1998)

I could not get sense of this error message; it appears to be something we’d rather ask the
developers about (see also Note 4 below). What I would suggest here is that someone of you
linux guys (linux==gcc?) fetch the original sources quoted above and apply my patch (see
attachment) and tell us what you feel about it. Looks cool to me, but I would not like to hold it
up while there are so many competent people around.

A few notes on the sources:

1. I failed to make use of the original (HPUX) Makefile and rearranged the Makefile from the
ancient postgres95 tutorial to do the job. I tried to keep it generic, but I am a very poor makefile
writer -- just did some monkey work. Sorry about that, but I guess it is now a little more
portable that the original makefile.

2. I built the example sources right under pgsql/src (just extracted the tar file there). The
aforementioned Makefile assumes it is one level below pgsql/src (in our case, in
pgsql/src/pggist).

3. The changes I made to the *.c files were all about #include’s, function prototypes and
typecasting. Other than that, I just threw away a bunch of unused vars and added a couple
parentheses to please gcc. I hope I did not screw up too much :)

4. There is a comment in polyproc.sql:

-- -- there’s a memory leak in rtree poly_ops!!
-- -- create index pix2 on polytmp using rtree (p poly_ops);

Chapter 10. GiST Indices

60

 Roger that!! I thought it could be related to a number of Postgres versions back and tried the
query. My system went nuts and I had to shoot down the postmaster in about ten minutes.

I will continue to look into GiST for a while, but I would also appreciate more examples of
R-tree usage.

61

Chapter 11. Procedural Languages

 Beginning with the release of version 6.3, Postgres supports the definition of procedural
languages. In the case of a function or trigger procedure defined in a procedural language, the
database has no builtin knowlege how to interpret the functions source text. Instead, the calls
are passed into a handler that knows the details of the language. The handler itself is a special
programming language function compiled into a shared object and loaded on demand.

Installing Procedural Languages

 Procedural Language Installation

 A procedural language is installed in the database in three steps.

1. The shared object for the language handler must be compiled and installed. By default the
handler for PL/pgSQL is built and installed into the database library directory. If Tcl/Tk
support is configured in, the handler for PL/Tcl is also built and installed in the same
location.

 Writing a handler for a new procedural language (PL) is outside the scope of this manual.

2. The handler must be declared with the command

 CREATE FUNCTION handler_function_name () RETURNS OPAQUE AS
 ’path-to-shared-object’ LANGUAGE ’C’;

 The special return type of OPAQUE tells the database, that this function does not return
one of the defined base- or composite types and is not directly usable in SQL statements.

3. The PL must be declared with the command

 CREATE [TRUSTED] PROCEDURAL LANGUAGE ’language-name’
 HANDLER handler_function_name
 LANCOMPILER ’description’;

 The optional keyword TRUSTED tells if ordinary database users that have no superuser
privileges can use this language to create functions and trigger procedures. Since PL
functions are executed inside the database backend it should only be used for languages
that don’t gain access to database backends internals or the filesystem. The languages
PL/pgSQL and PL/Tcl are known to be trusted.

Example

1. The following command tells the database where to find the shared object for the
PL/pgSQL languages call handler function.

 CREATE FUNCTION plpgsql_call_handler () RETURNS OPAQUE AS
 ’/usr/local/pgsql/lib/plpgsql.so’ LANGUAGE ’C’;

2. The command

 CREATE TRUSTED PROCEDURAL LANGUAGE ’plpgsql’
 HANDLER plpgsql_call_handler
 LANCOMPILER ’PL/pgSQL’;

Chapter 11. Procedural Languages

62

 then defines that the previously declared call handler function should be invoked for
functions and trigger procedures where the language attribute is ’plpgsql’.

 PL handler functions have a special call interface that is different from regular C language
functions. One of the arguments given to the handler is the object ID in the pg_proc tables
entry for the function that should be executed. The handler examines various system
catalogs to analyze the functions call arguments and it’s return data type. The source text
of the functions body is found in the prosrc attribute of pg_proc. Due to this, in contrast to
C language functions, PL functions can be overloaded like SQL language functions. There
can be multiple different PL functions having the same function name, as long as the call
arguments differ.

 Procedural languages defined in the template1 database are automatically defined in all
subsequently created databases. So the database administrator can decide which languages
are available by default.

PL/pgSQL

 PL/pgSQL is a loadable procedural language for the Postgres database system.

 This package was originally written by Jan Wieck.

Overview

 The design goals of PL/pgSQL were to create a loadable procedural language that

 can be used to create functions and trigger procedures,

 adds control structures to the SQL language,

 can perform complex computations,

 inherits all user defined types, functions and operators,

 can be defined to be trusted by the server,

 is easy to use.

 The PL/pgSQL call handler parses the functions source text and produces an internal binary
instruction tree on the first time, the function is called by a backend. The produced bytecode is
identified in the call handler by the object ID of the function. This ensures, that changing a
function by a DROP/CREATE sequence will take effect without establishing a new database
connection.

 For all expressions and SQL statements used in the function, the PL/pgSQL bytecode
interpreter creates a prepared execution plan using the SPI managers SPI_prepare() and
SPI_saveplan() functions. This is done the first time, the individual statement is processed in
the PL/pgSQL function. Thus, a function with conditional code that contains many statements
for which execution plans would be required, will only prepare and save those plans that are
really used during the entire lifetime of the database connection.

 Except for input-/output-conversion and calculation functions for user defined types, anything
that can be defined in C language functions can also be done with PL/pgSQL. It is possible to
create complex conditional computation functions and later use them to define operators or use
them in functional indices.

Chapter 11. Procedural Languages

63

Description

Structure of PL/pgSQL

 The PL/pgSQL language is case insensitive. All keywords and identifiers can be used in mixed
upper- and lowercase.

 PL/pgSQL is a block oriented language. A block is defined as

 [<<label>>]
 [DECLARE
 declarations]
 BEGIN
 statements
 END;

 There can be any number of subblocks in the statement section of a block. Subblocks can be
used to hide variables from outside a block of statements. The variables declared in the
declarations section preceding a block are initialized to their default values every time the
block is entered, not only once per function call.

 It is important not to misunderstand the meaning of BEGIN/END for grouping statements in
PL/pgSQL and the database commands for transaction control. Functions and trigger
procedures cannot start or commit transactions and Postgres does not have nested transactions.

Comments

 There are two types of comments in PL/pgSQL. A double dash ’--’ starts a comment that
extends to the end of the line. A ’/*’ starts a block comment that extends to the next occurence
of ’*/’. Block comments cannot be nested, but double dash comments can be enclosed into a
block comment and a double dash can hide the block comment delimiters ’/*’ and ’*/’.

Declarations

 All variables, rows and records used in a block or it’s subblocks must be declared in the
declarations section of a block except for the loop variable of a FOR loop iterating over a range
of integer values. Parameters given to a PL/pgSQL function are automatically declared with the
usual identifiers $n. The declarations have the following syntax:

name [CONSTANT] type [NOT NULL] [DEFAULT | := value];

 Declares a variable of the specified base type. If the variable is declared as CONSTANT,
the value cannot be changed. If NOT NULL is specified, an assignment of a NULL value
results in a runtime error. Since the default value of all variables is the SQL NULL value,
all variables declared as NOT NULL must also have a default value specified.

 The default value is evaluated ever time the function is called. So assigning ’now’ to a
variable of type datetime causes the variable to have the time of the actual function call,
not when the function was precompiled into it’s bytecode.

name class%ROWTYPE;

 Declares a row with the structure of the given class. Class must be an existing table- or
viewname of the database. The fields of the row are accessed in the dot notation.
Parameters to a function can be composite types (complete table rows). In that case, the

Chapter 11. Procedural Languages

64

corresponding identifier $n will be a rowtype, but it must be aliased using the ALIAS
command described below. Only the user attributes of a table row are accessible in the
row, no Oid or other system attributes (hence the row could be from a view and view rows
don’t have useful system attributes).

 The fields of the rowtype inherit the tables fieldsizes or precision for char() etc. data
types.

name RECORD;

 Records are similar to rowtypes, but they have no predefined structure. They are used in
selections and FOR loops to hold one actual database row from a SELECT operation. One
and the same record can be used in different selections. Accessing a record or an attempt
to assign a value to a record field when there is no actual row in it results in a runtime
error.

 The NEW and OLD rows in a trigger are given to the procedure as records. This is
necessary because in Postgres one and the same trigger procedure can handle trigger
events for different tables.

name ALIAS FOR $n;

 For better readability of the code it is possible to define an alias for a positional parameter
to a function.

 This aliasing is required for composite types given as arguments to a function. The dot
notation $1.salary as in SQL functions is not allowed in PL/pgSQL.

RENAME oldname TO newname;

 Change the name of a variable, record or row. This is useful if NEW or OLD should be
referenced by another name inside a trigger procedure.

Data Types

 The type of a varible can be any of the existing basetypes of the database. type in the
declarations section above is defined as:

 Postgres-basetype

 variable%TYPE

 class.field%TYPE

 variable is the name of a variable, previously declared in the same function, that is visible at
this point.

 class is the name of an existing table or view where field is the name of an attribute.

 Using the class.field%TYPE causes PL/pgSQL to lookup the attributes definitions at the first
call to the funciton during the lifetime of a backend. Have a table with a char(20) attribute and
some PL/pgSQL functions that deal with it’s content in local variables. Now someone decides
that char(20) isn’t enough, dumps the table, drops it, recreates it now with the attribute in
question defined as char(40) and restores the data. Ha - he forgot about the funcitons. The
computations inside them will truncate the values to 20 characters. But if they are defined using
the class.field%TYPE declarations, they will automagically handle the size change or if the
new table schema defines the attribute as text type.

Chapter 11. Procedural Languages

65

Expressions

 All expressions used in PL/pgSQL statements are processed using the backends executor.
Expressions which appear to contain constants may in fact require run-time evaluation (e.g.
’now’ for the datetime type) so it is impossible for the PL/pgSQL parser to identify real
constant values other than the NULL keyword. All expressions are evaluated internally by
executing a query

 SELECT expression

 using the SPI manager. In the expression, occurences of variable identifiers are substituted by
parameters and the actual values from the variables are passed to the executor in the parameter
array. All expressions used in a PL/pgSQL function are only prepared and saved once.

 The type checking done by the Postgres main parser has some side effects to the interpretation
of constant values. In detail there is a difference between what the two functions

 CREATE FUNCTION logfunc1 (text) RETURNS datetime AS ’
 DECLARE
 logtxt ALIAS FOR $1;
 BEGIN
 INSERT INTO logtable VALUES (logtxt, ’’now’’);
 RETURN ’’now’’;
 END;
 ’ LANGUAGE ’plpgsql’;

 and

 CREATE FUNCTION logfunc2 (text) RETURNS datetime AS ’
 DECLARE
 logtxt ALIAS FOR $1;
 curtime datetime;
 BEGIN
 curtime := ’’now’’;
 INSERT INTO logtable VALUES (logtxt, curtime);
 RETURN curtime;
 END;
 ’ LANGUAGE ’plpgsql’;

 do. In the case of logfunc1(), the Postgres main parser knows when preparing the plan for the
INSERT, that the string ’now’ should be interpreted as datetime because the target field of
logtable is of that type. Thus, it will make a constant from it at this time and this constant value
is then used in all invocations of logfunc1() during the lifetime of the backend. Needless to say
that this isn’t what the programmer wanted.

 In the case of logfunc2(), the Postgres main parser does not know what type ’now’ should
become and therefor it returns a datatype of text containing the string ’now’. During the
assignment to the local variable curtime, the PL/pgSQL interpreter casts this string to the
datetime type by calling the text_out() and datetime_in() functions for the conversion.

 This type checking done by the Postgres main parser got implemented after PL/pgSQL was
nearly done. It is a difference between 6.3 and 6.4 and affects all functions using the prepared
plan feature of the SPI manager. Using a local variable in the above manner is currently the
only way in PL/pgSQL to get those values interpreted correctly.

Chapter 11. Procedural Languages

66

 If record fields are used in expressions or statements, the data types of fields should not change
between calls of one and the same expression. Keep this in mind when writing trigger
procedures that handle events for more than one table.

Statements

 Anything not understood by the PL/pgSQL parser as specified below will be put into a query
and sent down to the database engine to execute. The resulting query should not return any
data.

Assignment

 An assignment of a value to a variable or row/record field is written as

 identifier := expression;

 If the expressions result data type doesn’t match the variables data type, or the variable
has a size/precision that is known (as for char(20)), the result value will be implicitly
casted by the PL/pgSQL bytecode interpreter using the result types output- and the
variables type input-functions. Note that this could potentially result in runtime errors
generated by the types input functions.

 An assignment of a complete selection into a record or row can be done by

 SELECT expressions INTO target FROM ...;

 target can be a record, a row variable or a comma separated list of variables and
record-/row-fields.

 if a row or a variable list is used as target, the selected values must exactly match the
structure of the target(s) or a runtime error occurs. The FROM keyword can be followed
by any valid qualification, grouping, sorting etc. that can be given for a SELECT
statement.

 There is a special variable named FOUND of type bool that can be used immediately
after a SELECT INTO to check if an assignment had success.

 SELECT * INTO myrec FROM EMP WHERE empname = myname;
 IF NOT FOUND THEN
 RAISE EXCEPTION ’’employee % not found’’, myname;
 END IF;

 If the selection returns multiple rows, only the first is moved into the target fields. All
others are silently discarded.

Calling another function

 All functions defined in a Prostgres database return a value. Thus, the normal way to call
a function is to execute a SELECT query or doing an assignment (resulting in a PL/pgSQL
internal SELECT). But there are cases where someone isn’t interested int the functions
result.

 PERFORM query

 executes a ’SELECT query’ over the SPI manager and discards the result. Identifiers like
local variables are still substituted into parameters.

Chapter 11. Procedural Languages

67

Returning from the function

 RETURN expression

 The function terminates and the value of expression will be returned to the upper
executor. The return value of a function cannot be undefined. If control reaches the end of
the toplevel block of the function without hitting a RETURN statement, a runtime error
will occur.

 The expressions result will be automatically casted into the functions return type as
described for assignments.

Aborting and messages

 As indicated in the above examples there is a RAISE statement that can throw messages
into the Postgres elog mechanism.

 RAISE level ’’format’’ [, identifier [...]];

 Inside the format, % is used as a placeholder for the subsequent comma-separated
identifiers. Possible levels are DEBUG (silently suppressed in production running
databases), NOTICE (written into the database log and forwarded to the client application)
and EXCEPTION (written into the database log and aborting the transaction).

Conditionals

 IF expression THEN
 statements
 [ELSE
 statements]
 END IF;

 The expression must return a value that at least can be casted into a boolean type.

Loops

 There are multiple types of loops.

 [<<label>>]
 LOOP
 statements
 END LOOP;

 An unconditional loop that must be terminated explicitly by an EXIT statement. The
optional label can be used by EXIT statements of nested loops to specify which level of
nesting should be terminated.

 [<<label>>]
 WHILE expression LOOP
 statements
 END LOOP;

 A conditional loop that is executed as long as the evaluation of expression is true.

 [<<label>>]
 FOR name IN [REVERSE] expression .. expression LOOP
 statements
 END LOOP;

Chapter 11. Procedural Languages

68

 A loop that iterates over a range of integer values. The variable name is automatically
created as type integer and exists only inside the loop. The two expressions giving the
lower and upper bound of the range are evaluated only when entering the loop. The
iteration step is always 1.

 [<<label>>]
 FOR record | row IN select_clause LOOP
 statements
 END LOOP;

 The record or row is assigned all the rows resulting from the select clause and the
statements executed for each. If the loop is terminated with an EXIT statement, the last
assigned row is still accessible after the loop.

 EXIT [label] [WHEN expression];

 If no label given, the innermost loop is terminated and the statement following END
LOOP is executed next. If label is given, it must be the label of the current or an upper
level of nested loop blocks. Then the named loop or block is terminated and control
continues with the statement after the loops/blocks corresponding END.

Trigger Procedures

 PL/pgSQL can be used to define trigger procedures. They are created with the usual CREATE
FUNCTION command as a function with no arguments and a return type of OPAQUE.

 There are some Postgres specific details in functions used as trigger procedures.

 First they have some special variables created automatically in the toplevel blocks declaration
section. They are

 NEW

 Datatype RECORD; variable holding the new database row on INSERT/UPDATE
operations on ROW level triggers.

 OLD

 Datatype RECORD; variable holding the old database row on UPDATE/DELETE
operations on ROW level triggers.

 TG_NAME

 Datatype name; variable that contains the name of the trigger actually fired.

 TG_WHEN

 Datatype text; a string of either ’BEFORE’ or ’AFTER’ depending on the triggers
definition.

 TG_LEVEL

 Datatype text; a string of either ’ROW’ or ’STATEMENT’ depending on the triggers
definition.

Chapter 11. Procedural Languages

69

 TG_OP

 Datatype text; a string of ’INSERT’, ’UPDATE’ or ’DELETE’ telling for which
operation the trigger is actually fired.

 TG_RELID

 Datatype oid; the object ID of the table that caused the trigger invocation.

 TG_RELNAME

 Datatype name; the name of the table that caused the trigger invocation.

 TG_NARGS

 Datatype integer; the number of arguments given to the trigger procedure in the CREATE
TRIGGER statement.

 TG_ARGV[]

 Datatype array of text; the arguments from the CREATE TRIGGER statement. The index
counts from 0 and can be given as an expression. Invalid indices (< 0 or >= tg_nargs)
result in a NULL value.

 Second they must return either NULL or a record/row containing exactly the structure of the
table the trigger was fired for. Triggers fired AFTER might always return a NULL value with
no effect. Triggers fired BEFORE signal the trigger manager to skip the operation for this
actual row when returning NULL. Otherwise, the returned record/row replaces the
inserted/updated row in the operation. It is possible to replace single values directly in NEW
and return that or to build a complete new record/row to return.

Exceptions

 Postgres does not have a very smart exception handling model. Whenever the parser,
planner/optimizer or executor decide that a statement cannot be processed any longer, the
whole transaction gets aborted and the system jumps back into the mainloop to get the next
query from the client application.

 It is possible to hook into the error mechanism to notice that this happens. But currently it’s
impossible to tell what really caused the abort (input/output conversion error, floating point
error, parse error). And it is possible that the database backend is in an inconsistent state at this
point so returning to the upper executor or issuing more commands might corrupt the whole
database. And even if, at this point the information, that the transaction is aborted, is already
sent to the client application, so resuming operation does not make any sense.

 Thus, the only thing PL/pgSQL currently does when it encounters an abort during execution of
a function or trigger procedure is to write some additional DEBUG level log messages telling
in which function and where (line number and type of statement) this happened.

Examples

Here are only a few functions to demonstrate how easy PL/pgSQL functions can be written. For
more complex examples the programmer might look at the regression test for PL/pgSQL.

One painful detail of writing functions in PL/pgSQL is the handling of single quotes. The
functions source text on CREATE FUNCTION must be a literal string. Single quotes inside of

Chapter 11. Procedural Languages

70

literal strings must be either doubled or quoted with a backslash. We are still looking for an
elegant alternative. In the meantime, doubling the single qoutes as in the examples below
should be used. Any solution for this in future versions of Postgres will be upward compatible.

Some Simple PL/pgSQL Functions

 The following two PL/pgSQL functions are identical to their counterparts from the C language
function discussion.

 CREATE FUNCTION add_one (int4) RETURNS int4 AS ’
 BEGIN
 RETURN $1 + 1;
 END;
 ’ LANGUAGE ’plpgsql’;

 CREATE FUNCTION concat_text (text, text) RETURNS text AS ’
 BEGIN
 RETURN $1 || $2;
 END;
 ’ LANGUAGE ’plpgsql’;

PL/pgSQL Function on Composite Type

 Again it is the PL/pgSQL equivalent to the example from The C functions.

 CREATE FUNCTION c_overpaid (EMP, int4) RETURNS bool AS ’
 DECLARE
 emprec ALIAS FOR $1;
 sallim ALIAS FOR $2;
 BEGIN
 IF emprec.salary ISNULL THEN
 RETURN ’’f’’;
 END IF;
 RETURN emprec.salary > sallim;
 END;
 ’ LANGUAGE ’plpgsql’;

PL/pgSQL Trigger Procedure

 This trigger ensures, that any time a row is inserted or updated in the table, the current
username and time are stamped into the row. And it ensures that an employees name is given
and that the salary is a positive value.

 CREATE TABLE emp (
 empname text,
 salary int4,
 last_date datetime,
 last_user name);

 CREATE FUNCTION emp_stamp () RETURNS OPAQUE AS
 BEGIN
 -- Check that empname and salary are given
 IF NEW.empname ISNULL THEN
 RAISE EXCEPTION ’’empname cannot be NULL value’’;
 END IF;
 IF NEW.salary ISNULL THEN
 RAISE EXCEPTION ’’% cannot have NULL salary’’,
NEW.empname;
 END IF;

Chapter 11. Procedural Languages

71

 -- Who works for us when she must pay for?
 IF NEW.salary < 0 THEN
 RAISE EXCEPTION ’’% cannot have a negative salary’’,
NEW.empname;
 END IF;

 -- Remember who changed the payroll when
 NEW.last_date := ’’now’’;
 NEW.last_user := getpgusername();
 RETURN NEW;
 END;
 ’ LANGUAGE ’plpgsql’;

 CREATE TRIGGER emp_stamp BEFORE INSERT OR UPDATE ON emp
 FOR EACH ROW EXECUTE PROCEDURE emp_stamp();

PL/Tcl

 PL/Tcl is a loadable procedural language for the Postgres database system that enables the Tcl
language to be used to create functions and trigger-procedures.

 This package was originally written by Jan Wieck.

Overview

 PL/Tcl offers most of the capabilities a function writer has in the C language, except for some
restrictions.

 The good restriction is, that everything is executed in a safe Tcl-interpreter. In addition to the
limited command set of safe Tcl, only a few commands are available to access the database
over SPI and to raise messages via elog(). There is no way to access internals of the database
backend or gaining OS-level access under the permissions of the Postgres user ID like in C.
Thus, any unprivileged database user may be permitted to use this language.

 The other, internal given, restriction is, that Tcl procedures cannot be used to create
input-/output-functions for new data types.

 The shared object for the PL/Tcl call handler is automatically built and installed in the
Postgres library directory if the Tcl/Tk support is specified in the configuration step of the
installation procedure.

Description

Postgres Functions and Tcl Procedure Names

 In Postgres, one and the same function name can be used for different functions as long as the
number of arguments or their types differ. This would collide with Tcl procedure names. To
offer the same flexibility in PL/Tcl, the internal Tcl procedure names contain the object ID of
the procedures pg_proc row as part of their name. Thus, different argtype versions of the same
Postgres function are different for Tcl too.

Defining Functions in PL/Tcl

 To create a function in the PL/Tcl language, use the known syntax

Chapter 11. Procedural Languages

72

 CREATE FUNCTION funcname (argument-types) RETURNS returntype AS ’
 # PL/Tcl function body
 ’ LANGUAGE ’pltcl’;

 When calling this function in a query, the arguments are given as variables $1 ... $n to the Tcl
procedure body. So a little max function returning the higher of two int4 values would be
created as:

 CREATE FUNCTION tcl_max (int4, int4) RETURNS int4 AS ’
 if {$1 > $2} {return $1}
 return $2
 ’ LANGUAGE ’pltcl’;

 Composite type arguments are given to the procedure as Tcl arrays. The element names in the
array are the attribute names of the composite type. If an attribute in the actual row has the
NULL value, it will not appear in the array! Here is an example that defines the overpaid_2
function (as found in the older Postgres documentation) in PL/Tcl

 CREATE FUNCTION overpaid_2 (EMP) RETURNS bool AS ’
 if {200000.0 < $1(salary)} {
 return "t"
 }
 if {$1(age) < 30 && 100000.0 < $1(salary)} {
 return "t"
 }
 return "f"
 ’ LANGUAGE ’pltcl’;

Global Data in PL/Tcl

 Sometimes (especially when using the SPI functions described later) it is useful to have some
global status data that is held between two calls to a procedure. All PL/Tcl procedures executed
in one backend share the same safe Tcl interpreter. To help protecting PL/Tcl procedures from
side effects, an array is made available to each procedure via the upvar command. The global
name of this variable is the procedures internal name and the local name is GD.

Trigger Procedures in PL/Tcl

 Trigger procedures are defined in Postgres as functions without arguments and a return type of
opaque. And so are they in the PL/Tcl language.

 The informations from the trigger manager are given to the procedure body in the following
variables:

$TG_name

 The name of the trigger from the CREATE TRIGGER statement.

$TG_relid

 The object ID of the table that caused the trigger procedure to be invoked.

$TG_relatts

 A Tcl list of the tables field names prefixed with an empty list element. So looking up an
element name in the list with the lsearch Tcl command returns the same positive number
starting from 1 as the fields are numbered in the pg_attribute system catalog.

Chapter 11. Procedural Languages

73

$TG_when

 The string BEFORE or AFTER depending on the event of the trigger call.

$TG_level

 The string ROW or STATEMENT depending on the event of the trigger call.

$TG_op

 The string INSERT, UPDATE or DELETE depending on the event of the trigger call.

$NEW

 An array containing the values of the new table row on INSERT/UPDATE actions, or
empty on DELETE.

$OLD

 An array containing the values of the old table row on UPDATE/DELETE actions, or
empty on INSERT.

$GD

 The global status data array as described above.

$args

 A Tcl list of the arguments to the procedure as given in the CREATE TRIGGER
statement. The arguments are also accessible as $1 ... $n in the procedure body.

 The return value from a trigger procedure is one of the strings OK or SKIP, or a list as returned
by the ’array get’ Tcl command. If the return value is OK, the normal operation
(INSERT/UPDATE/DELETE) that fired this trigger will take place. Obviously, SKIP tells the
trigger manager to silently suppress the operation. The list from ’array get’ tells PL/Tcl to
return a modified row to the trigger manager that will be inserted instead of the one given in
$NEW (INSERT/UPDATE only). Needless to say that all this is only meaningful when the
trigger is BEFORE and FOR EACH ROW.

 Here’s a little example trigger procedure that forces an integer value in a table to keep track of
the # of updates that are performed on the row. For new row’s inserted, the value is initialized
to 0 and then incremented on every update operation:

 CREATE FUNCTION trigfunc_modcount() RETURNS OPAQUE AS ’
 switch $TG_op {
 INSERT {
 set NEW($1) 0
 }
 UPDATE {
 set NEW($1) $OLD($1)
 incr NEW($1)
 }
 default {
 return OK
 }
 }
 return [array get NEW]
 ’ LANGUAGE ’pltcl’;

 CREATE TABLE mytab (num int4, modcnt int4, desc text);

 CREATE TRIGGER trig_mytab_modcount BEFORE INSERT OR UPDATE ON mytab
 FOR EACH ROW EXECUTE PROCEDURE trigfunc_modcount(’modcnt’);

Chapter 11. Procedural Languages

74

Database Access from PL/Tcl

 The following commands are available to access the database from the body of a PL/Tcl
procedure:

elog level msg

 Fire a log message. Possible levels are NOTICE, WARN, ERROR, FATAL, DEBUG and
NOIND like for the elog() C function.

quote string

 Duplicates all occurences of single quote and backslash characters. It should be used
when variables are used in the query string given to spi_exec or spi_prepare (not for the
value list on spi_execp). Think about a query string like

 "SELECT ’$val’ AS ret"

 where the Tcl variable val actually contains "doesn’t". This would result in the final query
string

 "SELECT ’doesn’t’ AS ret"

 what would cause a parse error during spi_exec or spi_prepare. It should contain

 "SELECT ’doesn’’t’ AS ret"

 and has to be written as

 "SELECT ’[quote $val]’ AS ret"

spi_exec ?-count n? ?-array name? query ?loop-body?

 Call parser/planner/optimizer/executor for query. The optional -count value tells spi_exec
the maximum number of rows to be processed by the query.

 If the query is a SELECT statement and the optional loop-body (a body of Tcl commands
like in a foreach statement) is given, it is evaluated for each row selected and behaves like
expected on continue/break. The values of selected fields are put into variables named as
the column names. So a

 spi_exec "SELECT count(*) AS cnt FROM pg_proc"

 will set the variable $cnt to the number of rows in the pg_proc system catalog. If the
option -array is given, the column values are stored in the associative array named ’name’
indexed by the column name instead of individual variables.

 spi_exec -array C "SELECT * FROM pg_class" {
 elog DEBUG "have table $C(relname)"
 }

 will print a DEBUG log message for every row of pg_class. The return value of spi_exec
is the number of rows affected by query as found in the global variable SPI_processed.

Chapter 11. Procedural Languages

75

spi_prepare query typelist

 Prepares AND SAVES a query plan for later execution. It is a bit different from the C
level SPI_prepare in that the plan is automatically copied to the toplevel memory context.
Thus, there is currently no way of preparing a plan without saving it.

 If the query references arguments, the type names must be given as a Tcl list. The return
value from spi_prepare is a query ID to be used in subsequent calls to spi_execp. See
spi_execp for a sample.

spi_exec ?-count n? ?-array name? ?-nulls str? query ?valuelist? ?loop-body?

 Execute a prepared plan from spi_prepare with variable substitution. The optional -count
value tells spi_execp the maximum number of rows to be processed by the query.

 The optional value for -nulls is a string of spaces and ’n’ characters telling spi_execp
which of the values are NULL’s. If given, it must have exactly the length of the number of
values.

 The queryid is the ID returned by the spi_prepare call.

 If there was a typelist given to spi_prepare, a Tcl list of values of exactly the same length
must be given to spi_execp after the query. If the type list on spi_prepare was empty, this
argument must be omitted.

 If the query is a SELECT statement, the same as described for spi_exec happens for the
loop-body and the variables for the fields selected.

 Here’s an example for a PL/Tcl function using a prepared plan:

 CREATE FUNCTION t1_count(int4, int4) RETURNS int4 AS ’
 if {![info exists GD(plan)]} {
 # prepare the saved plan on the first call
 set GD(plan) [spi_prepare \\
 "SELECT count(*) AS cnt FROM t1 WHERE num >=
\\$1 AND num <= \\$2" \\
 int4]
 }
 spi_execp -count 1 $GD(plan) [list $1 $2]
 return $cnt
 ’ LANGUAGE ’pltcl’;

 Note that each backslash that Tcl should see must be doubled in the query creating the
function, since the main parser processes backslashes too on CREATE FUNCTION.
Inside the query string given to spi_prepare should really be dollar signs to mark the
parameter positions and to not let $1 be substituted by the value given in the first function
call.

Modules and the unknown command

 PL/Tcl has a special support for things often used. It recognizes two magic tables,
pltcl_modules and pltcl_modfuncs. If these exist, the module ’unknown’ is loaded into the
interpreter right after creation. Whenever an unknown Tcl procedure is called, the
unknown proc is asked to check if the procedure is defined in one of the modules. If this is
true, the module is loaded on demand. To enable this behavior, the PL/Tcl call handler
must be compiled with -DPLTCL_UNKNOWN_SUPPORT set.

 There are support scripts to maintain these tables in the modules subdirectory of the
PL/Tcl source including the source for the unknown module that must get installed
initially.

76

Chapter 12. Linking Dynamically-Loaded

Functions

 After you have created and registered a user-defined function, your work is essentially done.
Postgres, however, must load the object code (e.g., a .o file, or a shared library) that
implements your function. As previously mentioned, Postgres loads your code at runtime, as
required. In order to allow your code to be dynamically loaded, you may have to compile and
link-edit it in a special way. This section briefly describes how to perform the compilation and
link-editing required before you can load your user-defined functions into a running Postgres
server. Note that this process has changed as of Version 4.2.

Tip: The old Postgres dynamic loading mechanism required in-depth knowledge in terms
of executable format, placement and alignment of executable instructions within memory,
etc. on the part of the person writing the dynamic loader. Such loaders tended to be slow
and buggy. As of Version 4.2, the Postgres dynamic loading mechanism has been
rewritten to use the dynamic loading mechanism provided by the operating system. This
approach is generally faster, more reliable and more portable than our previous dynamic
loading mechanism. The reason for this is that nearly all modern versions of UNIX use a
dynamic loading mechanism to implement shared libraries and must therefore provide a
fast and reliable mechanism. On the other hand, the object file must be postprocessed a
bit before it can be loaded into Postgres. We hope that the large increase in speed and
reliability will make up for the slight decrease in convenience.

 You should expect to read (and reread, and re-reread) the manual pages for the C compiler,
cc(1), and the link editor, ld(1), if you have specific questions. In addition, the regression test
suites in the directory PGROOT/src/regress contain several working examples of this process.
If you copy what these tests do, you should not have any problems. The following terminology
will be used below:

 Dynamic loading is what Postgres does to an object file. The object file is copied into the
running Postgres server and the functions and variables within the file are made available to
the functions within the Postgres process. Postgres does this using the dynamic loading
mechanism provided by the operating system.

 Loading and link editing is what you do to an object file in order to produce another kind of
object file (e.g., an executable program or a shared library). You perform this using the link
editing program, ld(1).

 The following general restrictions and notes also apply to the discussion below:

Paths given to the create function command must be absolute paths (i.e., start with "/") that
refer to directories visible on the machine on which the Postgres server is running.

Tip: Relative paths do in fact work, but are relative to the directory where the database
resides (which is generally invisible to the frontend application). Obviously, it makes no
sense to make the path relative to the directory in which the user started the frontend
application, since the server could be running on a completely different machine!

The Postgres user must be able to traverse the path given to the create function command
and be able to read the object file. This is because the Postgres server runs as the Postgres

Chapter 12. Linking Dynamically-Loaded
Functions

77

user, not as the user who starts up the frontend process. (Making the file or a higher-level
directory unreadable and/or unexecutable by the "postgres" user is an extremely common
mistake.)

Symbol names defined within object files must not conflict with each other or with symbols
defined in Postgres.

The GNU C compiler usually does not provide the special options that are required to use the
operating system’s dynamic loader interface. In such cases, the C compiler that comes with
the operating system must be used.

ULTRIX

 It is very easy to build dynamically-loaded object files under ULTRIX. ULTRIX does not have
any shared library mechanism and hence does not place any restrictions on the dynamic loader
interface. On the other hand, we had to (re)write a non-portable dynamic loader ourselves and
could not use true shared libraries. Under ULTRIX, the only restriction is that you must
produce each object file with the option -G 0. (Notice that that’s the numeral ‘‘0’’ and not the
letter ‘‘O’’). For example,

simple ULTRIX example
% cc -G 0 -c foo.c

 produces an object file called foo.o that can then be dynamically loaded into Postgres. No
additional loading or link-editing must be performed.

DEC OSF/1

 Under DEC OSF/1, you can take any simple object file and produce a shared object file by
running the ld command over it with the correct options. The commands to do this look like:

simple DEC OSF/1 example
% cc -c foo.c
% ld -shared -expect_unresolved ’*’ -o foo.so foo.o

 The resulting shared object file can then be loaded into Postgres. When specifying the object
file name to the create function command, one must give it the name of the shared object file
(ending in .so) rather than the simple object file.

Tip: Actually, Postgres does not care what you name the file as long as it is a shared
object file. If you prefer to name your shared object files with the extension .o, this is fine
with Postgres so long as you make sure that the correct file name is given to the create
function command. In other words, you must simply be consistent. However, from a
pragmatic point of view, we discourage this practice because you will undoubtedly confuse
yourself with regards to which files have been made into shared object files and which
have not. For example, it’s very hard to write Makefiles to do the link-editing automatically
if both the object file and the shared object file end in .o!

If the file you specify is not a shared object, the backend will hang!

Chapter 12. Linking Dynamically-Loaded
Functions

78

SunOS 4.x, Solaris 2.x and HP-UX

 Under SunOS 4.x, Solaris 2.x and HP-UX, the simple object file must be created by compiling
the source file with special compiler flags and a shared library must be produced. The
necessary steps with HP-UX are as follows. The +z flag to the HP-UX C compiler produces
so-called "Position Independent Code" (PIC) and the +u flag removes some alignment
restrictions that the PA-RISC architecture normally enforces. The object file must be turned
into a shared library using the HP-UX link editor with the -b option. This sounds complicated
but is actually very simple, since the commands to do it are just:

simple HP-UX example
% cc +z +u -c foo.c
% ld -b -o foo.sl foo.o

 As with the .so files mentioned in the last subsection, the create function command must be
told which file is the correct file to load (i.e., you must give it the location of the shared library,
or .sl file). Under SunOS 4.x, the commands look like:

simple SunOS 4.x example
% cc -PIC -c foo.c
% ld -dc -dp -Bdynamic -o foo.so foo.o

 and the equivalent lines under Solaris 2.x are:

simple Solaris 2.x example
% cc -K PIC -c foo.c
% ld -G -Bdynamic -o foo.so foo.o

 or

simple Solaris 2.x example
% gcc -fPIC -c foo.c
% ld -G -Bdynamic -o foo.so foo.o

 When linking shared libraries, you may have to specify some additional shared libraries
(typically system libraries, such as the C and math libraries) on your ld command line.

79

Chapter 13. Triggers

Postgres has various client interfaces such as Perl, Tcl, Python and C, as well as two Procedural
Languages (PL). It is also possible to call C functions as trigger actions. Note that
STATEMENT-level trigger events are not supported in the current version. You can currently
specify BEFORE or AFTER on INSERT, DELETE or UPDATE of a tuple as a trigger event.

Trigger Creation

 If a trigger event occurs, the trigger manager (called by the Executor) initializes the global
structure TriggerData *CurrentTriggerData (described below) and calls the trigger function to
handle the event.

 The trigger function must be created before the trigger is created as a function taking no
arguments and returns opaque.

 The syntax for creating triggers is as follows:

 CREATE TRIGGER <trigger name> <BEFORE|AFTER> <INSERT|DELETE|UPDATE>
 ON <relation name> FOR EACH <ROW|STATEMENT>
 EXECUTE PROCEDURE <procedure name> (<function args>);

 The name of the trigger is used if you ever have to delete the trigger. It is used as an argument
to the DROP TRIGGER command.

 The next word determines whether the function is called before or after the event.

 The next element of the command determines on what event(s) will trigger the function.
Multiple events can be specified separated by OR.

 The relation name determines which table the event applies to.

 The FOR EACH statement determines whether the trigger is fired for each affected row or
before (or after) the entire statement has completed.

 The procedure name is the C function called.

 The args are passed to the function in the CurrentTriggerData structure. The purpose of
passing arguments to the function is to allow different triggers with similar requirements to call
the same function.

 Also, function may be used for triggering different relations (these functions are named as
"general trigger functions").

 As example of using both features above, there could be a general function that takes as its
arguments two field names and puts the current user in one and the current timestamp in the
other. This allows triggers to be written on INSERT events to automatically track creation of
records in a transaction table for example. It could also be used as a "last updated" function if
used in an UPDATE event.

 Trigger functions return HeapTuple to the calling Executor. This is ignored for triggers fired
after an INSERT, DELETE or UPDATE operation but it allows BEFORE triggers to: - return
NULL to skip the operation for the current tuple (and so the tuple will not be
inserted/updated/deleted); - return a pointer to another tuple (INSERT and UPDATE only)

Chapter 13. Triggers

80

which will be inserted (as the new version of the updated tuple if UPDATE) instead of original
tuple.

 Note, that there is no initialization performed by the CREATE TRIGGER handler. This will be
changed in the future. Also, if more than one trigger is defined for the same event on the same
relation, the order of trigger firing is unpredictable. This may be changed in the future.

 If a trigger function executes SQL-queries (using SPI) then these queries may fire triggers
again. This is known as cascading triggers. There is no explicit limitation on the number of
cascade levels.

 If a trigger is fired by INSERT and inserts a new tuple in the same relation then this trigger
will be fired again. Currently, there is nothing provided for synchronization (etc) of these cases
but this may change. At the moment, there is function funny_dup17() in the regress tests which
uses some techniques to stop recursion (cascading) on itself...

Interaction with the Trigger Manager

 As mentioned above, when function is called by the trigger manager, structure TriggerData
*CurrentTriggerData is NOT NULL and initialized. So it is better to check CurrentTriggerData
against being NULL at the start and set it to NULL just after fetching the information to
prevent calls to a trigger function not from the trigger manager.

 struct TriggerData is defined in src/include/commands/trigger.h:

typedef struct TriggerData
{
 TriggerEvent tg_event;
 Relation tg_relation;
 HeapTuple tg_trigtuple;
 HeapTuple tg_newtuple;
 Trigger *tg_trigger;
} TriggerData;

tg_event
 describes event for which the function is called. You may use the
 following macros to examine tg_event:

 TRIGGER_FIRED_BEFORE(event) returns TRUE if trigger fired BEFORE;
 TRIGGER_FIRED_AFTER(event) returns TRUE if trigger fired AFTER;
 TRIGGER_FIRED_FOR_ROW(event) returns TRUE if trigger fired for
 ROW-level event;
 TRIGGER_FIRED_FOR_STATEMENT(event) returns TRUE if trigger fired for
 STATEMENT-level event;
 TRIGGER_FIRED_BY_INSERT(event) returns TRUE if trigger fired by
INSERT;
 TRIGGER_FIRED_BY_DELETE(event) returns TRUE if trigger fired by
DELETE;
 TRIGGER_FIRED_BY_UPDATE(event) returns TRUE if trigger fired by
UPDATE.

tg_relation
 is pointer to structure describing the triggered relation. Look at
 src/include/utils/rel.h for details about this structure. The most
 interest things are tg_relation->rd_att (descriptor of the relation
 tuples) and tg_relation->rd_rel->relname (relation’s name. This is
not
 char*, but NameData. Use SPI_getrelname(tg_relation) to get char*
if
 you need a copy of name).

tg_trigtuple

Chapter 13. Triggers

81

 is a pointer to the tuple for which the trigger is fired. This is
the tuple
 being inserted (if INSERT), deleted (if DELETE) or updated (if
UPDATE).
 If INSERT/DELETE then this is what you are to return to Executor if
 you don’t want to replace tuple with another one (INSERT) or skip
the
 operation.

tg_newtuple
 is a pointer to the new version of tuple if UPDATE and NULL if this
is
 for an INSERT or a DELETE. This is what you are to return to
Executor if
 UPDATE and you don’t want to replace this tuple with another one or
skip
 the operation.

tg_trigger
 is pointer to structure Trigger defined in src/include/utils/rel.h:

typedef struct Trigger
{
 char *tgname;
 Oid tgfoid;
 func_ptr tgfunc;
 int16 tgtype;
 int16 tgnargs;
 int16 tgattr[8];
 char **tgargs;
} Trigger;

 tgname is the trigger’s name, tgnargs is number of arguments in
tgargs,
 tgargs is an array of pointers to the arguments specified in the
CREATE
 TRIGGER statement. Other members are for internal use only.

Visibility of Data Changes

 Postgres data changes visibility rule: during a query execution, data changes made by the
query itself (via SQL-function, SPI-function, triggers) are invisible to the query scan. For
example, in query

 INSERT INTO a SELECT * FROM a

 tuples inserted are invisible for SELECT’ scan. In effect, this duplicates the database table
within itself (subject to unique index rules, of course) without recursing.

 But keep in mind this notice about visibility in the SPI documentation:

 Changes made by query Q are visible by queries which are started
after
 query Q, no matter whether they are started inside Q (during the
 execution of Q) or after Q is done.

 This is true for triggers as well so, though a tuple being inserted (tg_trigtuple) is not visible to
queries in a BEFORE trigger, this tuple (just inserted) is visible to queries in an AFTER
trigger, and to queries in BEFORE/AFTER triggers fired after this!

Chapter 13. Triggers

82

Examples

 There are more complex examples in in src/test/regress/regress.c and in contrib/spi.

 Here is a very simple example of trigger usage. Function trigf reports the number of tuples in
the triggered relation ttest and skips the operation if the query attempts to insert NULL into x
(i.e - it acts as a NOT NULL constraint but doesn’t abort the transaction).

#include "executor/spi.h" /* this is what you need to work with SPI
*/
#include "commands/trigger.h" /* -"- and triggers */

HeapTuple trigf(void);

HeapTuple
trigf()
{
 TupleDesc tupdesc;
 HeapTuple rettuple;
 char *when;
 bool checknull = false;
 bool isnull;
 int ret, i;

 if (!CurrentTriggerData)
 elog(WARN, "trigf: triggers are not initialized");

 /* tuple to return to Executor */
 if (TRIGGER_FIRED_BY_UPDATE(CurrentTriggerData->tg_event))
 rettuple = CurrentTriggerData->tg_newtuple;
 else
 rettuple = CurrentTriggerData->tg_trigtuple;

 /* check for NULLs ? */
 if (!TRIGGER_FIRED_BY_DELETE(CurrentTriggerData->tg_event) &&
 TRIGGER_FIRED_BEFORE(CurrentTriggerData->tg_event))
 checknull = true;

 if (TRIGGER_FIRED_BEFORE(CurrentTriggerData->tg_event))
 when = "before";
 else
 when = "after ";

 tupdesc = CurrentTriggerData->tg_relation->rd_att;
 CurrentTriggerData = NULL;

 /* Connect to SPI manager */
 if ((ret = SPI_connect()) < 0)
 elog(WARN, "trigf (fired %s): SPI_connect returned %d",
when, ret);

 /* Get number of tuples in relation */
 ret = SPI_exec("select count(*) from ttest", 0);

 if (ret < 0)
 elog(WARN, "trigf (fired %s): SPI_exec returned %d",
when, ret);

 i = SPI_getbinval(SPI_tuptable->vals[0], SPI_tuptable->tupdesc,
1, &isnull);

 elog (NOTICE, "trigf (fired %s): there are %d tuples in ttest",
when, i);

 SPI_finish();

 if (checknull)

Chapter 13. Triggers

83

 {
 i = SPI_getbinval(rettuple, tupdesc, 1, &isnull);
 if (isnull)
 rettuple = NULL;
 }

 return (rettuple);
}

 Now, compile and create table ttest (x int4); create function trigf () returns opaque as
’...path_to_so’ language ’c’;

vac=> create trigger tbefore before insert or update or delete on ttest
for each row execute procedure trigf();
CREATE
vac=> create trigger tafter after insert or update or delete on ttest
for each row execute procedure trigf();
CREATE
vac=> insert into ttest values (null);
NOTICE:trigf (fired before): there are 0 tuples in ttest
INSERT 0 0

-- Insertion skipped and AFTER trigger is not fired

vac=> select * from ttest;
x
-
(0 rows)

vac=> insert into ttest values (1);
NOTICE:trigf (fired before): there are 0 tuples in ttest
NOTICE:trigf (fired after): there are 1 tuples in ttest
 ^^^^^^^^
 remember what we said about visibility.
INSERT 167793 1
vac=> select * from ttest;
x
-
1
(1 row)

vac=> insert into ttest select x * 2 from ttest;
NOTICE:trigf (fired before): there are 1 tuples in ttest
NOTICE:trigf (fired after): there are 2 tuples in ttest
 ^^^^^^^^
 remember what we said about visibility.
INSERT 167794 1
vac=> select * from ttest;
x
-
1
2
(2 rows)

vac=> update ttest set x = null where x = 2;
NOTICE:trigf (fired before): there are 2 tuples in ttest
UPDATE 0
vac=> update ttest set x = 4 where x = 2;
NOTICE:trigf (fired before): there are 2 tuples in ttest
NOTICE:trigf (fired after): there are 2 tuples in ttest
UPDATE 1
vac=> select * from ttest;
x
-
1
4
(2 rows)

vac=> delete from ttest;
NOTICE:trigf (fired before): there are 2 tuples in ttest
NOTICE:trigf (fired after): there are 1 tuples in ttest

Chapter 13. Triggers

84

NOTICE:trigf (fired before): there are 1 tuples in ttest
NOTICE:trigf (fired after): there are 0 tuples in ttest
 ^^^^^^^^
 remember what we said about visibility.
DELETE 2
vac=> select * from ttest;
x
-
(0 rows)

85

Chapter 14. Server Programming Interface

The Server Programming Interface (SPI) gives users the ability to run SQL queries inside
user-defined C functions. The available Procedural Languages (PL) give an alternate means to
access these capabilities.

In fact, SPI is just a set of native interface functions to simplify access to the Parser, Planner,
Optimizer and Executor. SPI also does some memory management.

To avoid misunderstanding we’ll use function to mean SPI interface functions and procedure
for user-defined C-functions using SPI.

SPI procedures are always called by some (upper) Executor and the SPI manager uses the
Executor to run your queries. Other procedures may be called by the Executor running queries
from your procedure.

Note, that if during execution of a query from a procedure the transaction is aborted then
control will not be returned to your procedure. Rather, all work will be rolled back and the
server will wait for the next command from the client. This will be changed in future versions.

Other restrictions are the inability to execute BEGIN, END and ABORT (transaction control
statements) and cursor operations. This will also be changed in the future.

If successful, SPI functions return a non-negative result (either via a returned integer value or in
SPI_result global variable, as described below). On error, a negative or NULL result will be
returned.

Chapter 14. Server Programming Interface

86

Interface Functions

SPI_connect

Name

SPI_connect Connects your procedure to the SPI manager.

Synopsis

int SPI_connect(void)

Inputs

None

Outputs

int

 Return status

SPI_OK_CONNECT

 if connected

SPI_ERROR_CONNECT

 if not connected

Description

SPI_connect opens a connection to the Postgres backend. You should call this function if you
will need to execute queries. Some utility SPI functions may be called from un-connected
procedures.

 You may get SPI_ERROR_CONNECT error if SPI_connect is called from an already
connected procedure - e.g. if you directly call one procedure from another connected one.
Actually, while the child procedure will be able to use SPI, your parent procedure will not be

Chapter 14. Server Programming Interface

87

able to continue to use SPI after the child returns (if SPI_finish is called by the child). It’s bad
practice.

Usage

XXX thomas 1997-12-24

Algorithm

SPI_connect performs the following:

 Initializes the SPI internal structures for query execution and memory management.

SPI_finish

Name

SPI_finish Disconnects your procedure from the SPI manager.

Synopsis

SPI_finish(void)

Inputs

None

Outputs

int

SPI_OK_FINISH if properly disconnected
SPI_ERROR_UNCONNECTED if called from an un-connected procedure

Chapter 14. Server Programming Interface

88

Description

SPI_finish closes an existing connection to the Postgres backend. You should call this function
after completing operations through the SPI manager.

 You may get the error return SPI_ERROR_UNCONNECTED if SPI_finish is called without
having a current valid connection. There is no fundamental problem with this; it means that
nothing was done by the SPI manager.

Usage

 SPI_finish must be called as a final step by a connected procedure or you may get
unpredictable results! Note that you can safely skip the call to SPI_finish if you abort the
transaction (via elog(ERROR)).

Algorithm

SPI_finish performs the following:

 Disconnects your procedure from the SPI manager and frees all memory allocations made
by your procedure via palloc since the SPI_connect. These allocations can’t be used any
more! See Memory management.

Chapter 14. Server Programming Interface

89

SPI_exec

Name

SPI_exec Creates an execution plan (parser+planner+optimizer) and executes a query.

Synopsis

SPI_exec(query, tcount)

Inputs

char *query

 String containing query plan

int tcount

 Maximum number of tuples to return

Outputs

int

 SPI_OK_EXEC if properly disconnected
 SPI_ERROR_UNCONNECTED if called from an un-connected procedure
 SPI_ERROR_ARGUMENT if query is NULL or tcount < 0.
 SPI_ERROR_UNCONNECTED if procedure is unconnected.
 SPI_ERROR_COPY if COPY TO/FROM stdin.
 SPI_ERROR_CURSOR if DECLARE/CLOSE CURSOR, FETCH.
 SPI_ERROR_TRANSACTION if BEGIN/ABORT/END.
 SPI_ERROR_OPUNKNOWN if type of query is unknown (this shouldn’t occur).

 If execution of your query was successful then one of the following (non-negative) values
will be returned:

 SPI_OK_UTILITY if some utility (e.g. CREATE TABLE ...) was executed
 SPI_OK_SELECT if SELECT (but not SELECT ... INTO!) was executed
 SPI_OK_SELINTO if SELECT ... INTO was executed
 SPI_OK_INSERT if INSERT (or INSERT ... SELECT) was executed
 SPI_OK_DELETE if DELETE was executed
 SPI_OK_UPDATE if UPDATE was executed

Chapter 14. Server Programming Interface

90

Description

SPI_exec creates an execution plan (parser+planner+optimizer) and executes the query for
tcount tuples.

Usage

 This should only be called from a connected procedure. If tcount is zero then it executes the
query for all tuples returned by the query scan. Using tcount > 0 you may restrict the number of
tuples for which the query will be executed. For example,

SPI_exec ("insert into table select * from table", 5);

will allow at most 5 tuples to be inserted into table. If execution of your query was successful
then a non-negative value will be returned.

Note: You may pass many queries in one string or query string may be re-written by
RULEs. SPI_exec returns the result for the last query executed.

 The actual number of tuples for which the (last) query was executed is returned in the global
variable SPI_processed (if not SPI_OK_UTILITY). If SPI_OK_SELECT returned and
SPI_processed > 0 then you may use global pointer SPITupleTable *SPI_tuptable to access the
selected tuples: Also NOTE, that SPI_finish frees and makes all SPITupleTables unusable!
(See Memory management).

 SPI_exec may return one of the following (negative) values:

 SPI_ERROR_ARGUMENT if query is NULL or tcount < 0.
 SPI_ERROR_UNCONNECTED if procedure is unconnected.
 SPI_ERROR_COPY if COPY TO/FROM stdin.
 SPI_ERROR_CURSOR if DECLARE/CLOSE CURSOR, FETCH.
 SPI_ERROR_TRANSACTION if BEGIN/ABORT/END.
 SPI_ERROR_OPUNKNOWN if type of query is unknown (this shouldn’t occur).

Algorithm

SPI_exec performs the following:

 Disconnects your procedure from the SPI manager and frees all memory allocations made
by your procedure via palloc since the SPI_connect. These allocations can’t be used any
more! See Memory management.

Chapter 14. Server Programming Interface

91

SPI_prepare

Name

SPI_prepare Connects your procedure to the SPI manager.

Synopsis

SPI_prepare(query, nargs, argtypes)

Inputs

query

 Query string

nargs

 Number of input parameters ($1 ... $nargs - as in SQL-functions)

argtypes

 Pointer list of type OIDs to input arguments

Outputs

void *

 Pointer to an execution plan (parser+planner+optimizer)

Description

SPI_prepare creates and returns an execution plan (parser+planner+optimizer) but doesn’t
execute the query. Should only be called from a connected procedure.

Usage

 nargs is number of parameters ($1 ... $nargs - as in SQL-functions), and nargs may be 0 only if
there is not any $1 in query.

 Execution of prepared execution plans is sometimes much faster so this feature may be useful
if the same query will be executed many times.

The plan returned by SPI_prepare may be used only in current invocation of the procedure
since SPI_finish frees memory allocated for a plan. See SPI_saveplan.

 If successful, a non-null pointer will be returned. Otherwise, you’ll get a NULL plan. In both
cases SPI_result will be set like the value returned by SPI_exec, except that it is set to
SPI_ERROR_ARGUMENT if query is NULL or nargs < 0 or nargs > 0 && argtypes is NULL.

Chapter 14. Server Programming Interface

92

SPI_saveplan

Name

SPI_saveplan Saves a passed plan

Synopsis

SPI_saveplan(plan)

Inputs

void *query

 Passed plan

Outputs

void *

 Execution plan location. NULL if unsuccessful.

SPI_result

 SPI_ERROR_ARGUMENT if plan is NULL
 SPI_ERROR_UNCONNECTED if procedure is un-connected

Description

SPI_saveplan stores a plan prepared by SPI_prepare in safe memory protected from freeing by
SPI_finish or the transaction manager.

 In the current version of Postgres there is no ability to store prepared plans in the system
catalog and fetch them from there for execution. This will be implemented in future versions.
As an alternative, there is the ability to reuse prepared plans in the consequent invocations of
your procedure in the current session. Use SPI_execp to execute this saved plan.

Usage

 SPI_saveplan saves a passed plan (prepared by SPI_prepare) in memory protected from freeing
by SPI_finish and by the transaction manager and returns a pointer to the saved plan. You may
save the pointer returned in a local variable. Always check if this pointer is NULL or not either
when preparing a plan or using an already prepared plan in SPI_execp (see below).

Note: If one of the objects (a relation, function, etc.) referenced by the prepared plan is
dropped during your session (by your backend or another process) then the results of
SPI_execp for this plan will be unpredictable.

Chapter 14. Server Programming Interface

93

SPI_execp

Name

SPI_exec Executes a passed plan

Synopsis

SPI_execp(plan,
values,
nulls,
tcount)

Inputs

void *plan

 Execution plan

Datum *values

 Actual parameter values

char *nulls

 Array describing what parameters get NULLs

’n’ indicates NULL allowed
’ ’ indicates NULL not allowed

int tcount

 Number of tuples for which plan is to be executed

Outputs

int

 Returns the same value as SPI_exec as well as

 SPI_ERROR_ARGUMENT if plan is NULL or tcount < 0
 SPI_ERROR_PARAM if values is NULL and plan was prepared with some parameters.

Chapter 14. Server Programming Interface

94

SPI_tuptable

 initialized as in SPI_exec if successful

SPI_processed

 initialized as in SPI_exec if successful

Description

SPI_execp stores a plan prepared by SPI_prepare in safe memory protected from freeing by
SPI_finish or the transaction manager.

 In the current version of Postgres there is no ability to store prepared plans in the system
catalog and fetch them from there for execution. This will be implemented in future versions.
As a work arround, there is the ability to reuse prepared plans in the consequent invocations of
your procedure in the current session. Use SPI_execp to execute this saved plan.

Usage

 If nulls is NULL then SPI_execp assumes that all values (if any) are NOT NULL.

Note: If one of the objects (a relation, function, etc.) referenced by the prepared plan is
dropped during your session (by your backend or another process) then the results of
SPI_execp for this plan will be unpredictable.

Chapter 14. Server Programming Interface

95

Interface Support Functions

All functions described below may be used by connected and unconnected procedures.

SPI_copytuple

Name

SPI_copytuple Makes copy of tuple in upper Executor context

Synopsis

SPI_copytuple(tuple)

Inputs

HeapTuple tuple

 Input tuple to be copied

Outputs

HeapTuple

 Copied tuple

 non-NULL if tuple is not NULL and the copy was successful
 NULL only if tuple is NULL

Description

SPI_copytuple makes a copy of tuple in upper Executor context. See the section on Memory
Management.

Usage

TBD

Chapter 14. Server Programming Interface

96

SPI_modifytuple

Name

SPI_modifytuple Modifies tuple of relation

Synopsis

SPI_modifytuple(rel, tuple , nattrs
, attnum , Values , Nulls)

Inputs

Relation rel

HeapTuple tuple

 Input tuple to be modified

int nattrs

 Number of attribute numbers in attnum

int * attnum

 Array of numbers of the attributes which are to be changed

Datum * Values

 New values for the attributes specified

char * Nulls

 Which attributes are NULL, if any

Outputs

HeapTuple

 New tuple with modifications

 non-NULL if tuple is not NULL and the modify was successful
 NULL only if tuple is NULL

SPI_result

 SPI_ERROR_ARGUMENT if rel is NULL or tuple is NULL or natts ≤ 0 or attnum is NULL or
Values is NULL.

 SPI_ERROR_NOATTRIBUTE if there is an invalid attribute number in attnum (attnum ≤ 0 or >
number of attributes in tuple)

Chapter 14. Server Programming Interface

97

Description

SPI_modifytuple Modifies a tuple in upper Executor context. See the section on Memory
Management.

Usage

If successful, a pointer to the new tuple is returned. The new tuple is allocated in upper
Executor context (see Memory management). Passed tuple is not changed.

SPI_fnumber

Name

SPI_fnumber Finds the attribute number for specified attribute

Synopsis

SPI_fnumber(tupdesc, fname)

Inputs

TupleDesc tupdesc

 Input tuple description

char * fname

 Field name

Outputs

int

 Attribute number

Valid one-based index number of attribute
SPI_ERROR_NOATTRIBUTE if the named attribute is not found

Description

SPI_fnumber returns the attribute number for the attribute with name in fname.

Usage

Attribute numbers are 1 based.

Chapter 14. Server Programming Interface

98

SPI_fname

Name

SPI_fname Finds the attribute name for the specified attribute

Synopsis

SPI_fname(tupdesc, fname)

Inputs

TupleDesc tupdesc

 Input tuple description

char * fnumber

 Attribute number

Outputs

char *

 Attribute name

NULL if fnumber is out of range
SPI_result set to SPI_ERROR_NOATTRIBUTE on error

Description

SPI_fname returns the attribute name for the specified attribute.

Usage

Attribute numbers are 1 based.

Algorithm

Returns a newly-allocated copy of the attribute name.

Chapter 14. Server Programming Interface

99

SPI_getvalue

Name

SPI_getvalue Returns the string value of the specified attribute

Synopsis

SPI_getvalue(tuple, tupdesc, fnumber)

Inputs

HeapTuple tuple

 Input tuple to be examined

TupleDesc tupdesc

 Input tuple description

int fnumber

 Attribute number

Outputs

char *

 Attribute value or NULL if

attribute is NULL
fnumber is out of range (SPI_result set to SPI_ERROR_NOATTRIBUTE)
no output function available (SPI_result set to SPI_ERROR_NOOUTFUNC)

Description

SPI_getvalue returns an external (string) representation of the value of the specified attribute.

Usage

Attribute numbers are 1 based.

Algorithm

Allocates memory as required by the value.

Chapter 14. Server Programming Interface

100

SPI_getbinval

Name

SPI_getbinval Returns the binary value of the specified attribute

Synopsis

SPI_getbinval(tuple, tupdesc, fnumber, isnull)

Inputs

HeapTuple tuple

 Input tuple to be examined

TupleDesc tupdesc

 Input tuple description

int fnumber

 Attribute number

Outputs

Datum

 Attribute binary value

bool * isnull

 flag for null value in attribute

SPI_result

SPI_ERROR_NOATTRIBUTE

Chapter 14. Server Programming Interface

101

Description

SPI_getbinval returns the binary value of the specified attribute.

Usage

Attribute numbers are 1 based.

Algorithm

Does not allocate new space for the binary value.

SPI_gettype

Name

SPI_gettype Returns the type name of the specified attribute

Synopsis

SPI_gettype(tupdesc, fnumber)

Inputs

TupleDesc tupdesc

 Input tuple description

int fnumber

 Attribute number

Outputs

char *

 The type name for the specified attribute number

SPI_result

SPI_ERROR_NOATTRIBUTE

Chapter 14. Server Programming Interface

102

Description

SPI_gettype returns a copy of the type name for the specified attribute.

Usage

Attribute numbers are 1 based.

Algorithm

Does not allocate new space for the binary value.

SPI_gettypeid

Name

SPI_gettypeid Returns the type OID of the specified attribute

Synopsis

SPI_gettypeid(tupdesc, fnumber)

Inputs

TupleDesc tupdesc

 Input tuple description

int fnumber

 Attribute number

Outputs

OID

 The type OID for the specified attribute number

SPI_result

SPI_ERROR_NOATTRIBUTE

Chapter 14. Server Programming Interface

103

Description

SPI_gettypeid returns the type OID for the specified attribute.

Usage

Attribute numbers are 1 based.

Algorithm

TBD

SPI_getrelname

Name

SPI_getrelname Returns the name of the specified relation

Synopsis

SPI_getrelname(rel)

Inputs

Relation rel

 Input relation

Outputs

char *

 The name of the specified relation

Description

SPI_getrelname returns the name of the specified relation.

Usage

TBD

Algorithm

Copies the relation name into new storage.

Chapter 14. Server Programming Interface

104

SPI_palloc

Name

SPI_palloc Allocates memory in upper Executor context

Synopsis

SPI_palloc(size)

Inputs

Size size

 Octet size of storage to allocate

Outputs

void *

 New storage space of specified size

Description

SPI_palloc allocates memory in upper Executor context. See section on memory management.

Usage

TBD

Chapter 14. Server Programming Interface

105

SPI_repalloc

Name

SPI_repalloc Re-allocates memory in upper Executor context

Synopsis

SPI_repalloc(pointer, size)

Inputs

void * pointer

 Pointer to existing storage

Size size

 Octet size of storage to allocate

Outputs

void *

 New storage space of specified size with contents copied from existing area

Description

SPI_repalloc re-allocates memory in upper Executor context. See section on memory
management.

Usage

TBD

Chapter 14. Server Programming Interface

106

SPI_pfree

Name

SPI_pfree Frees memory from upper Executor context

Synopsis

SPI_pfree(pointer)

Inputs

void * pointer

 Pointer to existing storage

Outputs

None

Description

SPI_pfree frees memory in upper Executor context. See section on memory management.

Usage

TBD

Memory Management

 Server allocates memory in memory contexts in such way that allocations made in one context
may be freed by context destruction without affecting allocations made in other contexts. All
allocations (via palloc, etc) are made in the context which are chosen as current one. You’ll get
unpredictable results if you’ll try to free (or reallocate) memory allocated not in current
context.

 Creation and switching between memory contexts are subject of SPI manager memory
management.

 SPI procedures deal with two memory contexts: upper Executor memory context and
procedure memory context (if connected).

 Before a procedure is connected to the SPI manager, current memory context is upper
Executor context so all allocation made by the procedure itself via palloc/repalloc or by SPI
utility functions before connecting to SPI are made in this context.

Chapter 14. Server Programming Interface

107

 After SPI_connect is called current context is the procedure’s one. All allocations made via
palloc/repalloc or by SPI utility functions (except for SPI_copytuple, SPI_modifytuple,
SPI_palloc and SPI_repalloc) are made in this context.

 When a procedure disconnects from the SPI manager (via SPI_finish) the current context is
restored to the upper Executor context and all allocations made in the procedure memory
context are freed and can’t be used any more!

 If you want to return something to the upper Executor then you have to allocate memory for
this in the upper context!

 SPI has no ability to automatically free allocations in the upper Executor context!

 SPI automatically frees memory allocated during execution of a query when this query is
done!

Visibility of Data Changes

Postgres data changes visibility rule: during a query execution, data changes made by the query
itself (via SQL-function, SPI-function, triggers) are invisible to the query scan. For example, in
query INSERT INTO a SELECT * FROM a tuples inserted are invisible for SELECT’ scan. In
effect, this duplicates the database table within itself (subject to unique index rules, of course)
without recursing.

 Changes made by query Q are visible by queries which are started after query Q, no matter
whether they are started inside Q (during the execution of Q) or after Q is done.

Examples

 This example of SPI usage demonstrates the visibility rule. There are more complex examples
in in src/test/regress/regress.c and in contrib/spi.

 This is a very simple example of SPI usage. The procedure execq accepts an SQL-query in its
first argument and tcount in its second, executes the query using SPI_exec and returns the
number of tuples for which the query executed:

#include "executor/spi.h" /* this is what you need to work with SPI */

int execq(text *sql, int cnt);

int
execq(text *sql, int cnt)
{
 int ret;
 int proc = 0;

 SPI_connect();

 ret = SPI_exec(textout(sql), cnt);

 proc = SPI_processed;
 /*
 * If this is SELECT and some tuple(s) fetched -
 * returns tuples to the caller via elog (NOTICE).
 */
 if (ret == SPI_OK_SELECT && SPI_processed > 0)
 {
 TupleDesc tupdesc = SPI_tuptable->tupdesc;

Chapter 14. Server Programming Interface

108

 SPITupleTable *tuptable = SPI_tuptable;
 char buf[8192];
 int i;

 for (ret = 0; ret < proc; ret++)
 {
 HeapTuple tuple = tuptable->vals[ret];

 for (i = 1, buf[0] = 0; i <= tupdesc->natts;
i++)
 sprintf(buf + strlen (buf), " %s%s",
 SPI_getvalue(tuple, tupdesc,
i),
 (i == tupdesc->natts) ? " " : "
|");
 elog (NOTICE, "EXECQ: %s", buf);
 }
 }

 SPI_finish();

 return (proc);
}

 Now, compile and create the function:

create function execq (text, int4) returns int4 as ’...path_to_so’
language ’c’;

vac=> select execq(’create table a (x int4)’, 0);
execq

 0
(1 row)

vac=> insert into a values (execq(’insert into a values (0)’,0));
INSERT 167631 1
vac=> select execq(’select * from a’,0);
NOTICE:EXECQ: 0 <<< inserted by execq

NOTICE:EXECQ: 1 <<< value returned by execq and inserted by upper
INSERT

execq

 2
(1 row)

vac=> select execq(’insert into a select x + 2 from a’,1);
execq

 1
(1 row)

vac=> select execq(’select * from a’, 10);
NOTICE:EXECQ: 0

NOTICE:EXECQ: 1

NOTICE:EXECQ: 2 <<< 0 + 2, only one tuple inserted - as specified

execq

 3 <<< 10 is max value only, 3 is real # of tuples
(1 row)

vac=> delete from a;
DELETE 3
vac=> insert into a values (execq(’select * from a’, 0) + 1);
INSERT 167712 1
vac=> select * from a;

Chapter 14. Server Programming Interface

109

x
-
1 <<< no tuples in a (0) + 1
(1 row)

vac=> insert into a values (execq(’select * from a’, 0) + 1);
NOTICE:EXECQ: 0
INSERT 167713 1
vac=> select * from a;
x
-
1
2 <<< there was single tuple in a + 1
(2 rows)

-- This demonstrates data changes visibility rule:

vac=> insert into a select execq(’select * from a’, 0) * x from a;
NOTICE:EXECQ: 1
NOTICE:EXECQ: 2
NOTICE:EXECQ: 1
NOTICE:EXECQ: 2
NOTICE:EXECQ: 2
INSERT 0 2
vac=> select * from a;
x
-
1
2
2 <<< 2 tuples * 1 (x in first tuple)
6 <<< 3 tuples (2 + 1 just inserted) * 2 (x in second
tuple)
(4 rows) ^^^^^^^^
 tuples visible to execq() in different invocations

110

Chapter 15. Large Objects

 In Postgres, data values are stored in tuples and individual tuples cannot span data pages. Since
the size of a data page is 8192 bytes, the upper limit on the size of a data value is relatively
low. To support the storage of larger atomic values, Postgres provides a large object interface.
This interface provides file oriented access to user data that has been declared to be a large
type. This section describes the implementation and the programmatic and query language
interfaces to Postgres large object data.

Historical Note

 Originally, Postgres 4.2 supported three standard implementations of large objects: as files
external to Postgres, as UNIX files managed by Postgres, and as data stored within the Postgres
database. It causes considerable confusion among users. As a result, we only support large
objects as data stored within the Postgres database in PostgreSQL. Even though it is slower to
access, it provides stricter data integrity. For historical reasons, this storage scheme is referred
to as Inversion large objects. (We will use Inversion and large objects interchangeably to mean
the same thing in this section.)

Inversion Large Objects

 The Inversion large object implementation breaks large objects up into "chunks" and stores the
chunks in tuples in the database. A B-tree index guarantees fast searches for the correct chunk
number when doing random access reads and writes.

Large Object Interfaces

 The facilities Postgres provides to access large objects, both in the backend as part of
user-defined functions or the front end as part of an application using the interface, are
described below. (For users familiar with Postgres 4.2, PostgreSQL has a new set of functions
providing a more coherent interface. The interface is the same for dynamically-loaded C
functions as well as for XXX LOST TEXT? WHAT SHOULD GO HERE??. The Postgres
large object interface is modeled after the UNIX file system interface, with analogues of
open(2), read(2), write(2), lseek(2), etc. User functions call these routines to retrieve only the
data of interest from a large object. For example, if a large object type called mugshot existed
that stored photographs of faces, then a function called beard could be declared on mugshot
data. Beard could look at the lower third of a photograph, and determine the color of the beard
that appeared there, if any. The entire large object value need not be buffered, or even
examined, by the beard function. Large objects may be accessed from dynamically-loaded C
functions or database client programs that link the library. Postgres provides a set of routines
that support opening, reading, writing, closing, and seeking on large objects.

Chapter 15. Large Objects

111

Creating a Large Object

 The routine

Oid lo_creat(PGconn *conn, int mode)

 creates a new large object. The mode is a bitmask describing several different attributes of the
new object. The symbolic constants listed here are defined in
PGROOT/src/backend/libpq/libpq-fs.h The access type (read, write, or both) is controlled by
OR ing together the bits INV_READ and INV_WRITE. If the large object should be archived
-- that is, if historical versions of it should be moved periodically to a special archive relation --
then the INV_ARCHIVE bit should be set. The low-order sixteen bits of mask are the storage
manager number on which the large object should reside. For sites other than Berkeley, these
bits should always be zero. The commands below create an (Inversion) large object:

inv_oid = lo_creat(INV_READ|INV_WRITE|INV_ARCHIVE);

Importing a Large Object

To import a UNIX file as a large object, call

Oid lo_import(PGconn *conn, text *filename)

 The filename argument specifies the UNIX pathname of the file to be imported as a large
object.

Exporting a Large Object

To export a large object into UNIX file, call

int lo_export(PGconn *conn, Oid lobjId, text *filename)

 The lobjId argument specifies the Oid of the large object to export and the filename argument
specifies the UNIX pathname of the file.

Opening an Existing Large Object

 To open an existing large object, call

int lo_open(PGconn *conn, Oid lobjId, int mode, ...)

 The lobjId argument specifies the Oid of the large object to open. The mode bits control
whether the object is opened for reading INV_READ), writing or both. A large object cannot
be opened before it is created. lo_open returns a large object descriptor for later use in lo_read,
lo_write, lo_lseek, lo_tell, and lo_close.

Writing Data to a Large Object

 The routine

int lo_write(PGconn *conn, int fd, char *buf, int len)

Chapter 15. Large Objects

112

 writes len bytes from buf to large object fd. The fd argument must have been returned by a
previous lo_open. The number of bytes actually written is returned. In the event of an error, the
return value is negative.

Seeking on a Large Object

 To change the current read or write location on a large object, call

int lo_lseek(PGconn *conn, int fd, int offset, int whence)

 This routine moves the current location pointer for the large object described by fd to the new
location specified by offset. The valid values for .i whence are SEEK_SET SEEK_CUR and
SEEK_END.

Closing a Large Object Descriptor

 A large object may be closed by calling

int lo_close(PGconn *conn, int fd)

 where fd is a large object descriptor returned by lo_open. On success, lo_close returns zero.
On error, the return value is negative.

Built in registered functions

 There are two built-in registered functions, lo_import and lo_export which are convenient for
use in SQL queries. Here is an example of their use

CREATE TABLE image (
 name text,
 raster oid
);

INSERT INTO image (name, raster)
 VALUES (’beautiful image’, lo_import(’/etc/motd’));

SELECT lo_export(image.raster, "/tmp/motd") from image
 WHERE name = ’beautiful image’;

Accessing Large Objects from LIBPQ

 Below is a sample program which shows how the large object interface in LIBPQ can be used.
Parts of the program are commented out but are left in the source for the readers benefit. This
program can be found in ../src/test/examples Frontend applications which use the large object
interface in LIBPQ should include the header file libpq/libpq-fs.h and link with the libpq
library.

Chapter 15. Large Objects

113

Sample Program

/*--
 *
 * testlo.c--
 * test using large objects with libpq
 *
 * Copyright (c) 1994, Regents of the University of California
 *
 *--
 */
 #include <stdio.h>
 #include "libpq-fe.h"
 #include "libpq/libpq-fs.h"

 #define BUFSIZE 1024

 /*
 * importFile
 * import file "in_filename" into database as large object
 *
 */
 Oid importFile(PGconn *conn, char *filename)
 {
 Oid lobjId;
 int lobj_fd;
 char buf[BUFSIZE];
 int nbytes, tmp;
 int fd;

 /*
 * open the file to be read in
 */
 fd = open(filename, O_RDONLY, 0666);
 if (fd < 0) { /* error */
 fprintf(stderr, "can’t open unix file %s\n", filename);
 }

 /*
 * create the large object
 */
 lobjId = lo_creat(conn, INV_READ|INV_WRITE);
 if (lobjId == 0) {
 fprintf(stderr, "can’t create large object\n");
 }

 lobj_fd = lo_open(conn, lobjId, INV_WRITE);
 /*
 * read in from the Unix file and write to the inversion file
 */
 while ((nbytes = read(fd, buf, BUFSIZE)) > 0) {
 tmp = lo_write(conn, lobj_fd, buf, nbytes);
 if (tmp < nbytes) {
 fprintf(stderr, "error while reading large object\n");
 }
 }

 (void) close(fd);
 (void) lo_close(conn, lobj_fd);

 return lobjId;
 }

 void pickout(PGconn *conn, Oid lobjId, int start, int len)
 {
 int lobj_fd;
 char* buf;
 int nbytes;

Chapter 15. Large Objects

114

 int nread;

 lobj_fd = lo_open(conn, lobjId, INV_READ);
 if (lobj_fd < 0) {
 fprintf(stderr,"can’t open large object %d\n",
 lobjId);
 }

 lo_lseek(conn, lobj_fd, start, SEEK_SET);
 buf = malloc(len+1);

 nread = 0;
 while (len - nread > 0) {
 nbytes = lo_read(conn, lobj_fd, buf, len - nread);
 buf[nbytes] = ’ ’;
 fprintf(stderr,">>> %s", buf);
 nread += nbytes;
 }
 fprintf(stderr,"\n");
 lo_close(conn, lobj_fd);
 }

 void overwrite(PGconn *conn, Oid lobjId, int start, int len)
 {
 int lobj_fd;
 char* buf;
 int nbytes;
 int nwritten;
 int i;

 lobj_fd = lo_open(conn, lobjId, INV_READ);
 if (lobj_fd < 0) {
 fprintf(stderr,"can’t open large object %d\n",
 lobjId);
 }

 lo_lseek(conn, lobj_fd, start, SEEK_SET);
 buf = malloc(len+1);

 for (i=0;i<len;i++)
 buf[i] = ’X’;
 buf[i] = ’ ’;

 nwritten = 0;
 while (len - nwritten > 0) {
 nbytes = lo_write(conn, lobj_fd, buf + nwritten, len - nwritten);
 nwritten += nbytes;
 }
 fprintf(stderr,"\n");
 lo_close(conn, lobj_fd);
 }

 /*
 * exportFile
 * export large object "lobjOid" to file "out_filename"
 *
 */
 void exportFile(PGconn *conn, Oid lobjId, char *filename)
 {
 int lobj_fd;
 char buf[BUFSIZE];
 int nbytes, tmp;
 int fd;

 /*
 * create an inversion "object"
 */
 lobj_fd = lo_open(conn, lobjId, INV_READ);
 if (lobj_fd < 0) {
 fprintf(stderr,"can’t open large object %d\n",
 lobjId);
 }

Chapter 15. Large Objects

115

 /*
 * open the file to be written to
 */
 fd = open(filename, O_CREAT|O_WRONLY, 0666);
 if (fd < 0) { /* error */
 fprintf(stderr, "can’t open unix file %s\n",
 filename);
 }

 /*
 * read in from the Unix file and write to the inv. file
 */
 while ((nbytes = lo_read(conn, lobj_fd, buf, BUFSIZE)) > 0) {
 tmp = write(fd, buf, nbytes);
 if (tmp < nbytes) {
 fprintf(stderr,"error while writing %s\n",
 filename);
 }
 }

 (void) lo_close(conn, lobj_fd);
 (void) close(fd);

 return;
 }

 void
 exit_nicely(PGconn* conn)
 {
 PQfinish(conn);
 exit(1);
 }

 int
 main(int argc, char **argv)
 {
 char *in_filename, *out_filename;
 char *database;
 Oid lobjOid;
 PGconn *conn;
 PGresult *res;

 if (argc != 4) {
 fprintf(stderr, "Usage: %s database_name in_filename"
 " out_filename\n",
 argv[0]);
 exit(1);
 }

 database = argv[1];
 in_filename = argv[2];
 out_filename = argv[3];

 /*
 * set up the connection
 */
 conn = PQsetdb(NULL, NULL, NULL, NULL, database);

 /* check to see that the backend connection was successful */
 if (PQstatus(conn) == CONNECTION_BAD) {
 fprintf(stderr,"Connection to database ’%s’ failed.\n", database);
 fprintf(stderr,"%s",PQerrorMessage(conn));
 exit_nicely(conn);
 }

 res = PQexec(conn, "begin");
 PQclear(res);

 printf("importing file %s\n", in_filename);
 /* lobjOid = importFile(conn, in_filename); */
 lobjOid = lo_import(conn, in_filename);

Chapter 15. Large Objects

116

 /*
 printf("as large object %d.\n", lobjOid);

 printf("picking out bytes 1000-2000 of the large object\n");
 pickout(conn, lobjOid, 1000, 1000);

 printf("overwriting bytes 1000-2000 of the large object"
 " with X’s\n");
 overwrite(conn, lobjOid, 1000, 1000);
 */

 printf("exporting large object to file %s\n", out_filename);
 /* exportFile(conn, lobjOid, out_filename); */
 lo_export(conn, lobjOid,out_filename);

 res = PQexec(conn, "end");
 PQclear(res);
 PQfinish(conn);
 exit(0);
 }

117

Chapter 16. libpq

 libpq is the C application programmer’s interface to Postgres. libpq is a set of library routines
that allow client programs to pass queries to the Postgres backend server and to receive the
results of these queries. libpq is also the underlying engine for several other Postgres
application interfaces, including libpq++ (C++), libpgtcl (Tcl), perl5, and ecpg. So some
aspects of libpq’s behavior will be important to you if you use one of those packages. Three
short programs are included at the end of this section to show how to write programs that use
libpq. There are several complete examples of libpq applications in the following directories:

 ../src/test/regress
 ../src/test/examples
 ../src/bin/psql

Frontend programs which use libpq must include the header file libpq-fe.h and must link with
the libpq library.

Database Connection Functions

 The following routines deal with making a connection to a Postgres backend server. The
application program can have several backend connections open at one time. (One reason to do
that is to access more than one database.) Each connection is represented by a PGconn object
which is obtained from PQconnectdb() or PQsetdbLogin(). NOTE that these functions will
always return a non-null object pointer, unless perhaps there is too little memory even to
allocate the PGconn object. The PQstatus function should be called to check whether a
connection was successfully made before queries are sent via the connection object.

PQsetdbLogin Makes a new connection to a backend.

PGconn *PQsetdbLogin(const char *pghost,
 const char *pgport,
 const char *pgoptions,
 const char *pgtty,
 const char *dbName,
 const char *login,
 const char *pwd)

 If any argument is NULL, then the corresponding environment variable (see "Environment
Variables" section) is checked. If the environment variable is also not set, then hardwired
defaults are used. The return value is a pointer to an abstract struct representing the
connection to the backend.

PQsetdb Makes a new connection to a backend.

PGconn *PQsetdb(char *pghost,
 char *pgport,
 char *pgoptions,
 char *pgtty,
 char *dbName)

 This is a macro that calls PQsetdbLogin() with null pointers for the login and pwd
parameters. It is provided primarily for backward compatibility with old programs.

PQconnectdb Makes a new connection to a backend.

PGconn *PQconnectdb(const char *conninfo)

Chapter 16. libpq

118

 This routine opens a new database connection using parameters taken from a string. Unlike
PQsetdbLogin(), the parameter set can be extended without changing the function signature,
so use of this routine is encouraged for new application programming. The passed string can
be empty to use all default parameters, or it can contain one or more parameter settings
separated by whitespace. Each parameter setting is in the form keyword = value. (To write a
null value or a value containing spaces, surround it with single quotes, eg, keyword = ’a
value’. Single quotes within the value must be written as \’. Spaces around the equal sign are
optional.) The currently recognized parameter keywords are:

host -- host to connect to. If a non-zero-length string is specified, TCP/IP communication
is used. Without a host name, libpq will connect using a local Unix domain socket.

port -- port number to connect to at the server host, or socket filename extension for
Unix-domain connections.

dbname -- database name.

user -- user name for authentication.

password -- password used if the backend demands password authentication.

authtype -- authorization type. (No longer used, since the backend now chooses how to
authenticate users. libpq still accepts and ignores this keyword for backward
compatibility.)

options -- trace/debug options to send to backend.

tty -- file or tty for optional debug output from backend.

Like PQsetdbLogin, PQconnectdb uses environment variables or built-in default values for
unspecified options.

PQconndefaults Returns the default connection options.

PQconninfoOption *PQconndefaults(void)

struct PQconninfoOption
 {
 char *keyword; /* The keyword of the option */
 char *envvar; /* Fallback environment variable
name */
 char *compiled; /* Fallback compiled in default
value */
 char *val; /* Option’s value */
 char *label; /* Label for field in connect
dialog */
 char *dispchar; /* Character to display for this
field
 in a connect dialog. Values
are:
 "" Display entered value
as is
 "*" Password field - hide
value
 "D" Debug options - don’t
 create a field by default */
 int dispsize; /* Field size in characters for
dialog */
 };

 Returns the address of the connection options structure. This may be used to determine all
possible PQconnectdb options and their current default values. The return value points to an
array of PQconninfoOption structs, which ends with an entry having a NULL keyword

Chapter 16. libpq

119

pointer. Note that the default values ("val" fields) will depend on environment variables and
other context. Callers must treat the connection options data as read-only.

PQfinish Close the connection to the backend. Also frees memory used by the PGconn
object.

void PQfinish(PGconn *conn)

Note that even if the backend connection attempt fails (as indicated by PQstatus), the
application should call PQfinish to free the memory used by the PGconn object. The PGconn
pointer should not be used after PQfinish has been called.

PQreset Reset the communication port with the backend.

void PQreset(PGconn *conn)

 This function will close the connection to the backend and attempt to reestablish a new
connection to the same postmaster, using all the same parameters previously used. This may
be useful for error recovery if a working connection is lost.

libpq application programmers should be careful to maintain the PGconn abstraction. Use the
accessor functions below to get at the contents of PGconn. Avoid directly referencing the fields
of the PGconn structure because they are subject to change in the future. (Beginning in Postgres
release 6.4, the definition of struct PGconn is not even provided in libpq-fe.h. If you have old
code that accesses PGconn fields directly, you can keep using it by including libpq-int.h too,
but you are encouraged to fix the code soon.)

PQdb Returns the database name of the connection.

char *PQdb(PGconn *conn)

PQdb and the next several functions return the values established at connection. These
values are fixed for the life of the PGconn object.

PQuser Returns the user name of the connection.

char *PQuser(PGconn *conn)

PQpass Returns the password of the connection.

char *PQpass(PGconn *conn)

PQhost Returns the server host name of the connection.

char *PQhost(PGconn *conn)

PQport Returns the port of the connection.

char *PQport(PGconn *conn)

PQtty Returns the debug tty of the connection.

char *PQtty(PGconn *conn)

PQoptions Returns the backend options used in the connection.

char *PQoptions(PGconn *conn)

PQstatus Returns the status of the connection. The status can be CONNECTION_OK or
CONNECTION_BAD.

ConnStatusType PQstatus(PGconn *conn)

A failed connection attempt is signaled by status CONNECTION_BAD. Ordinarily, an OK
status will remain so until PQfinish, but a communications failure might result in the status
changing to CONNECTION_BAD prematurely. In that case the application could try to
recover by calling PQreset.

Chapter 16. libpq

120

PQerrorMessage Returns the error message most recently generated by an operation on the
connection.

char *PQerrorMessage(PGconn* conn);

Nearly all libpq functions will set PQerrorMessage if they fail. Note that by libpq
convention, a non-empty PQerrorMessage will include a trailing newline.

PQbackendPID Returns the process ID of the backend server handling this connection.

int PQbackendPID(PGconn *conn);

The backend PID is useful for debugging purposes and for comparison to NOTIFY messages
(which include the PID of the notifying backend). Note that the PID belongs to a process
executing on the database server host, not the local host!

Query Execution Functions

Once a connection to a database server has been successfully established, the functions
described here are used to perform SQL queries and commands.

PQexec Submit a query to Postgres and wait for the result.

PGresult *PQexec(PGconn *conn,
 const char *query);

 Returns a PGresult pointer or possibly a NULL pointer. A non-NULL pointer will generally
be returned except in out-of-memory conditions or serious errors such as inability to send the
query to the backend. If a NULL is returned, it should be treated like a
PGRES_FATAL_ERROR result. Use PQerrorMessage to get more information about the
error.

The PGresult structure encapsulates the query result returned by the backend. libpq application
programmers should be careful to maintain the PGresult abstraction. Use the accessor functions
below to get at the contents of PGresult. Avoid directly referencing the fields of the PGresult
structure because they are subject to change in the future. (Beginning in Postgres release 6.4,
the definition of struct PGresult is not even provided in libpq-fe.h. If you have old code that
accesses PGresult fields directly, you can keep using it by including libpq-int.h too, but you are
encouraged to fix the code soon.)

PQresultStatus Returns the result status of the query. PQresultStatus can return one of the
following values:

PGRES_EMPTY_QUERY,
PGRES_COMMAND_OK, /* the query was a command returning no data
*/
PGRES_TUPLES_OK, /* the query successfully returned tuples */
PGRES_COPY_OUT, /* Copy Out (from server) data transfer
started */
PGRES_COPY_IN, /* Copy In (to server) data transfer started
*/
PGRES_BAD_RESPONSE, /* an unexpected response was received */
PGRES_NONFATAL_ERROR,
PGRES_FATAL_ERROR

 If the result status is PGRES_TUPLES_OK, then the routines described below can be used
to retrieve the tuples returned by the query. Note that a SELECT that happens to retrieve
zero tuples still shows PGRES_TUPLES_OK. PGRES_COMMAND_OK is for commands
that can never return tuples.

Chapter 16. libpq

121

PQresStatus Converts the enumerated type returned by PQresultStatus into a string constant
describing the status code.

const char *PQresStatus(ExecStatusType status);

Older code may perform this same operation by direct access to a constant string array inside
libpq,

extern const char * const pgresStatus[];

However, using the function is recommended instead, since it is more portable and will not
fail on out-of-range values.

PQresultErrorMessage returns the error message associated with the query, or an empty
string if there was no error.

const char *PQresultErrorMessage(PGresult *res);

Immediately following a PQexec or PQgetResult call, PQerrorMessage (on the connection)
will return the same string as PQresultErrorMessage (on the result). However, a PGresult
will retain its error message until destroyed, whereas the connection’s error message will
change when subsequent operations are done. Use PQresultErrorMessage when you want to
know the status associated with a particular PGresult; use PQerrorMessage when you want to
know the status from the latest operation on the connection.

PQntuples Returns the number of tuples (instances) in the query result.

int PQntuples(PGresult *res);

PQnfields Returns the number of fields (attributes) in each tuple of the query result.

int PQnfields(PGresult *res);

PQbinaryTuples Returns 1 if the PGresult contains binary tuple data, 0 if it contains ASCII
data.

int PQbinaryTuples(PGresult *res);

Currently, binary tuple data can only be returned by a query that extracts data from a
BINARY cursor.

PQfname Returns the field (attribute) name associated with the given field index. Field
indices start at 0.

char *PQfname(PGresult *res,
 int field_index);

PQfnumber Returns the field (attribute) index associated with the given field name.

int PQfnumber(PGresult *res,
 char* field_name);

 -1 is returned if the given name does not match any field.

PQftype Returns the field type associated with the given field index. The integer returned is
an internal coding of the type. Field indices start at 0.

Oid PQftype(PGresult *res,
 int field_num);

PQfsize Returns the size in bytes of the field associated with the given field index. Field
indices start at 0.

int PQfsize(PGresult *res,
 int field_index);

Chapter 16. libpq

122

 PQfsize returns the space allocated for this field in a database tuple, in other words the size
of the server’s binary representation of the data type. -1 is returned if the field is variable
size.

PQfmod Returns the type-specific modification data of the field associated with the given
field index. Field indices start at 0.

int PQfmod(PGresult *res,
 int field_index);

PQgetvalue Returns a single field (attribute) value of one tuple of a PGresult. Tuple and field
indices start at 0.

char* PQgetvalue(PGresult *res,
 int tup_num,
 int field_num);

 For most queries, the value returned by PQgetvalue is a null-terminated ASCII string
representation of the attribute value. But if PQbinaryTuples() is TRUE, the value returned by
PQgetvalue is the binary representation of the type in the internal format of the backend
server (but not including the size word, if the field is variable-length). It is then the
programmer’s responsibility to cast and convert the data to the correct C type. The pointer
returned by PQgetvalue points to storage that is part of the PGresult structure. One should
not modify it, and one must explicitly copy the value into other storage if it is to be used past
the lifetime of the PGresult structure itself.

PQgetlength Returns the length of a field (attribute) in bytes. Tuple and field indices start at
0.

int PQgetlength(PGresult *res,
 int tup_num,
 int field_num);

This is the actual data length for the particular data value, that is the size of the object
pointed to by PQgetvalue. Note that for ASCII-represented values, this size has little to do
with the binary size reported by PQfsize.

PQgetisnull Tests a field for a NULL entry. Tuple and field indices start at 0.

int PQgetisnull(PGresult *res,
 int tup_num,
 int field_num);

 This function returns 1 if the field contains a NULL, 0 if it contains a non-null value. (Note
that PQgetvalue will return an empty string, not a null pointer, for a NULL field.)

PQcmdStatus Returns the command status string from the SQL command that generated the
PGresult.

char *PQcmdStatus(PGresult *res);

PQcmdTuples Returns the number of rows affected by the SQL command.

const char *PQcmdTuples(PGresult *res);

 If the SQL command that generated the PGresult was INSERT, UPDATE or DELETE, this
returns a string containing the number of rows affected. If the command was anything else, it
returns the empty string.

PQoidStatus Returns a string with the object id of the tuple inserted, if the SQL command
was an INSERT. Otherwise, returns an empty string.

char* PQoidStatus(PGresult *res);

PQprint Prints out all the tuples and, optionally, the attribute names to the specified output
stream.

Chapter 16. libpq

123

void PQprint(FILE* fout, /* output stream */
 PGresult* res,
 PQprintOpt* po);

struct _PQprintOpt
 {
 pqbool header; /* print output field headings
and row count */
 pqbool align; /* fill align the fields */
 pqbool standard; /* old brain dead format */
 pqbool html3; /* output html tables */
 pqbool expanded; /* expand tables */
 pqbool pager; /* use pager for output if
needed */
 char *fieldSep; /* field separator */
 char *tableOpt; /* insert to HTML <table ...> */
 char *caption; /* HTML <caption> */
 char **fieldName; /* null terminated array of
replacement field names */
 };

 This function is intended to replace PQprintTuples(), which is now obsolete. The psql
program uses PQprint() to display query results.

PQprintTuples Prints out all the tuples and, optionally, the attribute names to the specified
output stream.

void PQprintTuples(PGresult* res,
 FILE* fout, /* output stream */
 int printAttName,/* print attribute names or not*/
 int terseOutput, /* delimiter bars or not?*/
 int width); /* width of column, variable
width if 0*/

PQdisplayTuples Prints out all the tuples and, optionally, the attribute names to the specified
output stream.

void PQdisplayTuples(PGresult* res,
 FILE* fout, /* output stream */
 int fillAlign, /* space fill to align
columns */
 const char *fieldSep, /* field separator */
 int printHeader, /* display headers? */
 int quiet); /* suppress print of row
count at end */

 PQdisplayTuples() was intended to supersede PQprintTuples(), and is in turn superseded by
PQprint().

PQclear Frees the storage associated with the PGresult. Every query result should be freed
via PQclear when it is no longer needed.

void PQclear(PQresult *res);

 You can keep a PGresult object around for as long as you need it; it does not go away when
you issue a new query, nor even if you close the connection. To get rid of it, you must call
PQclear. Failure to do this will result in memory leaks in the frontend application.

PQmakeEmptyPGresult Constructs an empty PGresult object with the given status.

PGresult* PQmakeEmptyPGresult(PGconn *conn, ExecStatusType status);

This is libpq’s internal routine to allocate and initialize an empty PGresult object. It is
exported because some applications find it useful to generate result objects (particularly
objects with error status) themselves. If conn is not NULL and status indicates an error, the
connection’s current errorMessage is copied into the PGresult. Note that PQclear should
eventually be called on the object, just as with a PGresult returned by libpq itself.

Chapter 16. libpq

124

Asynchronous Query Processing

The PQexec function is adequate for submitting queries in simple synchronous applications. It
has a couple of major deficiencies however:

PQexec waits for the query to be completed. The application may have other work to do
(such as maintaining a user interface), in which case it won’t want to block waiting for the
response.

Since control is buried inside PQexec, it is hard for the frontend to decide it would like to try
to cancel the ongoing query. (It can be done from a signal handler, but not otherwise.)

PQexec can return only one PGresult structure. If the submitted query string contains
multiple SQL commands, all but the last PGresult are discarded by PQexec.

Applications that do not like these limitations can instead use the underlying functions that
PQexec is built from: PQsendQuery and PQgetResult.

PQsendQuery Submit a query to Postgres without waiting for the result(s). TRUE is returned
if the query was successfully dispatched, FALSE if not (in which case, use PQerrorMessage
to get more information about the failure).

int PQsendQuery(PGconn *conn,
 const char *query);

 After successfully calling PQsendQuery, call PQgetResult one or more times to obtain the
query results. PQsendQuery may not be called again (on the same connection) until
PQgetResult has returned NULL, indicating that the query is done.

PQgetResult Wait for the next result from a prior PQsendQuery, and return it. NULL is
returned when the query is complete and there will be no more results.

PGresult *PQgetResult(PGconn *conn);

 PQgetResult must be called repeatedly until it returns NULL, indicating that the query is
done. (If called when no query is active, PQgetResult will just return NULL at once.) Each
non-null result from PQgetResult should be processed using the same PGresult accessor
functions previously described. Don’t forget to free each result object with PQclear when
done with it. Note that PQgetResult will block only if a query is active and the necessary
response data has not yet been read by PQconsumeInput.

Using PQsendQuery and PQgetResult solves one of PQexec’s problems: if a query string
contains multiple SQL commands, the results of those commands can be obtained individually.
(This allows a simple form of overlapped processing, by the way: the frontend can be handling
the results of one query while the backend is still working on later queries in the same query
string.) However, calling PQgetResult will still cause the frontend to block until the backend
completes the next SQL command. This can be avoided by proper use of three more functions:

PQconsumeInput If input is available from the backend, consume it.

int PQconsumeInput(PGconn *conn);

PQconsumeInput normally returns 1 indicating "no error", but returns 0 if there was some
kind of trouble (in which case PQerrorMessage is set). Note that the result does not say
whether any input data was actually collected. After calling PQconsumeInput, the
application may check PQisBusy and/or PQnotifies to see if their state has changed.
PQconsumeInput may be called even if the application is not prepared to deal with a result or
notification just yet. The routine will read available data and save it in a buffer, thereby

Chapter 16. libpq

125

causing a select(2) read-ready indication to go away. The application can thus use
PQconsumeInput to clear the select condition immediately, and then examine the results at
leisure.

PQisBusy Returns TRUE if a query is busy, that is, PQgetResult would block waiting for
input. A FALSE return indicates that PQgetResult can be called with assurance of not
blocking.

int PQisBusy(PGconn *conn);

 PQisBusy will not itself attempt to read data from the backend; therefore PQconsumeInput
must be invoked first, or the busy state will never end.

PQsocket Obtain the file descriptor number for the backend connection socket. A valid
descriptor will be >= 0; a result of -1 indicates that no backend connection is currently open.

int PQsocket(PGconn *conn);

 PQsocket should be used to obtain the backend socket descriptor in preparation for
executing select(2). This allows an application to wait for either backend responses or other
conditions. If the result of select(2) indicates that data can be read from the backend socket,
then PQconsumeInput should be called to read the data; after which, PQisBusy,
PQgetResult, and/or PQnotifies can be used to process the response.

A typical frontend using these functions will have a main loop that uses select(2) to wait for all
the conditions that it must respond to. One of the conditions will be input available from the
backend, which in select’s terms is readable data on the file descriptor identified by PQsocket.
When the main loop detects input ready, it should call PQconsumeInput to read the input. It can
then call PQisBusy, followed by PQgetResult if PQisBusy returns FALSE. It can also call
PQnotifies to detect NOTIFY messages (see "Asynchronous Notification", below).

A frontend that uses PQsendQuery/PQgetResult can also attempt to cancel a query that is still
being processed by the backend.

PQrequestCancel Request that Postgres abandon processing of the current query.

int PQrequestCancel(PGconn *conn);

 The return value is TRUE if the cancel request was successfully dispatched, FALSE if not.
(If not, PQerrorMessage tells why not.) Successful dispatch is no guarantee that the request
will have any effect, however. Regardless of the return value of PQrequestCancel, the
application must continue with the normal result-reading sequence using PQgetResult. If the
cancellation is effective, the current query will terminate early and return an error result. If
the cancellation fails (say because the backend was already done processing the query), then
there will be no visible result at all.

Note that if the current query is part of a transaction, cancellation will abort the whole
transaction.

PQrequestCancel can safely be invoked from a signal handler. So, it is also possible to use it in
conjunction with plain PQexec, if the decision to cancel can be made in a signal handler. For
example, psql invokes PQrequestCancel from a SIGINT signal handler, thus allowing
interactive cancellation of queries that it issues through PQexec. Note that PQrequestCancel
will have no effect if the connection is not currently open or the backend is not currently
processing a query.

Chapter 16. libpq

126

Fast Path

Postgres provides a fast path interface to send function calls to the backend. This is a trapdoor
into system internals and can be a potential security hole. Most users will not need this feature.

PQfn Request execution of a backend function via the fast path interface.

PGresult* PQfn(PGconn* conn,
 int fnid,
 int *result_buf,
 int *result_len,
 int result_is_int,
 PQArgBlock *args,
 int nargs);

 The fnid argument is the object identifier of the function to be executed. result_buf is the
buffer in which to place the return value. The caller must have allocated sufficient space to
store the return value (there is no check!). The actual result length will be returned in the
integer pointed to by result_len. If a 4-byte integer result is expected, set result_is_int to 1;
otherwise set it to 0. (Setting result_is_int to 1 tells libpq to byte-swap the value if necessary,
so that it is delivered as a proper int value for the client machine. When result_is_int is 0, the
byte string sent by the backend is returned unmodified.) args and nargs specify the arguments
to be passed to the function.

typedef struct {
 int len;
 int isint;
 union {
 int *ptr;
 int integer;
 } u;
 } PQArgBlock;

 PQfn always returns a valid PGresult*. The resultStatus should be checked before the result
is used. The caller is responsible for freeing the PGresult with PQclear when it is no longer
needed.

Asynchronous Notification

Postgres supports asynchronous notification via the LISTEN and NOTIFY commands. A
backend registers its interest in a particular notification condition with the LISTEN command
(and can stop listening with the UNLISTEN command). All backends listening on a particular
condition will be notified asynchronously when a NOTIFY of that condition name is executed
by any backend. No additional information is passed from the notifier to the listener. Thus,
typically, any actual data that needs to be communicated is transferred through a database
relation. Commonly the condition name is the same as the associated relation, but it is not
necessary for there to be any associated relation.

libpq applications submit LISTEN and UNLISTEN commands as ordinary SQL queries.
Subsequently, arrival of NOTIFY messages can be detected by calling PQnotifies().

PQnotifies Returns the next notification from a list of unhandled notification messages
received from the backend. Returns NULL if there are no pending notifications. Once a
notification is returned from PQnotifies, it is considered handled and will be removed from
the list of notifications.

PGnotify* PQnotifies(PGconn *conn);

Chapter 16. libpq

127

typedef struct pgNotify
 {
 char relname[NAMEDATALEN]; /* name of relation
 * containing data */
 int be_pid; /* process id of
backend */
 } PGnotify;

 After processing a PGnotify object returned by PQnotifies, be sure to free it with free() to
avoid a memory leak. NOTE: in Postgres 6.4 and later, the be_pid is the notifying backend’s,
whereas in earlier versions it was always your own backend’s PID.

The second sample program gives an example of the use of asynchronous notification.

PQnotifies() does not actually read backend data; it just returns messages previously absorbed
by another libpq function. In prior releases of libpq, the only way to ensure timely receipt of
NOTIFY messages was to constantly submit queries, even empty ones, and then check
PQnotifies() after each PQexec(). While this still works, it is deprecated as a waste of
processing power. A better way to check for NOTIFY messages when you have no useful
queries to make is to call PQconsumeInput(), then check PQnotifies(). You can use select(2) to
wait for backend data to arrive, thereby using no CPU power unless there is something to do.
Note that this will work OK whether you use PQsendQuery/PQgetResult or plain old PQexec
for queries. You should, however, remember to check PQnotifies() after each PQgetResult or
PQexec to see if any notifications came in during the processing of the query.

Functions Associated with the COPY Command

 The COPY command in Postgres has options to read from or write to the network connection
used by libpq. Therefore, functions are necessary to access this network connection directly so
applications may take advantage of this capability.

 These functions should be executed only after obtaining a PGRES_COPY_OUT or
PGRES_COPY_IN result object from PQexec or PQgetResult.

PQgetline Reads a newline-terminated line of characters (transmitted by the backend server)
into a buffer string of size length.

int PQgetline(PGconn *conn,
 char *string,
 int length)

 Like fgets(3), this routine copies up to length-1 characters into string. It is like gets(3),
however, in that it converts the terminating newline into a null character. PQgetline returns
EOF at EOF, 0 if the entire line has been read, and 1 if the buffer is full but the terminating
newline has not yet been read. Notice that the application must check to see if a new line
consists of the two characters "\.", which indicates that the backend server has finished
sending the results of the copy command. If the application might receive lines that are more
than length-1 characters long, care is needed to be sure one recognizes the "\." line correctly
(and does not, for example, mistake the end of a long data line for a terminator line). The
code in ../src/bin/psql/psql.c contains routines that correctly handle the copy protocol.

PQgetlineAsync Reads a newline-terminated line of characters (transmitted by the backend
server) into a buffer without blocking.

int PQgetlineAsync(PGconn *conn,
 char *buffer,
 int bufsize)

Chapter 16. libpq

128

This routine is similar to PQgetline, but it can be used by applications that must read COPY
data asynchronously, that is without blocking. Having issued the COPY command and gotten
a PGRES_COPY_OUT response, the application should call PQconsumeInput and
PQgetlineAsync until the end-of-data signal is detected. Unlike PQgetline, this routine takes
responsibility for detecting end-of-data. On each call, PQgetlineAsync will return data if a
complete newline- terminated data line is available in libpq’s input buffer, or if the incoming
data line is too long to fit in the buffer offered by the caller. Otherwise, no data is returned
until the rest of the line arrives. The routine returns -1 if the end-of-copy-data marker has
been recognized, or 0 if no data is available, or a positive number giving the number of bytes
of data returned. If -1 is returned, the caller must next call PQendcopy, and then return to
normal processing. The data returned will not extend beyond a newline character. If possible
a whole line will be returned at one time. But if the buffer offered by the caller is too small
to hold a line sent by the backend, then a partial data line will be returned. This can be
detected by testing whether the last returned byte is ’\n’ or not. The returned string is not
null-terminated. (If you want to add a terminating null, be sure to pass a bufsize one smaller
than the room actually available.)

PQputline Sends a null-terminated string to the backend server. Returns 0 if OK, EOF if
unable to send the string.

int PQputline(PGconn *conn,
 char *string);

Note the application must explicitly send the two characters "\." on a final line to indicate to
the backend that it has finished sending its data.

PQputnbytes Sends a non-null-terminated string to the backend server. Returns 0 if OK, EOF
if unable to send the string.

int PQputnbytes(PGconn *conn,
 const char *buffer,
 int nbytes);

This is exactly like PQputline, except that the data buffer need not be null-terminated since
the number of bytes to send is specified directly.

PQendcopy Syncs with the backend. This function waits until the backend has finished the
copy. It should either be issued when the last string has been sent to the backend using
PQputline or when the last string has been received from the backend using PGgetline. It
must be issued or the backend may get "out of sync" with the frontend. Upon return from this
function, the backend is ready to receive the next query. The return value is 0 on successful
completion, nonzero otherwise.

int PQendcopy(PGconn *conn);

As an example:

PQexec(conn, "create table foo (a int4, b char(16), d float8)");
PQexec(conn, "copy foo from stdin");
PQputline(conn, "3\thello world\t4.5\n");
PQputline(conn,"4\tgoodbye world\t7.11\n");
...
PQputline(conn,"\\.\n");
PQendcopy(conn);

When using PQgetResult, the application should respond to a PGRES_COPY_OUT result by
executing PQgetline repeatedly, followed by PQendcopy after the terminator line is seen. It
should then return to the PQgetResult loop until PQgetResult returns NULL. Similarly a
PGRES_COPY_IN result is processed by a series of PQputline calls followed by PQendcopy,
then return to the PQgetResult loop. This arrangement will ensure that a copy in or copy out

Chapter 16. libpq

129

command embedded in a series of SQL commands will be executed correctly. Older
applications are likely to submit a copy in or copy out via PQexec and assume that the
transaction is done after PQendcopy. This will work correctly only if the copy in/out is the only
SQL command in the query string.

libpq Tracing Functions

PQtrace Enable tracing of the frontend/backend communication to a debugging file stream.

void PQtrace(PGconn *conn
 FILE *debug_port)

PQuntrace Disable tracing started by PQtrace

void PQuntrace(PGconn *conn)

libpq Control Functions

PQsetNoticeProcessor Control reporting of notice and warning messages generated by libpq.

void PQsetNoticeProcessor (PGconn * conn,
 void (*noticeProcessor) (void * arg, const char * message),
 void * arg)

By default, libpq prints "notice" messages from the backend on stderr, as well as a few error
messages that it generates by itself. This behavior can be overridden by supplying a callback
function that does something else with the messages. The callback function is passed the text of
the error message (which includes a trailing newline), plus a void pointer that is the same one
passed to PQsetNoticeProcessor. (This pointer can be used to access application-specific state
if needed.) The default notice processor is simply

static void
defaultNoticeProcessor(void * arg, const char * message)
{
 fprintf(stderr, "%s", message);
}

To use a special notice processor, call PQsetNoticeProcessor just after creation of a new
PGconn object.

User Authentication Functions

The frontend/backend authentication process is handled by PQconnectdb without any further
intervention. The authentication method is now determined entirely by the DBA (see
pga_hba.conf(5)). The following routines no longer have any effect and should not be used.

fe_getauthname Returns a pointer to static space containing whatever name the user has
authenticated. Use of this routine in place of calls to getenv(3) or getpwuid(3) by
applications is highly recommended, as it is entirely possible that the authenticated user
name is not the same as value of the USER environment variable or the user’s entry in
/etc/passwd.

char *fe_getauthname(char* errorMessage)

Chapter 16. libpq

130

fe_setauthsvc Specifies that libpq should use authentication service name rather than its
compiled-in default. This value is typically taken from a command-line switch.

void fe_setauthsvc(char *name,
 char* errorMessage)

 Any error messages from the authentication attempts are returned in the errorMessage
argument.

Environment Variables

The following environment variables can be used to select default connection parameter values,
which will be used by PQconnectdb or PQsetdbLogin if no value is directly specified by the
calling code. These are useful to avoid hard-coding database names into simple application
programs.

PGHOST sets the default server name. If a non-zero-length string is specified, TCP/IP
communication is used. Without a host name, libpq will connect using a local Unix domain
socket.

PGPORT sets the default port or local Unix domain socket file extension for communicating
with the Postgres backend.

PGDATABASE sets the default Postgres database name.

PGUSER sets the username used to connect to the database and for authentication.

PGPASSWORD sets the password used if the backend demands password authentication.

PGREALM sets the Kerberos realm to use with Postgres, if it is different from the local
realm. If PGREALM is set, Postgres applications will attempt authentication with servers for
this realm and use separate ticket files to avoid conflicts with local ticket files. This
environment variable is only used if Kerberos authentication is selected by the backend.

PGOPTIONS sets additional runtime options for the Postgres backend.

PGTTY sets the file or tty on which debugging messages from the backend server are
displayed.

The following environment variables can be used to specify user-level default behavior for
every Postgres session:

PGDATESTYLE sets the default style of date/time representation.

PGTZ sets the default time zone.

The following environment variables can be used to specify default internal behavior for every
Postgres session:

PGGEQO sets the default mode for the genetic optimizer.

PGRPLANS sets the default mode to allow or disable right-sided plans in the optimizer.

PGCOSTHEAP sets the default cost for heap searches for the optimizer.

PGCOSTINDEX sets the default cost for indexed searches for the optimizer.

PGQUERY_LIMIT sets the maximum number of rows returned by a query.

Refer to the SET SQL command for information on correct values for these environment
variables.

Chapter 16. libpq

131

Caveats

 The query buffer is 8192 bytes long, and queries over that length will be rejected.

Sample Programs

Sample Program 1

/*
 * testlibpq.c Test the C version of Libpq, the Postgres frontend
 * library.
 *
 *
 */
#include <stdio.h>
#include "libpq-fe.h"

void
exit_nicely(PGconn *conn)
{
 PQfinish(conn);
 exit(1);
}

main()
{
 char *pghost,
 *pgport,
 *pgoptions,
 *pgtty;
 char *dbName;
 int nFields;
 int i,
 j;

 /* FILE *debug; */

 PGconn *conn;
 PGresult *res;

 /*
 * begin, by setting the parameters for a backend connection if the
 * parameters are null, then the system will try to use reasonable
 * defaults by looking up environment variables or, failing that,
 * using hardwired constants
 */
 pghost = NULL; /* host name of the backend server */
 pgport = NULL; /* port of the backend server */
 pgoptions = NULL; /* special options to start up the
backend
 * server */
 pgtty = NULL; /* debugging tty for the backend server
*/
 dbName = "template1";

 /* make a connection to the database */
 conn = PQsetdb(pghost, pgport, pgoptions, pgtty, dbName);

 /*
 * check to see that the backend connection was successfully made
 */
 if (PQstatus(conn) == CONNECTION_BAD)

Chapter 16. libpq

132

 {
 fprintf(stderr, "Connection to database ’%s’ failed.\n",
dbName);
 fprintf(stderr, "%s", PQerrorMessage(conn));
 exit_nicely(conn);
 }

 /* debug = fopen("/tmp/trace.out","w"); */
 /* PQtrace(conn, debug); */

 /* start a transaction block */
 res = PQexec(conn, "BEGIN");
 if (!res || PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "BEGIN command failed\n");
 PQclear(res);
 exit_nicely(conn);
 }

 /*
 * should PQclear PGresult whenever it is no longer needed to avoid
 * memory leaks
 */
 PQclear(res);

 /*
 * fetch instances from the pg_database, the system catalog of
 * databases
 */
 res = PQexec(conn, "DECLARE mycursor CURSOR FOR select * from
pg_database");
 if (!res || PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "DECLARE CURSOR command failed\n");
 PQclear(res);
 exit_nicely(conn);
 }
 PQclear(res);
 res = PQexec(conn, "FETCH ALL in mycursor");
 if (!res || PQresultStatus(res) != PGRES_TUPLES_OK)
 {
 fprintf(stderr, "FETCH ALL command didn’t return tuples
properly\n");
 PQclear(res);
 exit_nicely(conn);
 }

 /* first, print out the attribute names */
 nFields = PQnfields(res);
 for (i = 0; i < nFields; i++)
 printf("%-15s", PQfname(res, i));
 printf("\n\n");

 /* next, print out the instances */
 for (i = 0; i < PQntuples(res); i++)
 {
 for (j = 0; j < nFields; j++)
 printf("%-15s", PQgetvalue(res, i, j));
 printf("\n");
 }
 PQclear(res);

 /* close the cursor */
 res = PQexec(conn, "CLOSE mycursor");
 PQclear(res);

 /* commit the transaction */
 res = PQexec(conn, "COMMIT");
 PQclear(res);

 /* close the connection to the database and cleanup */
 PQfinish(conn);

Chapter 16. libpq

133

 /* fclose(debug); */
}

Sample Program 2

/*
 * testlibpq2.c
 * Test of the asynchronous notification interface
 *
 * Start this program, then from psql in another window do
 * NOTIFY TBL2;
 *
 * Or, if you want to get fancy, try this:
 * Populate a database with the following:
 *
 * CREATE TABLE TBL1 (i int4);
 *
 * CREATE TABLE TBL2 (i int4);
 *
 * CREATE RULE r1 AS ON INSERT TO TBL1 DO
 * (INSERT INTO TBL2 values (new.i); NOTIFY TBL2);
 *
 * and do
 *
 * INSERT INTO TBL1 values (10);
 *
 */
#include <stdio.h>
#include "libpq-fe.h"

void
exit_nicely(PGconn *conn)
{
 PQfinish(conn);
 exit(1);
}

main()
{
 char *pghost,
 *pgport,
 *pgoptions,
 *pgtty;
 char *dbName;
 int nFields;
 int i,
 j;

 PGconn *conn;
 PGresult *res;
 PGnotify *notify;

 /*
 * begin, by setting the parameters for a backend connection if the
 * parameters are null, then the system will try to use reasonable
 * defaults by looking up environment variables or, failing that,
 * using hardwired constants
 */
 pghost = NULL; /* host name of the backend server */
 pgport = NULL; /* port of the backend server */
 pgoptions = NULL; /* special options to start up the
backend
 * server */
 pgtty = NULL; /* debugging tty for the backend server
*/
 dbName = getenv("USER"); /* change this to the name of your test
 * database */

 /* make a connection to the database */

Chapter 16. libpq

134

 conn = PQsetdb(pghost, pgport, pgoptions, pgtty, dbName);

 /*
 * check to see that the backend connection was successfully made
 */
 if (PQstatus(conn) == CONNECTION_BAD)
 {
 fprintf(stderr, "Connection to database ’%s’ failed.\n",
dbName);
 fprintf(stderr, "%s", PQerrorMessage(conn));
 exit_nicely(conn);
 }

 res = PQexec(conn, "LISTEN TBL2");
 if (!res || PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "LISTEN command failed\n");
 PQclear(res);
 exit_nicely(conn);
 }

 /*
 * should PQclear PGresult whenever it is no longer needed to avoid
 * memory leaks
 */
 PQclear(res);

 while (1)
 {

 /*
 * wait a little bit between checks; waiting with select()
 * would be more efficient.
 */
 sleep(1);
 /* collect any asynchronous backend messages */
 PQconsumeInput(conn);
 /* check for asynchronous notify messages */
 while ((notify = PQnotifies(conn)) != NULL)
 {
 fprintf(stderr,
 "ASYNC NOTIFY of ’%s’ from backend pid ’%d’
received\n",
 notify->relname, notify->be_pid);
 free(notify);
 }
 }

 /* close the connection to the database and cleanup */
 PQfinish(conn);

}

Sample Program 3

/*
 * testlibpq3.c Test the C version of Libpq, the Postgres frontend
 * library. tests the binary cursor interface
 *
 *
 *
 * populate a database by doing the following:
 *
 * CREATE TABLE test1 (i int4, d float4, p polygon);
 *
 * INSERT INTO test1 values (1, 3.567, ’(3.0, 4.0, 1.0,
 * 2.0)’::polygon);
 *
 * INSERT INTO test1 values (2, 89.05, ’(4.0, 3.0, 2.0,
 * 1.0)’::polygon);

Chapter 16. libpq

135

 *
 * the expected output is:
 *
 * tuple 0: got i = (4 bytes) 1, d = (4 bytes) 3.567000, p = (4
 * bytes) 2 points boundbox = (hi=3.000000/4.000000, lo =
 * 1.000000,2.000000) tuple 1: got i = (4 bytes) 2, d = (4 bytes)
 * 89.050003, p = (4 bytes) 2 points boundbox =
 * (hi=4.000000/3.000000, lo = 2.000000,1.000000)
 *
 *
 */
#include <stdio.h>
#include "libpq-fe.h"
#include "utils/geo-decls.h" /* for the POLYGON type */

void
exit_nicely(PGconn *conn)
{
 PQfinish(conn);
 exit(1);
}

main()
{
 char *pghost,
 *pgport,
 *pgoptions,
 *pgtty;
 char *dbName;
 int nFields;
 int i,
 j;
 int i_fnum,
 d_fnum,
 p_fnum;
 PGconn *conn;
 PGresult *res;

 /*
 * begin, by setting the parameters for a backend connection if the
 * parameters are null, then the system will try to use reasonable
 * defaults by looking up environment variables or, failing that,
 * using hardwired constants
 */
 pghost = NULL; /* host name of the backend server */
 pgport = NULL; /* port of the backend server */
 pgoptions = NULL; /* special options to start up the
backend
 * server */
 pgtty = NULL; /* debugging tty for the backend server
*/

 dbName = getenv("USER"); /* change this to the name of your test
 * database */

 /* make a connection to the database */
 conn = PQsetdb(pghost, pgport, pgoptions, pgtty, dbName);

 /*
 * check to see that the backend connection was successfully made
 */
 if (PQstatus(conn) == CONNECTION_BAD)
 {
 fprintf(stderr, "Connection to database ’%s’ failed.\n",
dbName);
 fprintf(stderr, "%s", PQerrorMessage(conn));
 exit_nicely(conn);
 }

 /* start a transaction block */
 res = PQexec(conn, "BEGIN");
 if (!res || PQresultStatus(res) != PGRES_COMMAND_OK)

Chapter 16. libpq

136

 {
 fprintf(stderr, "BEGIN command failed\n");
 PQclear(res);
 exit_nicely(conn);
 }

 /*
 * should PQclear PGresult whenever it is no longer needed to avoid
 * memory leaks
 */
 PQclear(res);

 /*
 * fetch instances from the pg_database, the system catalog of
 * databases
 */
 res = PQexec(conn, "DECLARE mycursor BINARY CURSOR FOR select *
from test1");
 if (!res || PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "DECLARE CURSOR command failed\n");
 PQclear(res);
 exit_nicely(conn);
 }
 PQclear(res);

 res = PQexec(conn, "FETCH ALL in mycursor");
 if (!res || PQresultStatus(res) != PGRES_TUPLES_OK)
 {
 fprintf(stderr, "FETCH ALL command didn’t return tuples
properly\n");
 PQclear(res);
 exit_nicely(conn);
 }

 i_fnum = PQfnumber(res, "i");
 d_fnum = PQfnumber(res, "d");
 p_fnum = PQfnumber(res, "p");

 for (i = 0; i < 3; i++)
 {
 printf("type[%d] = %d, size[%d] = %d\n",
 i, PQftype(res, i),
 i, PQfsize(res, i));
 }
 for (i = 0; i < PQntuples(res); i++)
 {
 int *ival;
 float *dval;
 int plen;
 POLYGON *pval;

 /* we hard-wire this to the 3 fields we know about */
 ival = (int *) PQgetvalue(res, i, i_fnum);
 dval = (float *) PQgetvalue(res, i, d_fnum);
 plen = PQgetlength(res, i, p_fnum);

 /*
 * plen doesn’t include the length field so need to
 * increment by VARHDSZ
 */
 pval = (POLYGON *) malloc(plen + VARHDRSZ);
 pval->size = plen;
 memmove((char *) &pval->npts, PQgetvalue(res, i, p_fnum),
plen);
 printf("tuple %d: got\n", i);
 printf(" i = (%d bytes) %d,\n",
 PQgetlength(res, i, i_fnum), *ival);
 printf(" d = (%d bytes) %f,\n",
 PQgetlength(res, i, d_fnum), *dval);
 printf(" p = (%d bytes) %d points \tboundbox = (hi=%f/%f, lo =
%f,%f)\n",

Chapter 16. libpq

137

 PQgetlength(res, i, d_fnum),
 pval->npts,
 pval->boundbox.xh,
 pval->boundbox.yh,
 pval->boundbox.xl,
 pval->boundbox.yl);
 }
 PQclear(res);

 /* close the cursor */
 res = PQexec(conn, "CLOSE mycursor");
 PQclear(res);

 /* commit the transaction */
 res = PQexec(conn, "COMMIT");
 PQclear(res);

 /* close the connection to the database and cleanup */
 PQfinish(conn);

}

138

Chapter 17. libpq C++ Binding

 libpq++ is the C++ API to Postgres. libpq++ is a set of classes which allow client programs to
connect to the Postgres backend server. These connections come in two forms: a Database
Class and a Large Object class.

 The Database Class is intended for manipulating a database. You can send all sorts of SQL
queries to the Postgres backend server and retrieve the responses of the server.

 The Large Object Class is intended for manipulating a large object in a database. Although a
Large Object instance can send normal queries to the Postgres backend server it is only
intended for simple queries that do not return any data. A large object should be seen as a file
stream. In the future it should behave much like the C++ file streams cin, cout and cerr.

 This chapter is based on the documentation for the libpq C library. Three short programs are
listed at the end of this section as examples of libpq++ programming (though not necessarily of
good programming). There are several examples of libpq++ applications in
src/libpq++/examples, including the source code for the three examples in this chapter.

Control and Initialization

Environment Variables

 The following environment variables can be used to set up default values for an environment
and to avoid hard-coding database names into an application program:

Note: Refer to the libpq for a complete list of available connection options.

 The following environment variables can be used to select default connection parameter
values, which will be used by PQconnectdb or PQsetdbLogin if no value is directly specified
by the calling code. These are useful to avoid hard-coding database names into simple
application programs.

Note: libpq++ uses only environment variables or PQconnectdb conninfo style strings.

 PGHOST sets the default server name. If a non-zero-length string is specified, TCP/IP
communication is used. Without a host name, libpq will connect using a local Unix domain
socket.

 PGPORT sets the default port or local Unix domain socket file extension for communicating
with the Postgres backend.

 PGDATABASE sets the default Postgres database name.

 PGUSER sets the username used to connect to the database and for authentication.

 PGPASSWORD sets the password used if the backend demands password authentication.

Chapter 17. libpq C++ Binding

139

 PGREALM sets the Kerberos realm to use with Postgres, if it is different from the local
realm. If PGREALM is set, Postgres applications will attempt authentication with servers for
this realm and use separate ticket files to avoid conflicts with local ticket files. This
environment variable is only used if Kerberos authentication is selected by the backend.

 PGOPTIONS sets additional runtime options for the Postgres backend.

 PGTTY sets the file or tty on which debugging messages from the backend server are
displayed.

 The following environment variables can be used to specify user-level default behavior for
every Postgres session:

 PGDATESTYLE sets the default style of date/time representation.

 PGTZ sets the default time zone.

 The following environment variables can be used to specify default internal behavior for every
Postgres session:

 PGGEQO sets the default mode for the genetic optimizer.

 PGRPLANS sets the default mode to allow or disable right-sided plans in the optimizer.

 PGCOSTHEAP sets the default cost for heap searches for the optimizer.

 PGCOSTINDEX sets the default cost for indexed searches for the optimizer.

 PGQUERY_LIMIT sets the maximum number of rows returned by a query.

 Refer to the SET SQL command for information on correct values for these environment
variables.

libpq++ Classes

Connection Class: PgConnection

 The connection class makes the actual connection to the database and is inherited by all of the
access classes.

Database Class: PgDatabase

 The database class provides C++ objects that have a connection to a backend server. To create
such an object one first needs the apropriate environment for the backend to access. The
following constructors deal with making a connection to a backend server from a C++ program.

Chapter 17. libpq C++ Binding

140

Database Connection Functions

 PgConnection makes a new connection to a backend database server.

 PgConnection::PgConnection(const char *conninfo)

 Although typically called from one of the access classes, a connection to a backend server is
possible by creating a PgConnection object.

 ConnectionBad returns whether or not the connection to the backend server succeeded or
failed.

 int PgConnection::ConnectionBad()

 Returns TRUE if the connection failed.

 Status returns the status of the connection to the backend server.

 ConnStatusType PgConnection::Status()

 Returns either CONNECTION_OK or CONNECTION_BAD depending on the state of the
connection.

 PgDatabase makes a new connection to a backend database server.

 PgDatabase(const char *conninfo)

 After a PgDatabase has been created it should be checked to make sure the connection to the
database succeded before sending queries to the object. This can easily be done by retrieving
the current status of the PgDatabase object with the Status or ConnectionBad methods.

 DBName Returns the name of the current database.

 const char *PgConnection::DBName()

 Notifies Returns the next notification from a list of unhandled notification messages
received from the backend.

 PGnotify* PgConnection::Notifies()

 See PQnotifies() for details.

Query Execution Functions

 Exec Sends a query to the backend server. It’s probably more desirable to use one of the
next two functions.

 ExecStatusType PgConnection::Exec(const char* query)

Chapter 17. libpq C++ Binding

141

 Returns the result of the query. The following status results can be expected:

 PGRES_EMPTY_QUERY
 PGRES_COMMAND_OK, if the query was a command
 PGRES_TUPLES_OK, if the query successfully returned tuples
 PGRES_COPY_OUT
 PGRES_COPY_IN
 PGRES_BAD_RESPONSE, if an unexpected response was received
 PGRES_NONFATAL_ERROR
 PGRES_FATAL_ERROR

 ExecCommandOk Sends a command query to the backend server.

 int PgConnection::ExecCommandOk(const char *query)

 Returns TRUE if the command query succeeds.

 ExecTuplesOk Sends a command query to the backend server.

 int PgConnection::ExecTuplesOk(const char *query)

 Returns TRUE if the command query succeeds and there are tuples to be retrieved.

 ErrorMessage Returns the last error message text.

 const char *PgConnection::ErrorMessage()

 Tuples Returns the number of tuples (instances) in the query result.

 int PgDatabase::Tuples()

 Fields Returns the number of fields (attributes) in each tuple of the query result.

 int PgDatabase::Fields()

 FieldName Returns the field (attribute) name associated with the given field index. Field
indices start at 0.

 const char *PgDatabase::FieldName(int field_num)

 FieldNum PQfnumber Returns the field (attribute) index associated with the given field
name.

 int PgDatabase::FieldNum(const char* field_name)

 -1 is returned if the given name does not match any field.

 FieldType Returns the field type associated with the given field index. The integer returned
is an internal coding of the type. Field indices start at 0.

 Oid PgDatabase::FieldType(int field_num)

Chapter 17. libpq C++ Binding

142

 FieldType Returns the field type associated with the given field name. The integer returned
is an internal coding of the type. Field indices start at 0.

 Oid PgDatabase::FieldType(const char* field_name)

 FieldSize Returns the size in bytes of the field associated with the given field index. Field
indices start at 0.

 short PgDatabase::FieldSize(int field_num)

 Returns the space allocated for this field in a database tuple given the field number. In other
words the size of the server’s binary representation of the data type. -1 is returned if the field
is variable size.

 FieldSize Returns the size in bytes of the field associated with the given field index. Field
indices start at 0.

 short PgDatabase::FieldSize(const char *field_name)

 Returns the space allocated for this field in a database tuple given the field name. In other
words the size of the server’s binary representation of the data type. -1 is returned if the field
is variable size.

 GetValue Returns a single field (attribute) value of one tuple of a PGresult. Tuple and field
indices start at 0.

 const char *PgDatabase::GetValue(int tup_num, int
field_num)

 For most queries, the value returned by GetValue is a null-terminated ASCII string
representation of the attribute value. But if BinaryTuples() is TRUE, the value returned by
GetValue is the binary representation of the type in the internal format of the backend server
(but not including the size word, if the field is variable-length). It is then the programmer’s
responsibility to cast and convert the data to the correct C type. The pointer returned by
GetValue points to storage that is part of the PGresult structure. One should not modify it,
and one must explicitly copy the value into other storage if it is to be used past the lifetime
of the PGresult structure itself. BinaryTuples() is not yet implemented.

 GetValue Returns a single field (attribute) value of one tuple of a PGresult. Tuple and field
indices start at 0.

 const char *PgDatabase::GetValue(int tup_num, const
char *field_name)

 For most queries, the value returned by GetValue is a null-terminated ASCII string
representation of the attribute value. But if BinaryTuples() is TRUE, the value returned by
GetValue is the binary representation of the type in the internal format of the backend server
(but not including the size word, if the field is variable-length). It is then the programmer’s
responsibility to cast and convert the data to the correct C type. The pointer returned by
GetValue points to storage that is part of the PGresult structure. One should not modify it,
and one must explicitly copy the value into other storage if it is to be used past the lifetime
of the PGresult structure itself. BinaryTuples() is not yet implemented.

 GetLength Returns the length of a field (attribute) in bytes. Tuple and field indices start at 0.

Chapter 17. libpq C++ Binding

143

 int PgDatabase::GetLength(int tup_num, int field_num)

 This is the actual data length for the particular data value, that is the size of the object
pointed to by GetValue. Note that for ASCII-represented values, this size has little to do with
the binary size reported by PQfsize.

 GetLength Returns the length of a field (attribute) in bytes. Tuple and field indices start at 0.

 int PgDatabase::GetLength(int tup_num, const char*
field_name)

 This is the actual data length for the particular data value, that is the size of the object
pointed to by GetValue. Note that for ASCII-represented values, this size has little to do with
the binary size reported by PQfsize.

 DisplayTuples Prints out all the tuples and, optionally, the attribute names to the specified
output stream.

 void PgDatabase::DisplayTuples(FILE *out = 0, int fillAlign =
1,
 const char* fieldSep = "|",int printHeader = 1, int
quiet = 0)

 PrintTuples Prints out all the tuples and, optionally, the attribute names to the specified
output stream.

 void PgDatabase::PrintTuples(FILE *out = 0, int
printAttName = 1,
 int terseOutput = 0, int width = 0)

 GetLine

 int PgDatabase::GetLine(char* string, int length)

 PutLine

 void PgDatabase::PutLine(const char* string)

 OidStatus

 const char *PgDatabase::OidStatus()

 EndCopy

 int PgDatabase::EndCopy()

Chapter 17. libpq C++ Binding

144

Asynchronous Notification

 Postgres supports asynchronous notification via the LISTEN and NOTIFY commands. A
backend registers its interest in a particular semaphore with the LISTEN command. All
backends that are listening on a particular named semaphore will be notified asynchronously
when a NOTIFY of that name is executed by another backend. No additional information is
passed from the notifier to the listener. Thus, typically, any actual data that needs to be
communicated is transferred through the relation.

Note: In the past, the documentation has associated the names used for asyncronous
notification with relations or classes. However, there is in fact no direct linkage of the two
concepts in the implementation, and the named semaphore in fact does not need to have
a corresponding relation previously defined.

 libpq++ applications are notified whenever a connected backend has received an asynchronous
notification. However, the communication from the backend to the frontend is not
asynchronous. The libpq++ application must poll the backend to see if there is any pending
notification information. After the execution of a query, a frontend may call
PgDatabase::Notifies to see if any notification data is currently available from the backend.
PgDatabase::Notifies returns the notification from a list of unhandled notifications from the
backend. The function eturns NULL if there is no pending notifications from the backend.
PgDatabase::Notifies behaves like the popping of a stack. Once a notification is returned from
PgDatabase::Notifies, it is considered handled and will be removed from the list of
notifications.

 PgDatabase::Notifies retrieves pending notifications from the server.

 PGnotify* PgDatabase::Notifies()

 The second sample program gives an example of the use of asynchronous notification.

Functions Associated with the COPY Command

 The copy command in Postgres has options to read from or write to the network connection
used by libpq++. Therefore, functions are necessary to access this network connection directly
so applications may take full advantage of this capability.

 PgDatabase::GetLine reads a newline-terminated line of characters (transmitted by the
backend server) into a buffer string of size length.

 int PgDatabase::GetLine(char* string, int length)

 Like the Unix system routine fgets (3), this routine copies up to length-1 characters into
string. It is like gets (3), however, in that it converts the terminating newline into a null
character.

Chapter 17. libpq C++ Binding

145

 PgDatabase::GetLine returns EOF at end of file, 0 if the entire line has been read, and 1 if
the buffer is full but the terminating newline has not yet been read.

 Notice that the application must check to see if a new line consists of a single period ("."),
which indicates that the backend server has finished sending the results of the copy.
Therefore, if the application ever expects to receive lines that are more than length-1
characters long, the application must be sure to check the return value of
PgDatabase::GetLine very carefully.

 PgDatabase::PutLine Sends a null-terminated string to the backend server.

 void PgDatabase::PutLine(char* string)

 The application must explicitly send a single period character (".") to indicate to the
backend that it has finished sending its data.

 PgDatabase::EndCopy syncs with the backend.

 int PgDatabase::EndCopy()

 This function waits until the backend has finished processing the copy. It should either be
issued when the last string has been sent to the backend using PgDatabase::PutLine or when
the last string has been received from the backend using PgDatabase::GetLine. It must be
issued or the backend may get out of sync with the frontend. Upon return from this function,
the backend is ready to receive the next query.

 The return value is 0 on successful completion, nonzero otherwise.

 As an example:

 PgDatabase data;
 data.exec("create table foo (a int4, b char16, d float8)");
 data.exec("copy foo from stdin");
 data.putline("3\etHello World\et4.5\en");
 data.putline("4\etGoodbye World\et7.11\en");
 \&...
 data.putline(".\en");
 data.endcopy();

Caveats

 The query buffer is 8192 bytes long, and queries over that length will be silently truncated.

146

Chapter 18. pgtcl

pgtcl is a tcl package for front-end programs to interface with Postgres backends. It makes most
of the functionality of libpq available to tcl scripts.

This package was originally written by Jolly Chen.

Commands

Table 18-1. pgtcl Commands

Command Description

pg_connect opens a connection to the backend server

pg_disconnect closes a connection

pg_conndefaults get connection options and their defaults

pg_exec send a query to the backend

pg_result manipulate the results of a query

pg_select loop over the result of a SELECT statement

pg_listen establish a callback for NOTIFY messages

pg_lo_creat create a large object

pg_lo_open open a large object

pg_lo_close close a large object

pg_lo_read read a large object

pg_lo_write write a large object

pg_lo_lseek seek to a position in a large object

pg_lo_tell return the current seek position of a large object

pg_lo_unlink delete a large object

pg_lo_import import a Unix file into a large object

pg_lo_export export a large object into a Unix file

These commands are described further on subsequent pages.

The pg_lo* routines are interfaces to the Large Object features of Postgres. The functions are
designed to mimic the analogous file system functions in the standard Unix file system
interface. The pg_lo* routines should be used within a BEGIN/END transaction block because

Chapter 18. pgtcl

147

the file descriptor returned by pg_lo_open is only valid for the current transaction.
pg_lo_import and pg_lo_export MUST be used in a BEGIN/END transaction block.

Examples

Here’s a small example of how to use the routines:

getDBs :
get the names of all the databases at a given host and port number
with the defaults being the localhost and port 5432
return them in alphabetical order
proc getDBs { {host "localhost"} {port "5432"} } {
 # datnames is the list to be result
 set conn [pg_connect template1 -host $host -port $port]
 set res [pg_exec $conn "SELECT datname FROM pg_database ORDER BY
datname"]
 set ntups [pg_result $res -numTuples]
 for {set i 0} {$i < $ntups} {incr i} {
 lappend datnames [pg_result $res -getTuple $i]
 }
 pg_result $res -clear
 pg_disconnect $conn
 return $datnames
}

pgtcl Command Reference Information

pg_connect

Name

pg_connect opens a connection to the backend server

Synopsis

pg_connect -conninfo connectOptions
pg_connect dbName [-host hostName]
 [-port portNumber] [-tty pqtty]

Chapter 18. pgtcl

148

 [-options optionalBackendArgs]

Inputs (new style)

 connectOptions

 A string of connection options, each written in the form keyword = value.

Inputs (old style)

 dbName

 Specifies a valid database name.

 [-host hostName]

 Specifies the domain name of the backend server for dbName.

 [-port portNumber]

 Specifies the IP port number of the backend server for dbName.

 [-tty pqtty]

 Specifies file or tty for optional debug output from backend.

 [-options optionalBackendArgs]

 Specifies options for the backend server for dbName.

Outputs

 dbHandle

 If successful, a handle for a database connection is returned. Handles start with the prefix
"pgsql".

Description

pg_connect opens a connection to the Postgres backend.

Two syntaxes are available. In the older one, each possible option has a separate option switch
in the pg_connect statement. In the newer form, a single option string is supplied that can
contain multiple option values. See pg_conndefaults for info about the available options in the
newer syntax.

Usage

XXX thomas 1997-12-24

Chapter 18. pgtcl

149

pg_disconnect

Name

pg_disconnect closes a connection to the backend server

Synopsis

pg_disconnect dbHandle

Inputs

 dbHandle

 Specifies a valid database handle.

Outputs

 None

Description

pg_disconnect closes a connection to the Postgres backend.

Chapter 18. pgtcl

150

pg_conndefaults

Name

pg_conndefaults obtain information about default connection parameters

Synopsis

pg_conndefaults

Inputs

None.

Outputs

 option list

 The result is a list describing the possible connection options and their current default
values. Each entry in the list is a sublist of the format:

 {optname label dispchar dispsize value}

where the optname is usable as an option in pg_connect -conninfo.

Description

pg_conndefaults returns info about the connection options available in pg_connect -conninfo
and the current default value for each option.

Usage

pg_conndefaults

Chapter 18. pgtcl

151

pg_exec

Name

pg_exec send a query string to the backend

Synopsis

pg_exec dbHandle queryString

Inputs

 dbHandle

 Specifies a valid database handle.

 queryString

 Specifies a valid SQL query.

Outputs

 resultHandle

 A Tcl error will be returned if Pgtcl was unable to obtain a backend response. Otherwise, a
query result object is created and a handle for it is returned. This handle can be passed to
pg_result to obtain the results of the query.

Description

pg_exec submits a query to the Postgres backend and returns a result. Query result handles start
with the connection handle and add a period and a result number.

Note that lack of a Tcl error is not proof that the query succeeded! An error message returned
by the backend will be processed as a query result with failure status, not by generating a Tcl
error in pg_exec.

Chapter 18. pgtcl

152

pg_result

Name

pg_result get information about a query result

Synopsis

pg_result resultHandle resultOption

Inputs

 resultHandle

 The handle for a query result.

 resultOption

 Specifies one of several possible options.

Options

-status

 the status of the result.

-error

 the error message, if the status indicates error; otherwise an empty string.

-conn

 the connection that produced the result.

-oid

 if the command was an INSERT, the OID of the inserted tuple; otherwise an empty string.

-numTuples

 the number of tuples returned by the query.

-numAttrs

 the number of attributes in each tuple.

-assign arrayName

 assign the results to an array, using subscripts of the form (tupno,attributeName).

-assignbyidx arrayName ?appendstr?

 assign the results to an array using the first attribute’s value and the remaining attributes’
names as keys. If appendstr is given then it is appended to each key. In short, all but the

Chapter 18. pgtcl

153

first field of each tuple are stored into the array, using subscripts of the form
(firstFieldValue,fieldNameAppendStr).

-getTuple tupleNumber

 returns the fields of the indicated tuple in a list. Tuple numbers start at zero.

-tupleArray tupleNumber arrayName

 stores the fields of the tuple in array arrayName, indexed by field names. Tuple numbers
start at zero.

-attributes

 returns a list of the names of the tuple attributes.

-lAttributes

 returns a list of sublists, {name ftype fsize} for each tuple attribute.

-clear

 clear the result query object.

Outputs

The result depends on the selected option, as described above.

Description

pg_result returns information about a query result created by a prior pg_exec.

You can keep a query result around for as long as you need it, but when you are done with it, be
sure to free it by executing pg_result -clear. Otherwise, you have a memory leak, and Pgtcl will
eventually start complaining that you’ve created too many query result objects.

pg_select

Name

pg_select loop over the result of a SELECT statement

Synopsis

pg_select dbHandle queryString

Chapter 18. pgtcl

154

 arrayVar queryProcedure

Inputs

 dbHandle

 Specifies a valid database handle.

 queryString

 Specifies a valid SQL select query.

 arrayVar

 Array variable for tuples returned.

 queryProcedure

 Procedure run on each tuple found.

Outputs

 resultHandle

 the return result is either an error message or a handle for a query result.

Description

pg_select submits a SELECT query to the Postgres backend, and executes a given chunk of
code for each tuple in the result. The queryString must be a SELECT statement. Anything else
returns an error. The arrayVar variable is an array name used in the loop. For each tuple,
arrayVar is filled in with the tuple field values, using the field names as the array indexes. Then
the queryProcedure is executed.

Usage

This would work if table "table" has fields "control" and "name" (and, perhaps, other fields):

 pg_select $pgconn "SELECT * from table" array {
 puts [format "%5d %s" array(control) array(name)]
 }

Chapter 18. pgtcl

155

pg_listen

Name

pg_listen sets or changes a callback for asynchronous NOTIFY messages

Synopsis

pg_listen dbHandle notifyName callbackCommand

Inputs

 dbHandle

 Specifies a valid database handle.

 notifyName

 Specifies the notify condition name to start or stop listening to.

 callbackCommand

 If present and not empty, provides the command string to execute when a matching
notification arrives.

Outputs

 None

Description

pg_listen creates, changes, or cancels a request to listen for asynchronous NOTIFY messages
from the Postgres backend. With a callbackCommand parameter, the request is established, or
the command string of an already existing request is replaced. With no callbackCommand
parameter, a prior request is canceled.

After a pg_listen request is established, the specified command string is executed whenever a
NOTIFY message bearing the given name arrives from the backend. This occurs when any
Postgres client application issues a NOTIFY command referencing that name. (Note that the
name can be, but does not have to be, that of an existing relation in the database.) The
command string is executed from the Tcl idle loop. That is the normal idle state of an
application written with Tk. In non-Tk Tcl shells, you can execute update or vwait to cause the
idle loop to be entered.

You should not invoke the SQL statements LISTEN or UNLISTEN directly when using
pg_listen. Pgtcl takes care of issuing those statements for you. But if you want to send a
NOTIFY message yourself, invoke the SQL NOTIFY statement using pg_exec.

Chapter 18. pgtcl

156

pg_lo_creat

Name

pg_lo_creat create a large object

Synopsis

pg_lo_creat conn mode

Inputs

 conn

 Specifies a valid database connection.

 mode

 Specifies the access mode for the large object

Outputs

 objOid

 The oid of the large object created.

Description

pg_lo_creat creates an Inversion Large Object.

Usage

mode can be any OR’ing together of INV_READ, INV_WRITE, and INV_ARCHIVE. The OR
delimiter character is "|".

[pg_lo_creat $conn "INV_READ|INV_WRITE"]

Chapter 18. pgtcl

157

pg_lo_open

Name

pg_lo_open open a large object

Synopsis

pg_lo_open conn objOid mode

Inputs

 conn

 Specifies a valid database connection.

 objOid

 Specifies a valid large object oid.

 mode

 Specifies the access mode for the large object

Outputs

 fd

 A file descriptor for use in later pg_lo* routines.

Description

pg_lo_open open an Inversion Large Object.

Usage

Mode can be either "r", "w", or "rw".

Chapter 18. pgtcl

158

pg_lo_close

Name

pg_lo_close close a large object

Synopsis

pg_lo_close conn fd

Inputs

 conn

 Specifies a valid database connection.

 fd

 A file descriptor for use in later pg_lo* routines.

Outputs

None

Description

pg_lo_close closes an Inversion Large Object.

Usage

pg_lo_read

Name

pg_lo_read read a large object

Synopsis

pg_lo_read conn fd bufVar len

Inputs

 conn

 Specifies a valid database connection.

 fd

Chapter 18. pgtcl

159

 File descriptor for the large object from pg_lo_open.

 bufVar

 Specifies a valid buffer variable to contain the large object segment.

 len

 Specifies the maximum allowable size of the large object segment.

Outputs

None

Description

pg_lo_read reads at most len bytes from a large object into a variable named bufVar.

Usage

bufVar must be a valid variable name.

Chapter 18. pgtcl

160

pg_lo_write

Name

pg_lo_write write a large object

Synopsis

pg_lo_write conn fd buf len

Inputs

 conn

 Specifies a valid database connection.

 fd

 File descriptor for the large object from pg_lo_open.

 buf

 Specifies a valid string variable to write to the large object.

 len

 Specifies the maximum size of the string to write.

Outputs

None

Description

pg_lo_write writes at most len bytes to a large object from a variable buf.

Usage

buf must be the actual string to write, not a variable name.

Chapter 18. pgtcl

161

pg_lo_lseek

Name

pg_lo_lseek seek to a position in a large object

Synopsis

pg_lo_lseek conn fd offset whence

Inputs

 conn

 Specifies a valid database connection.

 fd

 File descriptor for the large object from pg_lo_open.

 offset

 Specifies a zero-based offset in bytes.

 whence

 whence can be "SEEK_CUR", "SEEK_END", or "SEEK_SET"

Outputs

None

Description

pg_lo_lseek positions to offset bytes from the beginning of the large object.

Usage

whence can be "SEEK_CUR", "SEEK_END", or "SEEK_SET".

Chapter 18. pgtcl

162

pg_lo_tell

Name

pg_lo_tell return the current seek position of a large object

Synopsis

pg_lo_tell conn fd

Inputs

 conn

 Specifies a valid database connection.

 fd

 File descriptor for the large object from pg_lo_open.

Outputs

 offset

 A zero-based offset in bytes suitable for input to pg_lo_lseek.

Description

pg_lo_tell returns the current to offset in bytes from the beginning of the large object.

Usage

pg_lo_unlink

Name

pg_lo_unlink delete a large object

Synopsis

pg_lo_unlink conn lobjId

Inputs

 conn

 Specifies a valid database connection.

Chapter 18. pgtcl

163

 lobjId

 Identifier for a large object. XXX Is this the same as objOid in other calls?? - thomas
1998-01-11

Outputs

None

Description

pg_lo_unlink deletes the specified large object.

Usage

pg_lo_import

Name

pg_lo_import import a large object from a Unix file

Synopsis

pg_lo_import conn filename

Inputs

 conn

 Specifies a valid database connection.

 filename

 Unix file name.

Outputs

None XXX Does this return a lobjId? Is that the same as the objOid in other calls? thomas -
1998-01-11

Description

pg_lo_import reads the specified file and places the contents into a large object.

Usage

 pg_lo_import must be called within a BEGIN/END transaction block.

Chapter 18. pgtcl

164

pg_lo_export

Name

pg_lo_export export a large object to a Unix file

Synopsis

pg_lo_export conn lobjId filename

Inputs

 conn

 Specifies a valid database connection.

 lobjId

 Large object identifier. XXX Is this the same as the objOid in other calls?? thomas -
1998-01-11

 filename

 Unix file name.

Outputs

None XXX Does this return a lobjId? Is that the same as the objOid in other calls? thomas -
1998-01-11

Description

pg_lo_export writes the specified large object into a Unix file.

Usage

 pg_lo_export must be called within a BEGIN/END transaction block.

165

Chapter 19. ecpg - Embedded SQL in C

This describes an embedded SQL in C package for Postgres. It is written by Linus Tolke
(mailto:linus@epact.se) and Michael Meskes (mailto:meskes@postgresql.org).

Note: Permission is granted to copy and use in the same way as you are allowed to copy
and use the rest of the PostgreSQL.

Why Embedded SQL?

Embedded SQL has some small advantages over other ways to handle SQL queries. It takes
care of all the tedious moving of information to and from variables in your C program. Many
RDBMS packages support this embedded language.

 There is an ANSI-standard describing how the embedded language should work. ecpg was
designed to meet this standard as much as possible. So it is possible to port programs with
embedded SQL written for other RDBMS packages to Postgres and thus promoting the spirit of
free software.

The Concept

You write your program in C with some special SQL things. For declaring variables that can be
used in SQL statements you need to put them in a special declare section. You use a special
syntax for the SQL queries.

Before compiling you run the file through the embedded SQL C preprocessor and it converts
the SQL statements you used to function calls with the variables used as arguments. Both
variables that are used as input to the SQL statements and variables that will contain the result
are passed.

Then you compile and at link time you link with a special library that contains the functions
used. These functions (actually it is mostly one single function) fetches the information from
the arguments, performs the SQL query using the ordinary interface (libpq) and puts back the
result in the arguments dedicated for output.

Then you run your program and when the control arrives to the SQL statement the SQL
statement is performed against the database and you can continue with the result.

How To Use egpc

This section describes how to use the egpc tool.

Preprocessor

The preprocessor is called ecpg. After installation it resides in the Postgres bin/ directory.

Chapter 19. ecpg - Embedded SQL in C

166

Library

The ecpg library is called libecpg.a or libecpg.so. Additionally, the library uses the libpq library
for communication to the Postgres server so you will have to link your program with -lecpg
-lpq.

The library has some methods that are "hidden" but that could prove very useful sometime.

ECPGdebug(int on, FILE *stream) turns on debug logging if called with the first argument
non-zero. Debug logging is done on stream. Most SQL statement logs its arguments and
result.

The most important one (ECPGdo) that is called on almost all SQL statements logs both its
expanded string, i.e. the string with all the input variables inserted, and the result from the
Postgres server. This can be very useful when searching for errors in your SQL statements.

ECPGstatus() This method returns TRUE if we are connected to a database and FALSE if
not.

Error handling

To be able to detect errors from the Postgres server you include a line like

exec sql include sqlca;

in the include section of your file. This will define a struct and a variable with the name sqlca
as following:

struct sqlca
{
 char sqlcaid[8];
 long sqlabc;
 long sqlcode;
 struct
 {
 int sqlerrml;
 char sqlerrmc[70];
 } sqlerrm;
 char sqlerrp[8];
 long sqlerrd[6];
 /* 0: empty */
 /* 1: empty */
 /* 2: number of rows processed in an INSERT, UPDATE */
 /* or DELETE statement */
 /* 3: empty */
 /* 4: empty */
 /* 5: empty */
 char sqlwarn[8];
 /* 0: set to ’W’ if at least one other is ’W’ */
 /* 1: if ’W’ at least one character string */
 /* value was truncated when it was */
 /* stored into a host variable. */
 /* 2: empty */
 /* 3: empty */
 /* 4: empty */
 /* 5: empty */
 /* 6: empty */
 /* 7: empty */
 char sqlext[8];
} sqlca;

Chapter 19. ecpg - Embedded SQL in C

167

If an error occured in the last SQL statement then sqlca.sqlcode will be non-zero. If
sqlca.sqlcode is less that 0 then this is some kind of serious error, like the database definition
does not match the query given. If it is bigger than 0 then this is a normal error like the table
did not contain the requested row.

sqlca.sqlerrm.sqlerrmc will contain a string that describes the error. The string ends with the
line number in the source file.

List of errors that can occur:

-12, Out of memory in line %d.

 Does not normally occur. This is a sign that your virtual memory is exhausted.

-200, Unsupported type %s on line %d.

 Does not normally occur. This is a sign that the preprocessor has generated something that
the library does not know about. Perhaps you are running incompatible versions of the
preprocessor and the library.

-201, Too many arguments line %d.

 This means that Postgres has returned more arguments than we have matching variables.
Perhaps you have forgotten a couple of the host variables in the INTO :var1,:var2-list.

-202, Too few arguments line %d.

 This means that Postgres has returned fewer arguments than we have host variables.
Perhaps you have too many host variables in the INTO :var1,:var2-list.

-203, Too many matches line %d.

 This means that the query has returned several lines but the variables specified are no
arrays. The SELECT you made probably was not unique.

-204, Not correctly formatted int type: %s line %d.

 This means that the host variable is of an int type and the field in the Postgres database is
of another type and contains a value that cannot be interpreted as an int. The library uses
strtol for this conversion.

-205, Not correctly formatted unsigned type: %s line %d.

 This means that the host variable is of an unsigned int type and the field in the Postgres
database is of another type and contains a value that cannot be interpreted as an unsigned
int. The library uses strtoul for this conversion.

-206, Not correctly formatted floating point type: %s line %d.

 This means that the host variable is of a float type and the field in the Postgres database is
of another type and contains a value that cannot be interpreted as an float. The library uses
strtod for this conversion.

-207, Unable to convert %s to bool on line %d.

 This means that the host variable is of a bool type and the field in the Postgres database is
neither ’t’ nor ’f’.

Chapter 19. ecpg - Embedded SQL in C

168

-208, Empty query line %d.

 Postgres returned PGRES_EMPTY_QUERY, probably because the query indeed was
empty.

-220, No such connection %s in line %d.

 The program tries to access a connection that does not exist.

-221, Not connected in line %d.

 The program tries to access a connection that does exist but is not open.

-230, Invalid statement name %s in line %d.

 The statement you are trying to use has not been prepared.

-400, Postgres error: %s line %d.

 Some Postgres error. The message contains the error message from the Postgres backend.

-401, Error in transaction processing line %d.

 Postgres signalled to us that we cannot start, commit or rollback the transaction.

-402, connect: could not open database %s.

 The connect to the database did not work.

100, Data not found line %d.

 This is a "normal" error that tells you that what you are quering cannot be found or we
have gone through the cursor.

Limitations

What will never be included and why or what cannot be done with this concept.

oracles single tasking possibility

 Oracle version 7.0 on AIX 3 uses the OS-supported locks on the shared memory segments
and allows the application designer to link an application in a so called single tasking way.
Instead of starting one client process per application process both the database part and the
application part is run in the same process. In later versions of oracle this is no longer
supported.

This would require a total redesign of the Postgres access model and that effort can not
justify the performance gained.

Porting From Other RDBMS Packages

The design of ecpg follows SQL standard. So porting from a standard RDBMS should not be a
problem. Unfortunately there is no such thing as a standard RDBMS. So ecpg also tries to
understand syntax additions as long as they do not create conflicts with the standard.

Chapter 19. ecpg - Embedded SQL in C

169

The following list shows all the known incompatibilities. If you find one not listed please
notify Michael Meskes (mailto:meskes@postgresql.org). Note, however, that we list only
incompatibilities from a precompiler of another RDBMS to ecpg and not additional ecpg
features that these RDBMS do not have.

Syntax of FETCH command

 The standard syntax of the FETCH command is:

FETCH [direction] [amount] IN|FROM cursor name.

ORACLE, however, does not use the keywords IN resp. FROM. This feature cannot be
added since it would create parsing conflicts.

Installation

Since version 0.5 ecpg is distributed together with Postgres. So you should get your
precompiler, libraries and header files compiled and installed by default as a part of your
installation.

For the Developer

This section is for those who want to develop the ecpg interface. It describes how the things
work. The ambition is to make this section contain things for those that want to have a look
inside and the section on How to use it should be enough for all normal questions. So, read this
before looking at the internals of the ecpg. If you are not interested in how it really works, skip
this section.

ToDo List

This version the preprocessor has some flaws:

Library functions

 to_date et al. do not exists. But then Postgres has some good conversion routines itself. So
you probably won’t miss these.

Structures ans unions

 Structures and unions have to be defined in the declare section.

Missing statements

 The following statements are not implemented thus far:

 exec sql allocate

 exec sql deallocate

Chapter 19. ecpg - Embedded SQL in C

170

 SQLSTATE

message ’no data found’

 The error message for "no data" in an exec sql insert select from statement has to be 100.

sqlwarn[6]

 sqlwarn[6] should be ’W’ if the PRECISION or SCALE value specified in a SET
DESCRIPTOR statement will be ignored.

The Preprocessor

The first four lines written to the output are constant additions by ecpg. These are two
comments and two include lines necessary for the interface to the library.

Then the preprocessor works in one pass only, reading the input file and writing to the output as
it goes along. Normally it just echoes everything to the output without looking at it further.

When it comes to an EXEC SQL statements it intervenes and changes them depending on what
it is. The EXEC SQL statement can be one of these:

Declare sections

 Declare sections begins with

exec sql begin declare section;

and ends with

exec sql end declare section;

In the section only variable declarations are allowed. Every variable declare within this
section is also entered in a list of variables indexed on their name together with the
corresponding type.

In particular the definition of a structure or union also has to be listed inside a declare
section. Otherwise ecpg cannot handle these types since it simply does not know the
definition.

The declaration is echoed to the file to make the variable a normal C-variable also.

The special types VARCHAR and VARCHAR2 are converted into a named struct for
every variable. A declaration like:

VARCHAR var[180];

is converted into

struct varchar_var { int len; char arr[180]; } var;

Include statements

 An include statement looks like:

exec sql include filename;

Not that this is NOT the same as

#include <filename.h>

Chapter 19. ecpg - Embedded SQL in C

171

Instead the file specified is parsed by ecpg itself. So the contents of the specified file is
included in the resulting C code. This way you are able to specify EXEC SQL commands
in an include file.

Connect statement

 A connect statement looks like:

exec sql connect to connection target;

It creates a connection to the specified database.

The connection target can be specified in the following ways:

dbname[@server][:port][as connection name][user user name]

tcp:postgresql://server[:port][/dbname][as connection name][user user name]

unix:postgresql://server[:port][/dbname][as connection name][user user name]

character variable[as connection name][user user name]

character string[as connection name][user]

default

user

There are also different ways to specify the user name:

userid

userid/password

userid identified by password

userid using password

 Finally the userid and the password. Each may be a constant text, a character variable or a
chararcter string.

Chapter 19. ecpg - Embedded SQL in C

172

Disconnect statements

 A disconnect statement looks loke:

exec sql disconnect [connection target];

It closes the connection to the specified database.

The connection target can be specified in the following ways:

connection name

default

current

all

Open cursor statement

 An open cursor statement looks like:

exec sql open cursor;

and is ignore and not copied from the output.

Commit statement

 A commit statement looks like

exec sql commit;

and is translated on the output to

ECPGcommit(__LINE__);

Rollback statement

 A rollback statement looks like

exec sql rollback;

and is translated on the output to

ECPGrollback(__LINE__);

Other statements

 Other SQL statements are other statements that start with exec sql and ends with ;.
Everything inbetween is treated as an SQL statement and parsed for variable substitution.

Variable substitution occur when a symbol starts with a colon (:). Then a variable with
that name is looked for among the variables that were previously declared within a declare
section and depending on the variable being for input or output the pointers to the
variables are written to the output to allow for access by the function.

Chapter 19. ecpg - Embedded SQL in C

173

For every variable that is part of the SQL request the function gets another ten arguments:

The type as a special symbol.
A pointer to the value or a pointer to the pointer.
The size of the variable if it is a char or varchar.
Number of elements in the array (for array fetches).
The offset to the next element in the array (for array fetches)
The type of the indicator variable as a special symbol.
A pointer to the value of the indicator variable or a pointer to the pointer of the indicator variable.
0.
Number of elements in the indicator array (for array fetches).
The offset to the next element in the indicator array (for array fetches)

A Complete Example

Here is a complete example describing the output of the preprocessor of a file foo.pgc:

exec sql begin declare section;
int index;
int result;
exec sql end declare section;
...
exec sql select res into :result from mytable where index = :index;

is translated into:

/* Processed by ecpg (2.6.0) */
/* These two include files are added by the preprocessor */
#include <ecpgtype.h>;
#include <ecpglib.h>;

/* exec sql begin declare section */

#line 1 "foo.pgc"

 int index;
 int result;
/* exec sql end declare section */
...
ECPGdo(__LINE__, NULL, "select res from mytable where index = ?
",
 ECPGt_int,&(index),1L,1L,sizeof(int),
 ECPGt_NO_INDICATOR, NULL , 0L, 0L, 0L, ECPGt_EOIT,
 ECPGt_int,&(result),1L,1L,sizeof(int),
 ECPGt_NO_INDICATOR, NULL , 0L, 0L, 0L, ECPGt_EORT);
#line 147 "foo.pgc"

(the indentation in this manual is added for readability and not something that the preprocessor
can do.)

The Library

The most important function in the library is the ECPGdo function. It takes a variable amount
of arguments. Hopefully we will not run into machines with limits on the amount of variables
that can be accepted by a vararg function. This could easily add up to 50 or so arguments.

The arguments are:

Chapter 19. ecpg - Embedded SQL in C

174

A line number

 This is a line number for the original line used in error messages only.

A string

 This is the SQL request that is to be issued. This request is modified by the input
variables, i.e. the variables that where not known at compile time but are to be entered in
the request. Where the variables should go the string contains ; .

Input variables

 As described in the section about the preprocessor every input variable gets ten arguments.

ECPGt_EOIT

 An enum telling that there are no more input variables.

Output variables

 As described in the section about the preprocessor every input variable gets ten arguments.
These variables are filled by the function.

ECPGt_EORT

 An enum telling that there are no more variables.

All the SQL statements are performed in one transaction unless you issue a commit transaction.
To get this auto-transaction going the first statement or the first after statement after a commit
or rollback always begins a transaction. To disable this feature per default use the ’-t’ option on
the commandline

To be completed: entries describing the other entries.

175

Chapter 20. ODBC Interface

Note: Background information originally by Tim Goeke (mailto:tgoeke@xpressway.com)

ODBC (Open Database Connectivity) is an abstract API which allows you to write applications
which can interoperate with various RDBMS servers. ODBC provides a product-neutral
interface between frontend applications and database servers, allowing a user or developer to
write applications which are transportable between servers from different manufacturers..

Background

The ODBC API matches up on the backend to an ODBC-compatible data source. This could be
anything from a text file to an Oracle or Postgres RDBMS.

The backend access come from ODBC drivers, or vendor specifc drivers that allow data access.
psqlODBC is such a driver, along with others that are available, such as the OpenLink ODBC
drivers.

Once you write an ODBC application, you should be able to connect to any back end database,
regardless of the vendor, as long as the database schema is the same.

For example. you could have MS SQL Server and Postgres servers which have exactly the
same data. Using ODBC, your Windows application would make exactly the same calls and the
back end data source would look the same (to the Windows app).

Insight Distributors (http://www.insightdist.com/) provides active and ongoing support for the
core psqlODBC distribution. They provide a FAQ (http://www.insightdist.com/psqlodbc/),
ongoing development on the code base, and actively participate on the interfaces mailing list
(mailto:interfaces@postgresql.org).

Windows Applications

In the real world, differences in drivers and the level of ODBC support lessens the potential of
ODBC:

Access, Delphi, and Visual Basic all support ODBC directly.
Under C++, such as Visual C++, you can use the C++ ODBC API.
In Visual C++, you can use the CRecordSet class, which wraps the ODBC API set within an
MFC 4.2 class. This is the easiest route if you are doing Windows C++ development under
Windows NT.

Writing Applications

If I write an application for Postgres can I write it using ODBC calls to the Postgres server, or
is that only when another database program like MS SQL Server or Access needs to access the
data?

Chapter 20. ODBC Interface

176

The ODBC API is the way to go. For Visual C++ coding you can find out more at Microsoft’s
web site or in your VC++ docs.

Visual Basic and the other RAD tools have Recordset objects that use ODBC directly to access
data. Using the data-aware controls, you can quickly link to the ODBC back end database (very
quickly).

Playing around with MS Access will help you sort this out. Try using File->Get External Data.

Tip: You’ll have to set up a DSN first.

Unix Installation

ApplixWare has an ODBC database interface supported on at least some platforms.
ApplixWare v4.4.1 has been demonstrated under Linux with Postgres v6.4 using the
psqlODBC driver contained in the Postgres distribution.

Building the Driver

The first thing to note about the psqlODBC driver (or any ODBC driver) is that there must exist
a driver manager on the system where the ODBC driver is to be used. There exists a freeware
ODBC driver for Unix called iodbc which can be obtained from various locations on the Net,
including at AS200 (http://www.as220.org/FreeODBC/iodbc-2.12.shar.Z). Instructions for
installing iodbc are beyond the scope of this document, but there is a README that can be
found inside the iodbc compressed .shar file that should explain how to get it up and running.

Having said that, any driver manager that you can find for your platform should support the
psqlODBC driver or any ODBC driver.

The Unix configuration files for psqlODBC have recently been extensively reworked to allow
for easy building on supported platforms as well as to allow for support of other Unix platforms
in the future. The new configuration and build files for the driver should make it a simple
process to build the driver on the supported platforms. Currently these include Linux and
FreeBSD but we are hoping other users will contribute the necessary information to quickly
expand the number of platforms for which the driver can be built.

There are actually two separate methods to build the driver depending on how you received it
and these differences come down to only where and how to run configure and make. The driver
can be built in a standalone, client-only installation, or can be built as a part of the main
Postgres distribution. The standalone installation is convenient if you have ODBC client
applications on multiple, heterogeneous platforms. The integrated installation is convenient
when the target client is the same as the server, or when the client and server have similar
runtime configurations.

Specifically if you have received the psqlODBC driver as part of the Postgres distribution
(from now on referred to as an "integrated" build) then you will configure and make the ODBC
driver from the top level source directory of the Postgres distribution along with the rest of its
libraries. If you received the driver as a standalone package than you will run configure and
make from the directory in which you unpacked the driver source.

Chapter 20. ODBC Interface

177

Integrated Installation

This installation procedure is appropriate for an integrated installation.

1. Specify the --with-odbc command-line argument for src/configure:

% ./configure --with-odbc
% make

2. Rebuild the Postgres distribution:

% make install

Once configured, the ODBC driver will be built and installed into the areas defined for the
other components of the Postgres system. The installation-wide ODBC configuration file will
be placed into the top directory of the Postgres target tree (POSTGRESDIR). This can be
overridden from the make command-line as

% make ODBCINST=filename install

Pre-v6.4 Integrated Installation

If you have a Postgres installation older than v6.4, you have the original source tree available,
and you want to use the newest version of the ODBC driver, then you may want to try this form
of installation.

1. Copy the output tar file to your target system and unpack it into a clean directory.

2. From the directory containing the sources, type:

% ./configure
% make
% make POSTGRESDIR=PostgresTopDir install

3. If you would like to install components into different trees, then you can specify various
destinations explicitly:

% make BINDIR=bindir LIBDIR=libdir HEADERDIR=headerdir
ODBCINST=instfile install

Standalone Installation

A standalone installation is not integrated with or built on the normal Postgres distribution. It
should be best suited for building the ODBC driver for multiple, heterogeneous clients who do
not have a locally-installed Postgres source tree.

The default location for libraries and headers for the standalone installation is /usr/local/lib and
/usr/local/include/iodbc, respectively. There is another system wide configuration file that gets
installed as /share/odbcinst.ini (if /share exists) or as /etc/odbcinst.ini (if /share does not exist).

Note: Installation of files into /share or /etc requires system root privileges. Most
installation steps for Postgres do not have this requirement, and you can choose another
destination which is writable by your non-root Postgres superuser account instead.

1. The standalone installation distribution can be built from the Postgres distribution or may
be obtained from Insight Distributors (http://www.insightdist.com/psqlodbc), the current
maintainers of the non-Unix sources.

Copy the zip or gzipped tarfile to an empty directory. If using the zip package unzip it with
the command

% unzip -a packagename

The -a option is necessary to get rid of DOS CR/LF pairs in the source files.

Chapter 20. ODBC Interface

178

If you have the gzipped tar package than simply run

tar -xzf packagename

a. To create a tar file for a complete standalone installation from the main Postgres
source tree:

2. Configure the main Postgres distribution.

3. Create the tar file:

% cd interfaces/odbc
% make standalone

4. Copy the output tar file to your target system. Be sure to transfer as a binary file if using
ftp.

5. Unpack the tar file into a clean directory.

6. Configure the standalone installation:

% ./configure

The configuration can be done with options:

% ./configure --prefix=rootdir --with-odbc=inidir

where --prefix installs the libraries and headers in the directories rootdir/lib and
rootdir/include/iodbc, and --with-odbc installs odbcinst.ini in the specified directory.

Note that both of these options can also be used from the integrated build but be aware that
when used in the integrated build --prefix will also apply to the rest of your Postgres
installation. --with-odbc applies only to the configuration file odbcinst.ini.

7. Compile and link the source code:

% make ODBCINST=instdir

You can also override the default location for installation on the ’make’ command line.
This only applies to the installation of the library and header files. Since the driver needs to
know the location of the odbcinst.ini file attempting to override the enviroment variable
that specifies its installation directory will probably cause you headaches. It is safest
simply to allow the driver to install the odbcinst.ini file in the default directory or the
directory you specified on the ’./configure’ command line with --with-odbc.

8. Install the source code:

% make POSTGRESDIR=targettree install

To override the library and header installation directories separately you need to pass the
correct installation variables on the make install command line. These variables are
LIBDIR, HEADERDIR and ODBCINST. Overriding POSTGRESDIR on the make
command line will cause LIBDIR and HEADERDIR to be rooted at the new directory you
specify. ODBCINST is independent of POSTGRESDIR.

Here is how you would specify the various destinations explicitly:

% make BINDIR=bindir LIBDIR=libdir HEADERDIR=headerdir install

For example, typing

% make POSTGRESDIR=/opt/psqlodbc install

(after you’ve used ./configure and make) will cause the libraries and headers to be installed
in the directories /opt/psqlodbc/lib and /opt/psqlodbc/include/iodbc respectively.

The command

Chapter 20. ODBC Interface

179

% make POSTGRESDIR=/opt/psqlodbc HEADERDIR=/usr/local install

should cause the libraries to be installed in /opt/psqlodbc/lib and the headers in
/usr/local/include/iodbc. If this doesn’t work as expected please contact one of the
maintainers.

Configuration Files

~/.odbc.ini contains user-specified access information for the psqlODBC driver. The file uses
conventions typical for Windows Registry files, but despite this restriction can be made to
work.

The .odbc.ini file has three required sections. The first is [ODBC Data Sources] which is a list
of arbitrary names and descriptions for each database you wish to access. The second required
section is the Data Source Specification and there will be one of these sections for each
database. Each section must be labeled with the name given in [ODBC Data Sources] and must
contain the following entries:

Driver = POSTGRESDIR/lib/libpsqlodbc.so
Database=DatabaseName
Servername=localhost
Port=5432

Tip: Remember that the Postgres database name is usually a single word, without path
names of any sort. The Postgres server manages the actual access to the database, and
you need only specify the name from the client.

Other entries may be inserted to control the format of the display. The third required section is
[ODBC] which must contain the InstallDir keyword and which may contain other options.

Here is an example .odbc.ini file, showing access information for three databases:

[ODBC Data Sources]
DataEntry = Read/Write Database
QueryOnly = Read-only Database
Test = Debugging Database
Default = Postgres Stripped

[DataEntry]
ReadOnly = 0
Servername = localhost
Database = Sales

[QueryOnly]
ReadOnly = 1
Servername = localhost
Database = Sales

[Test]
Debug = 1
CommLog = 1
ReadOnly = 0
Servername = localhost
Username = tgl
Password = "no$way"
Port = 5432
Database = test

[Default]
Servername = localhost
Database = tgl
Driver = /opt/postgres/current/lib/libpsqlodbc.so

Chapter 20. ODBC Interface

180

[ODBC]
InstallDir = /opt/applix/axdata/axshlib

ApplixWare

Configuration

ApplixWare must be configured correctly in order for it to be able to access the Postgres
ODBC software drivers.

Enabling ApplixWare Database Access

These instructions are for the 4.4.1 release of ApplixWare on Linux. Refer to the Linux Sys
Admin on-line book for more detailed information.

1. You must modify axnet.cnf so that elfodbc can find libodbc.so (the ODBC driver manager)
shared library. This library is included with the ApplixWare distribution, but axnet.cnf
needs to be modified to point to the correct location.

As root, edit the file applixroot/applix/axdata/axnet.cnf.

a. At the bottom of axnet.cnf, find the line that starts with

#libFor elfodbc /ax/...

b. Change line to read

libFor elfodbc applixroot/applix/axdata/axshlib/lib

which will tell elfodbc to look in this directory for the ODBC support library. If
you have installed applix somewhere else, change the path accordingly.

2. Create .odbc.ini as described above. You may also want to add the flag

TextAsLongVarchar=0

to the database-specific portion of .odbc.ini so that text fields will not be shown as
BLOB.

Testing ApplixWare ODBC Connections

1. Bring up Applix Data

2. Select the Postgres database of interest.

a. Select Query->Choose Server.

b. Select ODBC, and click Browse. The database you configured in .odbc.ini should
be shown. Make sure that the Host: field is empty (if it is not, axnet will try to
contact axnet on another machine to look for the database).

c. Select the database in the box that was launched by Browse, then click OK.

d. Enter username and password in the login identification dialog, and click OK.

 You should see Starting elfodbc server in the lower left corner of the data window. If you
get an error dialog box, see the debugging section below.

3. The ’Ready’ message will appear in the lower left corner of the data window. This
indicates that you can now enter queries.

Chapter 20. ODBC Interface

181

4. Select a table from Query->Choose tables, and then select Query->Query to access the
database. The first 50 or so rows from the table should appear.

Common Problems

The following messages can appear while trying to make an ODBC connection through Applix
Data:

Cannot launch gateway on server

 elfodbc can’t find libodbc.so. Check your axnet.cnf.

Error from ODBC Gateway: IM003::[iODBC][Driver Manager]Specified driver could not be
loaded

 libodbc.so cannot find the driver listed in .odbc.ini. Verify the settings.

Server: Broken Pipe

 The driver process has terminated due to some other problem. You might not have an
up-to-date version of the Postgres ODBC package.

setuid to 256: failed to launch gateway

 The September release of ApplixWare v4.4.1 (the first release with official ODBC support
under Linux) shows problems when usernames exceed eight (8) characters in length.
Problem description ontributed by Steve Campbell (mailto:scampbell@lear.com).

Author: Contributed by Steve Campbell (mailto:scampbell@lear.com) on 1998-10-20.

The axnet program’s security system seems a little suspect. axnet does things on behalf of the
user and on a true multiple user system it really should be run with root security (so it can
read/write in each user’s directory). I would hesitate to recommend this, however, since we
have no idea what security holes this creates.

Debugging ApplixWare ODBC Connections

One good tool for debugging connection problems uses the Unix system utility strace.

Debugging with strace

1. Start applixware.

2. Start an strace on the axnet process. For example, if

ps -aucx | grep ax

shows

cary 10432 0.0 2.6 1740 392 ? S Oct 9 0:00 axnet
cary 27883 0.9 31.0 12692 4596 ? S 10:24 0:04 axmain

Then run

 strace -f -s 1024 -p 10432

3. Check the strace output.

Note from Cary: Many of the error messages from ApplixWare go to stderr, but I’m not
sure where stderr is sent, so strace is the way to find out.

Chapter 20. ODBC Interface

182

 For example, after getting a Cannot launch gateway on server , I ran strace on axnet and got

[pid 27947] open("/usr/lib/libodbc.so", O_RDONLY) = -1 ENOENT
 (No such file or directory)
[pid 27947] open("/lib/libodbc.so", O_RDONLY) = -1 ENOENT
 (No such file or directory)
[pid 27947] write(2, "/usr2/applix/axdata/elfodbc:
 can’t load library ’libodbc.so’\n", 61) = -1 EIO (I/O error)

 So what is happening is that applix elfodbc is searching for libodbc.so, but it can’t find it. That
is why axnet.cnf needed to be changed.

Running the ApplixWare Demo

In order to go through the ApplixWare Data Tutorial, you need to create the sample tables that
the Tutorial refers to. The ELF Macro used to create the tables tries to use a NULL condition
on many of the database columns, and Postgres does not currently allow this option.

To get around this problem, you can do the following:

Modifying the ApplixWare Demo

1. Copy /opt/applix/axdata/eng/Demos/sqldemo.am to a local directory.

2. Edit this local copy of sqldemo.am:

a. Search for ’null_clause = "NULL"

b. Change this to null_clause = ""

3. Start Applix Macro Editor.

4. Open the sqldemo.am file from the Macro Editor.

5. Select File->Compile and Save.

6. Exit Macro Editor.

7. Start Applix Data.

8. Select *->Run Macro

9. Enter the value sqldemo , then click OK.

You should see the progress in the status line of the data window (in the lower left corner).

10. You should now be able to access the demo tables.

Chapter 20. ODBC Interface

183

Useful Macros

You can add information about your database login and password to the standard Applix
startup macro file. This is an example ~/axhome/macros/login.am file:

macro login
 set_set_system_var@("sql_username@","tgl")
 set_system_var@("sql_passwd@","no$way")
endmacro

Caution

You should be careful about the file protections on any file containing username and
password information.

Supported Platforms

psqlODBC has been built and tested on Linux. There have been reports of success with
FreeBSD and with Solaris. There are no known restrictions on the basic code for other
platforms which already support Postgres.

184

Chapter 21. JDBC Interface

Author: Written by Peter T. Mount (peter@retep.org.uk), the author of the JDBC driver.

JDBC is a core API of Java 1.1 and later. It provides a standard set of interfaces to
SQL-compliant databases.

Postgres provides a type 4 JDBC Driver. Type 4 indicates that the driver is written in Pure
Java, and communicates in the database’s own network protocol. Because of this, the driver is
platform independent. Once compiled, the driver can be used on any platform.

Building the JDBC Interface

Compiling the Driver

The driver’s source is located in the src/interfaces/jdbc directory of the source tree. To compile
simply change directory to that directory, and type:

% make

Upon completion, you will find the archive postgresql.jar in the current directory. This is the
JDBC driver.

Note: You must use make, not javac, as the driver uses some dynamic loading techniques
for performance reasons, and javac cannot cope. The Makefile will generate the jar
archive.

Installing the Driver

To use the driver, the jar archive postgresql.jar needs to be included in the CLASSPATH.

Example:

I have an application that uses the JDBC driver to access a large database containing
astronomical objects. I have the application and the jdbc driver installed in the /usr/local/lib
directory, and the java jdk installed in /usr/local/jdk1.1.6.

To run the application, I would use:

export CLASSPATH = \ /usr/local/lib/finder.jar:/usr/local/lib/postgresql.jar:. java
uk.org.retep.finder.Main

Loading the driver is covered later on in this chapter.

Preparing the Database for JDBC

Because Java can only use TCP/IP connections, the Postgres postmaster must be running with
the -i flag.

Chapter 21. JDBC Interface

185

Also, the pg_hba.conf file must be configured. It’s located in the PGDATA directory. In a
default installation, this file permits access only by UNIX domain sockets. For the JDBC driver
to connect to the same localhost, you need to add something like:

host all 127.0.0.1 255.255.255.255 password

Here access to all databases are possible from the local machine with JDBC.

The JDBC Driver supports trust, ident, password and crypt authentication methods.

Using the Driver

This section is not intended as a complete guide to JDBC programming, but should help to get
you started. For more information refer to the standard JDBC API documentation.

Also, take a look at the examples included with the source. The basic example is used here.

Importing JDBC

Any source that uses JDBC needs to import the java.sql package, using:

import java.sql.*;

Important: Do not import the postgresql package. If you do, your source will not compile,
as javac will get confused.

Loading the Driver

Before you can connect to a database, you need to load the driver. There are two methods
available, and it depends on your code to the best one to use.

In the first method, your code implicitly loads the driver using the Class.forName() method.
For Postgres, you would use:

Class.forName("postgresql.Driver");

This will load the driver, and while loading, the driver will automatically register itself with
JDBC.

Note: The forName() method can throw a ClassNotFoundException, so you will need to catch
it if the driver is not available.

This is the most common method to use, but restricts your code to use just Postgres. If your
code may access another database in the future, and you don’t use our extensions, then the
second method is advisable.

The second method passes the driver as a parameter to the JVM as it starts, using the -D
argument.

Example:

% java -Djdbc.drivers=postgresql.Driver example.ImageViewer

Chapter 21. JDBC Interface

186

In this example, the JVM will attempt to load the driver as part of it’s initialisation. Once done,
the ImageViewer is started.

Now, this method is the better one to use because it allows your code to be used with other
databases, without recompiling the code. The only thing that would also change is the URL,
which is covered next.

One last thing. When your code then tries to open a Connection, and you get a No driver
available SQLException being thrown, this is probably caused by the driver not being in the
classpath, or the value in the parameter not being correct.

Connecting to the Database

With JDBC, a database is represented by a URL (Uniform Resource Locator). With Postgres,
this takes one of the following forms:

jdbc:postgresql:database

jdbc:postgresql://host/database

jdbc:postgresql://host:port/database

where:

host

 The hostname of the server. Defaults to "localhost".

port

 The port number the server is listening on. Defaults to the Postgres standard port number
(5432).

database

 The database name.

To connect, you need to get a Connection instance from JDBC. To do this, you would use the
DriverManager.getConnection() method:

Connection db = DriverManager.getConnection(url,user,pwd);

Issuing a Query and Processing the Result

Any time you want to issue SQL statements to the database, you require a Statement instance.
Once you have a Statement, you can use the executeQuery() method to issue a query. This will
return a ResultSet instance, which contains the entire result.

Using the Statement Interface

The following must be considered when using the Statement interface:

You can use a Statement instance as many times as you want. You could create one as soon
as you open the connection, and use it for the connections lifetime. You have to remember
that only one ResultSet can exist per Statement.

Chapter 21. JDBC Interface

187

If you need to perform a query while processing a ResultSet, you can simply create and use
another Statement.

If you are using Threads, and several are using the database, you must use a separate
Statement for each thread. Refer to the sections covering Threads and Servlets later in this
document if you are thinking of using them, as it covers some important points.

Using the ResultSet Interface

The following must be considered when using the ResultSet interface:

Before reading any values, you must call next(). This returns true if there is a result, but
more importantly, it prepares the row for processing.

Under the JDBC spec, you should access a field only once. It’s safest to stick to this rule,
although at the current time, the Postgres driver will allow you to access a field as many
times as you want.

You must close a ResultSet by calling close() once you have finished with it.

Once you request another query with the Statement used to create a ResultSet, the currently
open instance is closed.

An example is as follows:

Statement st = db.createStatement();
ResultSet rs = st.executeQuery("select * from mytable");
while(rs.next()) {
 System.out.print("Column 1 returned ");
 System.out.println(rs.getString(1));
}
rs.close();
st.close();

Performing Updates

To perform an update (or any other SQL statement that does not return a result), you simply use
the executeUpdate() method:

st.executeUpdate("create table basic (a int2, b int2)");

Closing the Connection

To close the database connection, simply call the close() method to the Connection:

db.close();

Using Large Objects

In Postgres, large objects (also known as blobs) are used to hold data in the database that
cannot be stored in a normal SQL table. They are stored as a Table/Index pair, and are refered
to from your own tables, by an OID value.

Chapter 21. JDBC Interface

188

Now, there are you methods of using Large Objects. The first is the standard JDBC way, and is
documented here. The other, uses our own extension to the api, which presents the libpq large
object API to Java, providing even better access to large objects than the standard. Internally,
the driver uses the extension to provide large object support.

In JDBC, the standard way to access them is using the getBinaryStream() method in ResultSet,
and setBinaryStream() method in PreparedStatement. These methods make the large object
appear as a Java stream, allowing you to use the java.io package, and others, to manipulate the
object.

For example, suppose you have a table containing the file name of an image, and a large object
containing that image:

create table images (imgname name,imgoid oid);

To insert an image, you would use:

File file = new File("myimage.gif");
FileInputStream fis = new FileInputStream(file);
PreparedStatement ps = conn.prepareStatement("insert into images values
(?,?)");
ps.setString(1,file.getName());
ps.setBinaryStream(2,fis,file.length());
ps.executeUpdate();
ps.close();
fis.close();

Now in this example, setBinaryStream transfers a set number of bytes from a stream into a
large object, and stores the OID into the field holding a reference to it.

Retrieving an image is even easier (I’m using PreparedStatement here, but Statement can
equally be used):

PreparedStatement ps = con.prepareStatement("select oid from images
where name=?");
ps.setString(1,"myimage.gif");
ResultSet rs = ps.executeQuery();
if(rs!=null) {
 while(rs.next()) {
 InputStream is = rs.getBinaryInputStream(1);
 // use the stream in some way here
 is.close();
 }
 rs.close();
}
ps.close();

Now here you can see where the Large Object is retrieved as an InputStream. You’ll also notice
that we close the stream before processing the next row in the result. This is part of the JDBC
Specification, which states that any InputStream returned is closed when ResultSet.next() or
ResultSet.close() is called.

Postgres Extensions to the JDBC API

Postgres is an extensible database system. You can add your own functions to the backend,
which can then be called from queries, or even add your own data types.

Chapter 21. JDBC Interface

189

Now, as these are facilities unique to us, we support them from Java, with a set of extension
API’s. Some features within the core of the standard driver actually use these extensions to
implement Large Objects, etc.

Further Reading

If you have not yet read it, I’d advise you read the JDBC API Documentation (supplied with
Sun’s JDK), and the JDBC Specification. Both are available on JavaSoft’s web site
(http://www.javasoft.com).

My own web site (http://www.retep.org.uk) contains updated information not included in this
document, and also includes precompiled drivers for v6.4, and earlier.

190

Chapter 22. Overview of PostgreSQL

Internals

Author: This chapter originally appeared as a part of Simkovics, 1998, Stefan Simkovics’
Master’s Thesis prepared at Vienna University of Technology under the direction of
O.Univ.Prof.Dr. Georg Gottlob and Univ.Ass. Mag. Katrin Seyr.

 This chapter gives an overview of the internal structure of the backend of Postgres. After
having read the following sections you should have an idea of how a query is processed. Don’t
expect a detailed description here (I think such a description dealing with all data structures and
functions used within Postgres would exceed 1000 pages!). This chapter is intended to help
understanding the general control and data flow within the backend from receiving a query to
sending the results.

The Path of a Query

 Here we give a short overview of the stages a query has to pass in order to obtain a result.

1. A connection from an application program to the Postgres server has to be established. The
application program transmits a query to the server and receives the results sent back by
the server.

2. The parser stage checks the query transmitted by the application program (client) for
correct syntax and creates a query tree.

3. The rewrite system takes the query tree created by the parser stage and looks for any rules
(stored in the system catalogs) to apply to the querytree and performs the transformations
given in the rule bodies. One application of the rewrite system is given in the realization of
views.

 Whenever a query against a view (i.e. a virtual table) is made, the rewrite system rewrites
the user’s query to a query that accesses the base tables given in the view definition
instead.

4. The planner/optimizer takes the (rewritten) querytree and creates a queryplan that will be
the input to the executor.

 It does so by first creating all possible paths leading to the same result. For example if
there is an index on a relation to be scanned, there are two paths for the scan. One
possibility is a simple sequential scan and the other possibility is to use the index. Next the
cost for the execution of each plan is estimated and the cheapest plan is chosen and handed
back.

5. The executor recursively steps through the plan tree and retrieves tuples in the way
represented by the plan. The executor makes use of the storage system while scanning
relations, performs sorts and joins, evaluates qualifications and finally hands back the
tuples derived.

Chapter 22. Overview of PostgreSQL Internals

191

 In the following sections we will cover every of the above listed items in more detail to give a
better understanding on Postgres’s internal control and data structures.

How Connections are Established

 Postgres is implemented using a simple "process per-user" client/server model. In this model
there is one client process connected to exactly one server process. As we don’t know per se
how many connections will be made, we have to use a master process that spawns a new server
process every time a connection is requested. This master process is called postmaster and
listens at a specified TCP/IP port for incoming connections. Whenever a request for a
connection is detected the postmaster process spawns a new server process called postgres. The
server tasks (postgres processes) communicate with each other using semaphores and shared
memory to ensure data integrity throughout concurrent data access. Figure \ref{connection}
illustrates the interaction of the master process postmaster the server process postgres and a
client application.

 The client process can either be the psql frontend (for interactive SQL queries) or any user
application implemented using the libpg library. Note that applications implemented using ecpg
(the Postgres embedded SQL preprocessor for C) also use this library.

 Once a connection is established the client process can send a query to the backend (server).
The query is transmitted using plain text, i.e. there is no parsing done in the frontend (client).
The server parses the query, creates an execution plan, executes the plan and returns the
retrieved tuples to the client by transmitting them over the established connection.

The Parser Stage

 The parser stage consists of two parts:

 The parser defined in gram.y and scan.l is built using the UNIX tools yacc and lex.

 The transformation process does modifications and augmentations to the data structures
returned by the parser.

Parser

 The parser has to check the query string (which arrives as plain ASCII text) for valid syntax. If
the syntax is correct a parse tree is built up and handed back otherwise an error is returned. For
the implementation the well known UNIX tools lex and yacc are used.

 The lexer is defined in the file scan.l and is responsible for recognizing identifiers, the SQL
keywords etc. For every keyword or identifier that is found, a token is generated and handed to
the parser.

 The parser is defined in the file gram.y and consists of a set of grammar rules and actions that
are executed whenever a rule is fired. The code of the actions (which is actually C-code) is
used to build up the parse tree.

 The file scan.l is transformed to the C-source file scan.c using the program lex and gram.y is
transformed to gram.c using yacc. After these transformations have taken place a normal

Chapter 22. Overview of PostgreSQL Internals

192

C-compiler can be used to create the parser. Never make any changes to the generated C-files
as they will be overwritten the next time lex or yacc is called.

Note: The mentioned transformations and compilations are normally done automatically
using the makefiles shipped with the Postgres source distribution.

 A detailed description of yacc or the grammar rules given in gram.y would be beyond the
scope of this paper. There are many books and documents dealing with lex and yacc. You
should be familiar with yacc before you start to study the grammar given in gram.y otherwise
you won’t understand what happens there.

 For a better understanding of the data structures used in Postgres for the processing of a query
we use an example to illustrate the changes made to these data structures in every stage.

Example 22-1. A Simple Select

 This example contains the following simple query that will be used in various descriptions and
figures throughout the following sections. The query assumes that the tables given in The
Supplier Database have already been defined.
 select s.sname, se.pno
 from supplier s, sells se
 where s.sno > 2 and
 s.sno = se.sno;

 Figure \ref{parsetree} shows the parse tree built by the grammar rules and actions given in
gram.y for the query given in A Simple SelectThis example contains the following simple query
that will be used in various descriptions and figures throughout the following sections. The
query assumes that the tables given in The Supplier Database have already been defined. select
s.sname, se.pno from supplier s, sells se where s.sno > 2 and s.sno = se.sno; (without the
operator tree for the where clause which is shown in figure \ref{where_clause} because there
was not enough space to show both data structures in one figure).

 The top node of the tree is a SelectStmt node. For every entry appearing in the from clause of
the SQL query a RangeVar node is created holding the name of the alias and a pointer to a
RelExpr node holding the name of the relation. All RangeVar nodes are collected in a list
which is attached to the field fromClause of the SelectStmt node.

 For every entry appearing in the select list of the SQL query a ResTarget node is created
holding a pointer to an Attr node. The Attr node holds the relation name of the entry and a
pointer to a Value node holding the name of the attribute. All ResTarget nodes are collected to
a list which is connected to the field targetList of the SelectStmt node.

 Figure \ref{where_clause} shows the operator tree built for the where clause of the SQL query
given in example A Simple SelectThis example contains the following simple query that will be
used in various descriptions and figures throughout the following sections. The query assumes
that the tables given in The Supplier Database have already been defined. select s.sname,
se.pno from supplier s, sells se where s.sno > 2 and s.sno = se.sno; which is attached to the
field qual of the SelectStmt node. The top node of the operator tree is an A_Expr node
representing an AND operation. This node has two successors called lexpr and rexpr pointing
to two subtrees. The subtree attached to lexpr represents the qualification s.sno > 2 and the one
attached to rexpr represents s.sno = se.sno. For every attribute an Attr node is created holding
the name of the relation and a pointer to a Value node holding the name of the attribute. For the
constant term appearing in the query a Const node is created holding the value.

Chapter 22. Overview of PostgreSQL Internals

193

Transformation Process

 The transformation process takes the tree handed back by the parser as input and steps
recursively through it. If a SelectStmt node is found, it is transformed to a Query node which
will be the top most node of the new data structure. Figure \ref{transformed} shows the
transformed data structure (the part for the transformed where clause is given in figure
\ref{transformed_where} because there was not enough space to show all parts in one figure).

 Now a check is made, if the relation names in the FROM clause are known to the system. For
every relation name that is present in the system catalogs a RTE node is created containing the
relation name, the alias name and the relation id. From now on the relation ids are used to refer
to the relations given in the query. All RTE nodes are collected in the range table entry list
which is connected to the field rtable of the Query node. If a name of a relation that is not
known to the system is detected in the query an error will be returned and the query processing
will be aborted.

 Next it is checked if the attribute names used are contained in the relations given in the query.
For every attribute} that is found a TLE node is created holding a pointer to a Resdom node
(which holds the name of the column) and a pointer to a VAR node. There are two important
numbers in the VAR node. The field varno gives the position of the relation containing the
current attribute} in the range table entry list created above. The field varattno gives the
position of the attribute within the relation. If the name of an attribute cannot be found an error
will be returned and the query processing will be aborted.

The Postgres Rule System

 Postgres supports a powerful rule system for the specification of views and ambiguous view
updates. Originally the Postgres rule system consisted of two implementations:

 The first one worked using tuple level processing and was implemented deep in the
executor. The rule system was called whenever an individual tuple had been accessed. This
implementation was removed in 1995 when the last official release of the Postgres project
was transformed into Postgres95.

 The second implementation of the rule system is a technique called query rewriting. The
rewrite system} is a module that exists between the parser stage and the planner/optimizer.
This technique is still implemented.

 For information on the syntax and creation of rules in the Postgres system refer to The
PostgreSQL User’s Guide.

The Rewrite System

 The query rewrite system is a module between the parser stage and the planner/optimizer. It
processes the tree handed back by the parser stage (which represents a user query) and if there
is a rule present that has to be applied to the query it rewrites the tree to an alternate form.

Chapter 22. Overview of PostgreSQL Internals

194

Techniques To Implement Views

 Now we will sketch the algorithm of the query rewrite system. For better illustration we show
how to implement views using rules as an example.

 Let the following rule be given:

 create rule view_rule
 as on select
 to test_view
 do instead
 select s.sname, p.pname
 from supplier s, sells se, part p
 where s.sno = se.sno and
 p.pno = se.pno;

 The given rule will be fired whenever a select against the relation test_view is detected.
Instead of selecting the tuples from test_view the select statement given in the action part of the
rule is executed.

 Let the following user-query against test_view be given:

 select sname
 from test_view
 where sname <> ’Smith’;

 Here is a list of the steps performed by the query rewrite system whenever a user-query against
test_view appears. (The following listing is a very informal description of the algorithm just
intended for basic understanding. For a detailed description refer to Stonebraker et al, 1989).

test_view Rewrite

1. Take the query given in the action part of the rule.

2. Adapt the targetlist to meet the number and order of attributes given in the user-query.

3. Add the qualification given in the where clause of the user-query to the qualification of the
query given in the action part of the rule.

 Given the rule definition above, the user-query will be rewritten to the following form (Note
that the rewriting is done on the internal representation of the user-query handed back by the
parser stage but the derived new data structure will represent the following query):

 select s.sname
 from supplier s, sells se, part p
 where s.sno = se.sno and
 p.pno = se.pno and
 s.sname <> ’Smith’;

Chapter 22. Overview of PostgreSQL Internals

195

Planner/Optimizer

 The task of the planner/optimizer is to create an optimal execution plan. It first combines all
possible ways of scanning and joining the relations that appear in a query. All the created paths
lead to the same result and it’s the task of the optimizer to estimate the cost of executing each
path and find out which one is the cheapest.

Generating Possible Plans

 The planner/optimizer decides which plans should be generated based upon the types of
indices defined on the relations appearing in a query. There is always the possibility of
performing a sequential scan on a relation, so a plan using only sequential scans is always
created. Assume an index is defined on a relation (for example a B-tree index) and a query
contains the restriction relation.attribute OPR constant. If relation.attribute happens to match
the key of the B-tree index and OPR is anything but ’<>’ another plan is created using the
B-tree index to scan the relation. If there are further indices present and the restrictions in the
query happen to match a key of an index further plans will be considered.

 After all feasible plans have been found for scanning single relations, plans for joining
relations are created. The planner/optimizer considers only joins between every two relations
for which there exists a corresponding join clause (i.e. for which a restriction like where
rel1.attr1=rel2.attr2 exists) in the where qualification. All possible plans are generated for every
join pair considered by the planner/optimizer. The three possible join strategies are:

 nested iteration join: The right relation is scanned once for every tuple found in the left
relation. This strategy is easy to implement but can be very time consuming.

 merge sort join: Each relation is sorted on the join attributes before the join starts. Then the
two relations are merged together taking into account that both relations are ordered on the
join attributes. This kind of join is more attractive because every relation has to be scanned
only once.

 hash join: the right relation is first hashed on its join attributes. Next the left relation is
scanned and the appropriate values of every tuple found are used as hash keys to locate the
tuples in the right relation.

Data Structure of the Plan

 Here we will give a little description of the nodes appearing in the plan. Figure \ref{plan}
shows the plan produced for the query in example \ref{simple_select}.

 The top node of the plan is a MergeJoin node which has two successors, one attached to the
field lefttree and the second attached to the field righttree. Each of the subnodes represents one
relation of the join. As mentioned above a merge sort join requires each relation to be sorted.
That’s why we find a Sort node in each subplan. The additional qualification given in the query
(s.sno > 2) is pushed down as far as possible and is attached to the qpqual field of the leaf
SeqScan node of the corresponding subplan.

 The list attached to the field mergeclauses of the MergeJoin node contains information about
the join attributes. The values 65000 and 65001 for the varno fields in the VAR nodes

Chapter 22. Overview of PostgreSQL Internals

196

appearing in the mergeclauses list (and also in the targetlist) mean that not the tuples of the
current node should be considered but the tuples of the next "deeper" nodes (i.e. the top nodes
of the subplans) should be used instead.

 Note that every Sort and SeqScan node appearing in figure \ref{plan} has got a targetlist but
because there was not enough space only the one for the MergeJoin node could be drawn.

 Another task performed by the planner/optimizer is fixing the operator ids in the Expr and
Oper nodes. As mentioned earlier, Postgres supports a variety of different data types and even
user defined types can be used. To be able to maintain the huge amount of functions and
operators it is necessary to store them in a system table. Each function and operator gets a
unique operator id. According to the types of the attributes used within the qualifications etc.,
the appropriate operator ids have to be used.

Executor

 The executor takes the plan handed back by the planner/optimizer and starts processing the top
node. In the case of our example (the query given in example \ref{simple_select}) the top node
is a MergeJoin node.

 Before any merge can be done two tuples have to be fetched (one from each subplan). So the
executor recursively calls itself to process the subplans (it starts with the subplan attached to
lefttree). The new top node (the top node of the left subplan) is a SeqScan node and again a
tuple has to be fetched before the node itself can be processed. The executor calls itself
recursively another time for the subplan attached to lefttree of the SeqScan node.

 Now the new top node is a Sort node. As a sort has to be done on the whole relation, the
executor starts fetching tuples from the Sort node’s subplan and sorts them into a temporary
relation (in memory or a file) when the Sort node is visited for the first time. (Further
examinations of the Sort node will always return just one tuple from the sorted temporary
relation.)

 Every time the processing of the Sort node needs a new tuple the executor is recursively called
for the SeqScan node attached as subplan. The relation (internally referenced by the value
given in the scanrelid field) is scanned for the next tuple. If the tuple satisfies the qualification
given by the tree attached to qpqual it is handed back, otherwise the next tuple is fetched until
the qualification is satisfied. If the last tuple of the relation has been processed a NULL pointer
is returned.

 After a tuple has been handed back by the lefttree of the MergeJoin the righttree is processed
in the same way. If both tuples are present the executor processes the MergeJoin node.
Whenever a new tuple from one of the subplans is needed a recursive call to the executor is
performed to obtain it. If a joined tuple could be created it is handed back and one complete
processing of the plan tree has finished.

 Now the described steps are performed once for every tuple, until a NULL pointer is returned
for the processing of the MergeJoin node, indicating that we are finished.

197

Chapter 23. pg_options

Note: Contributed by Massimo Dal Zotto (mailto:dz@cs.unitn.it)

 The optional file data/pg_options contains runtime options used by the backend to control trace
messages and other backend tunable parameters. What makes this file interesting is the fact that
it is re-read by a backend when it receives a SIGHUP signal, making thus possible to change
run-time options on the fly without needing to restart Postgres. The options specified in this file
may be debugging flags used by the trace package (backend/utils/misc/trace.c) or numeric
parameters which can be used by the backend to control its behaviour. New options and
parameters must be defined in backend/utils/misc/trace.c and backend/include/utils/trace.h.

 For example suppose we want to add conditional trace messages and a tunable numeric
parameter to the code in file foo.c. All we need to do is to add the constant TRACE_FOO and
OPT_FOO_PARAM into backend/include/utils/trace.h:

/* file trace.h */
enum pg_option_enum {
 ...
 TRACE_FOO, /* trace foo functions */
 OPT_FOO_PARAM, /* foo tunable parameter */

 NUM_PG_OPTIONS /* must be the last item of enum */
};

 and a corresponding line in backend/utils/misc/trace.c:

/* file trace.c */
static char *opt_names[] = {
 ...
 "foo", /* trace foo functions */
 "fooparam" /* foo tunable parameter */
};

 Options in the two files must be specified in exactly the same order. In the foo source files we
can now reference the new flags with:

/* file foo.c */
#include "trace.h"
#define foo_param pg_options[OPT_FOO_PARAM]

int
foo_function(int x, int y)
{
 TPRINTF(TRACE_FOO, "entering foo_function, foo_param=%d",
foo_param);
 if (foo_param > 10) {
 do_more_foo(x, y);
 }
}

Chapter 23. pg_options

198

 Existing files using private trace flags can be changed by simply adding the following code:

#include "trace.h"
/* int my_own_flag = 0; -- removed */
#define my_own_flag pg_options[OPT_MY_OWN_FLAG]

 All pg_options are initialized to zero at backend startup. If we need a different default value
we must add some initialization code at the beginning of PostgresMain. Now we can set the
foo_param and enable foo trace by writing values into the data/pg_options file:

file pg_options
...
foo=1
fooparam=17

 The new options will be read by all new backends when they are started. To make effective the
changes for all running backends we need to send a SIGHUP to the postmaster. The signal will
be automatically sent to all the backends. We can also activate the changes only for a specific
backend by sending the SIGHUP directly to it.

 pg_options can also be specified with the -T switch of Postgres:

postgres options -T "verbose=2,query,hostlookup-"

 The functions used for printing errors and debug messages can now make use of the syslog(2)
facility. Message printed to stdout or stderr are prefixed by a timestamp containing also the
backend pid:

#timestamp #pid #message
980127.17:52:14.173 [29271] StartTransactionCommand
980127.17:52:14.174 [29271] ProcessUtility: drop table t;
980127.17:52:14.186 [29271] SIIncNumEntries: table is 70% full
980127.17:52:14.186 [29286] Async_NotifyHandler
980127.17:52:14.186 [29286] Waking up sleeping backend process
980127.19:52:14.292 [29286] Async_NotifyFrontEnd
980127.19:52:14.413 [29286] Async_NotifyFrontEnd done
980127.19:52:14.466 [29286] Async_NotifyHandler done

 This format improves readability of the logs and allows people to understand exactly which
backend is doing what and at which time. It also makes easier to write simple awk or perl
scripts which monitor the log to detect database errors or problem, or to compute transaction
time statistics.

 Messages printed to syslog use the log facility LOG_LOCAL0. The use of syslog can be
controlled with the syslog pg_option. Unfortunately many functions call directly printf() to
print their messages to stdout or stderr and this output can’t be redirected to syslog or have
timestamps in it. It would be advisable that all calls to printf would be replaced with the
PRINTF macro and output to stderr be changed to use EPRINTF instead so that we can control
all output in a uniform way.

Chapter 23. pg_options

199

 The new pg_options mechanism is more convenient than defining new backend option
switches because:

 we don’t have to define a different switch for each thing we want to control. All options are
defined as keywords in an external file stored in the data directory.
 we don’t have to restart Postgres to change the setting of some option. Normally backend
options are specified to the postmaster and passed to each backend when it is started. Now
they are read from a file.
 we can change options on the fly while a backend is running. We can thus investigate some
problem by activating debug messages only when the problem appears. We can also try
different values for tunable parameters.

 The format of the pg_options file is as follows:

comment
option=integer_value # set value for option
option # set option = 1
option+ # set option = 1
option- # set option = 0

 Note that keyword can also be an abbreviation of the option name defined in
backend/utils/misc/trace.c.

 Refer to The Administrator’s Guide chapter on runtime options for a complete list of currently
supported options.

 Some of the existing code using private variables and option switches has been changed to
make use of the pg_options feature, mainly in postgres.c. It would be advisable to modify all
existing code in this way, so that we can get rid of many of the switches on the Postgres
command line and can have more tunable options with a unique place to put option values.

200

Chapter 24. Genetic Query Optimization

Author: Written by Martin Utesch (utesch@aut.tu-freiberg.de) for the Institute of Automatic
Control at the University of Mining and Technology in Freiberg, Germany.

Query Handling as a Complex Optimization Problem

 Among all relational operators the most difficult one to process and optimize is the join. The
number of alternative plans to answer a query grows exponentially with the number of joins
included in it. Further optimization effort is caused by the support of a variety of join methods
(e.g., nested loop, index scan, merge join in Postgres) to process individual joins and a diversity
of indices (e.g., r-tree, b-tree, hash in Postgres) as access paths for relations.

 The current Postgres optimizer implementation performs a near- exhaustive search over the
space of alternative strategies. This query optimization technique is inadequate to support
database application domains that involve the need for extensive queries, such as artificial
intelligence.

 The Institute of Automatic Control at the University of Mining and Technology, in Freiberg,
Germany, encountered the described problems as its folks wanted to take the Postgres DBMS
as the backend for a decision support knowledge based system for the maintenance of an
electrical power grid. The DBMS needed to handle large join queries for the inference machine
of the knowledge based system.

 Performance difficulties within exploring the space of possible query plans arose the demand
for a new optimization technique being developed.

 In the following we propose the implementation of a Genetic Algorithm as an option for the
database query optimization problem.

Genetic Algorithms (GA)

 The GA is a heuristic optimization method which operates through determined, randomized
search. The set of possible solutions for the optimization problem is considered as a population
of individuals. The degree of adaption of an individual to its environment is specified by its
fitness.

 The coordinates of an individual in the search space are represented by chromosomes, in
essence a set of character strings. A gene is a subsection of a chromosome which encodes the
value of a single parameter being optimized. Typical encodings for a gene could be binary or
integer.

 Through simulation of the evolutionary operations recombination, mutation, and selection new
generations of search points are found that show a higher average fitness than their ancestors.

 According to the "comp.ai.genetic" FAQ it cannot be stressed too strongly that a GA is not a
pure random search for a solution to a problem. A GA uses stochastic processes, but the result
is distinctly non-random (better than random).

Structured Diagram of a GA:

Chapter 24. Genetic Query Optimization in
Database Systems

201

P(t) generation of ancestors at a time t
P’’(t) generation of descendants at a time t

+===+
|>>>>>>>>>>> Algorithm GA <<<<<<<<<<<<<<|
+===+
| INITIALIZE t := 0 |
+===+
| INITIALIZE P(t) |
+===+
| evalute FITNESS of P(t) |
+===+
| while not STOPPING CRITERION do |
| +-------------------------------------+
| | P’(t) := RECOMBINATION{P(t)} |
| +-------------------------------------+
| | P’’(t) := MUTATION{P’(t)} |
| +-------------------------------------+
| | P(t+1) := SELECTION{P’’(t) + P(t)} |
| +-------------------------------------+
| | evalute FITNESS of P’’(t) |
| +-------------------------------------+
| | t := t + 1 |
+===+=====================================+

Genetic Query Optimization (GEQO) in Postgres

 The GEQO module is intended for the solution of the query optimization problem similar to a
traveling salesman problem (TSP). Possible query plans are encoded as integer strings. Each
string represents the join order from one relation of the query to the next. E. g., the query tree

 /\
 /\ 2
 /\ 3
 4 1

is encoded by the integer string ’4-1-3-2’, which means, first join relation ’4’ and ’1’, then ’3’,
and then ’2’, where 1, 2, 3, 4 are relids in Postgres.

 Parts of the GEQO module are adapted from D. Whitley’s Genitor algorithm.

 Specific characteristics of the GEQO implementation in Postgres are:

Usage of a steady state GA (replacement of the least fit individuals in a population, not
whole-generational replacement) allows fast convergence towards improved query plans.
This is essential for query handling with reasonable time;
Usage of edge recombination crossover which is especially suited to keep edge losses low
for the solution of the TSP by means of a GA;
Mutation as genetic operator is deprecated so that no repair mechanisms are needed to
generate legal TSP tours.

 The GEQO module gives the following benefits to the Postgres DBMS compared to the
Postgres query optimizer implementation:

Handling of large join queries through non-exhaustive search;
Improved cost size approximation of query plans since no longer plan merging is needed (the
GEQO module evaluates the cost for a query plan as an individual).

Chapter 24. Genetic Query Optimization in
Database Systems

202

Future Implementation Tasks for Postgres GEQO

Basic Improvements

Improve freeing of memory when query is already processed

With large join queries the computing time spent for the genetic query optimization seems to be
a mere fraction of the time Postgres needs for freeing memory via routine MemoryContextFree,
file backend/utils/mmgr/mcxt.c. Debugging showed that it get stucked in a loop of routine
OrderedElemPop, file backend/utils/mmgr/oset.c. The same problems arise with long queries
when using the normal Postgres query optimization algorithm.

Improve genetic algorithm parameter settings

In file backend/optimizer/geqo/geqo_params.c, routines gimme_pool_size and
gimme_number_generations, we have to find a compromise for the parameter settings to satisfy
two competing demands:

Optimality of the query plan
Computing time

Find better solution for integer overflow

In file backend/optimizer/geqo/geqo_eval.c, routine geqo_joinrel_size, the present hack for
MAXINT overflow is to set the Postgres integer value of rel->size to its logarithm.
Modifications of Rel in backend/nodes/relation.h will surely have severe impacts on the whole
Postgres implementation.

Find solution for exhausted memory

Memory exhaustion may occur with more than 10 relations involved in a query. In file
backend/optimizer/geqo/geqo_eval.c, routine gimme_tree is recursively called. Maybe I forgot
something to be freed correctly, but I dunno what. Of course the rel data structure of the join
keeps growing and growing the more relations are packed into it. Suggestions are welcome :-(

References

Reference information for GEQ algorithms.

The Hitch-Hiker’s Guide to Evolutionary Computation, Jrg Heitktter and David Beasley,
InterNet resource, The Design and Implementation of the Postgres Query Optimizer, Z.
Fong, University of California, Berkeley Computer Science Department, Fundamentals
of Database Systems, R. Elmasri and S. Navathe, The Benjamin/Cummings Pub., Inc..

FAQ in comp.ai.genetic (news://comp.ai.genetic) is available at Encore
(ftp://ftp.Germany.EU.net/pub/research/softcomp/EC/Welcome.html).

File planner/Report.ps in the ’postgres-papers’ distribution.

203

Chapter 25. Frontend/Backend Protocol

Note: Written by Phil Thompson (mailto:phil@river-bank.demon.co.uk). Updates for
protocol 2.0 by Tom Lane (mailto:tgl@sss.pgh.pa.us).

Postgres uses a message-based protocol for communication between frontends and backends.
The protocol is implemented over TCP/IP and also on Unix sockets. Postgres v6.3 introduced
version numbers into the protocol. This was done in such a way as to still allow connections
from earlier versions of frontends, but this document does not cover the protocol used by those
earlier versions.

This document describes version 2.0 of the protocol, implemented in Postgres v6.4 and later.

Higher level features built on this protocol (for example, how libpq passes certain environment
variables after the connection is established) are covered elsewhere.

Overview

The three major components are the frontend (running on the client) and the postmaster and
backend (running on the server). The postmaster and backend have different roles but may be
implemented by the same executable.

A frontend sends a startup packet to the postmaster. This includes the names of the user and the
database the user wants to connect to. The postmaster then uses this, and the information in the
pg_hba.conf(5) file to determine what further authentication information it requires the
frontend to send (if any) and responds to the frontend accordingly.

The frontend then sends any required authentication information. Once the postmaster validates
this it responds to the frontend that it is authenticated and hands over the connection to a
backend. The backend then sends a message indicating successful startup (normal case) or
failure (for example, an invalid database name).

Subsequent communications are query and result packets exchanged between the frontend and
the backend. The postmaster takes no further part in ordinary query/result communication.
(However, the postmaster is involved when the frontend wishes to cancel a query currently
being executed by its backend. Further details about that appear below.)

When the frontend wishes to disconnect it sends an appropriate packet and closes the
connection without waiting for a response for the backend.

Packets are sent as a data stream. The first byte determines what should be expected in the rest
of the packet. The exception is packets sent from a frontend to the postmaster, which comprise
a packet length then the packet itself. The difference is historical.

Protocol

This section describes the message flow. There are four different types of flows depending on
the state of the connection: startup, query, function call, and termination. There are also special

Chapter 25. Frontend/Backend Protocol

204

provisions for notification responses and command cancellation, which can occur at any time
after the startup phase.

Startup

Startup is divided into an authentication phase and a backend startup phase.

Initially, the frontend sends a StartupPacket. The postmaster uses this info and the contents of
the pg_hba.conf(5) file to determine what authentication method the frontend must use. The
postmaster then responds with one of the following messages:

 ErrorResponse

 The postmaster then immediately closes the connection.

 AuthenticationOk

 The postmaster then hands over to the backend. The postmaster takes no further part in
the communication.

 AuthenticationKerberosV4

 The frontend must then take part in a Kerberos V4 authentication dialog (not described
here) with the postmaster. If this is successful, the postmaster responds with an
AuthenticationOk, otherwise it responds with an ErrorResponse.

 AuthenticationKerberosV5

 The frontend must then take part in a Kerberos V5 authentication dialog (not described
here) with the postmaster. If this is successful, the postmaster responds with an
AuthenticationOk, otherwise it responds with an ErrorResponse.

 AuthenticationUnencryptedPassword

 The frontend must then send an UnencryptedPasswordPacket. If this is the correct
password, the postmaster responds with an AuthenticationOk, otherwise it responds with
an ErrorResponse.

 AuthenticationEncryptedPassword

 The frontend must then send an EncryptedPasswordPacket. If this is the correct password,
the postmaster responds with an AuthenticationOk, otherwise it responds with an
ErrorResponse.

If the frontend does not support the authentication method requested by the postmaster, then it
should immediately close the connection.

After sending AuthenticationOk, the postmaster attempts to launch a backend process. Since
this might fail, or the backend might encounter a failure during startup, the frontend must wait
for the backend to acknowledge successful startup. The frontend should send no messages at
this point. The possible messages from the backend during this phase are:

 BackendKeyData

 This message is issued after successful backend startup. It provides secret-key data that
the frontend must save if it wants to be able to issue cancel requests later. The frontend

Chapter 25. Frontend/Backend Protocol

205

should not respond to this message, but should continue listening for a ReadyForQuery
message.

 ReadyForQuery

 Backend startup is successful. The frontend may now issue query or function call
messages.

 ErrorResponse

 Backend startup failed. The connection is closed after sending this message.

 NoticeResponse

 A warning message has been issued. The frontend should display the message but
continue listening for ReadyForQuery or ErrorResponse.

The ReadyForQuery message is the same one that the backend will issue after each query
cycle. Depending on the coding needs of the frontend, it is reasonable to consider
ReadyForQuery as starting a query cycle (and then BackendKeyData indicates successful
conclusion of the startup phase), or to consider ReadyForQuery as ending the startup phase and
each subsequent query cycle.

Query

A Query cycle is initiated by the frontend sending a Query message to the backend. The
backend then sends one or more response messages depending on the contents of the query
command string, and finally a ReadyForQuery response message. ReadyForQuery informs the
frontend that it may safely send a new query or function call.

The possible response messages from the backend are:

 CompletedResponse

 An SQL command completed normally.

 CopyInResponse

 The backend is ready to copy data from the frontend to a relation. The frontend should
then send a CopyDataRows message. The backend will then respond with a
CompletedResponse message with a tag of "COPY".

 CopyOutResponse

 The backend is ready to copy data from a relation to the frontend. It then sends a
CopyDataRows message, and then a CompletedResponse message with a tag of "COPY".

 CursorResponse

 The query was either an insert(l), delete(l), update(l), fetch(l) or a select(l) command. If
the transaction has been aborted then the backend sends a CompletedResponse message
with a tag of "*ABORT STATE*". Otherwise the following responses are sent.

 For an insert(l) command, the backend then sends a CompletedResponse message with a
tag of "INSERT oid rows" where rows is the number of rows inserted, and oid is the
object ID of the inserted row if rows is 1, otherwise oid is 0.

Chapter 25. Frontend/Backend Protocol

206

 For a delete(l) command, the backend then sends a CompletedResponse message with a
tag of "DELETE rows" where rows is the number of rows deleted.

 For an update(l) command, the backend then sends a CompletedResponse message with a
tag of "UPDATE rows" where rows is the number of rows deleted.

 For a fetch(l) or select(l) command, the backend sends a RowDescription message. This
is then followed by an AsciiRow or BinaryRow message (depending on whether a binary
cursor was specified) for each row being returned to the frontend. Finally, the backend
sends a CompletedResponse message with a tag of "SELECT".

 EmptyQueryResponse

 An empty query string was recognized. (The need to specially distinguish this case is
historical.)

 ErrorResponse

 An error has occurred.

 ReadyForQuery

 Processing of the query string is complete. A separate message is sent to indicate this
because the query string may contain multiple SQL commands. (CompletedResponse
marks the end of processing one SQL command, not the whole string.) ReadyForQuery
will always be sent, whether processing terminates successfully or with an error.

 NoticeResponse

 A warning message has been issued in relation to the query. Notices are in addition to
other responses, ie. the backend will continue processing the command.

A frontend must be prepared to accept ErrorResponse and NoticeResponse messages whenever
it is expecting any other type of message.

Actually, it is possible for NoticeResponse to arrive even when the frontend is not expecting
any kind of message, that is, the backend is nominally idle. (In particular, the backend can be
commanded to terminate by its postmaster. In that case it will send a NoticeResponse before
closing the connection.) It is recommended that the frontend check for such asynchronous
notices just before issuing any new command.

Also, if the frontend issues any listen(l) commands then it must be prepared to accept
NotificationResponse messages at any time; see below.

Function Call

A Function Call cycle is initiated by the frontend sending a FunctionCall message to the
backend. The backend then sends one or more response messages depending on the results of
the function call, and finally a ReadyForQuery response message. ReadyForQuery informs the
frontend that it may safely send a new query or function call.

The possible response messages from the backend are:

 ErrorResponse

 An error has occurred.

Chapter 25. Frontend/Backend Protocol

207

 FunctionResultResponse

 The function call was executed and returned a result.

 FunctionVoidResponse

 The function call was executed and returned no result.

 ReadyForQuery

 Processing of the function call is complete. ReadyForQuery will always be sent, whether
processing terminates successfully or with an error.

 NoticeResponse

 A warning message has been issued in relation to the function call. Notices are in addition
to other responses, ie. the backend will continue processing the command.

A frontend must be prepared to accept ErrorResponse and NoticeResponse messages whenever
it is expecting any other type of message. Also, if it issues any listen(l) commands then it must
be prepared to accept NotificationResponse messages at any time; see below.

Notification Responses

If a frontend issues a listen(l) command, then the backend will send a NotificationResponse
message (not to be confused with NoticeResponse!) whenever a notify(l) command is executed
for the same notification name.

Notification responses are permitted at any point in the protocol (after startup), except within
another backend message. Thus, the frontend must be prepared to recognize a
NotificationResponse message whenever it is expecting any message. Indeed, it should be able
to handle NotificationResponse messages even when it is not engaged in a query.

 NotificationResponse

 A notify(l) command has been executed for a name for which a previous listen(l)
command was executed. Notifications may be sent at any time.

It may be worth pointing out that the names used in listen and notify commands need not have
anything to do with names of relations (tables) in the SQL database. Notification names are
simply arbitrarily chosen condition names.

Cancelling Requests in Progress

During the processing of a query, the frontend may request cancellation of the query by sending
an appropriate request to the postmaster. The cancel request is not sent directly to the backend
for reasons of implementation efficiency: we don’t want to have the backend constantly
checking for new input from the frontend during query processing. Cancel requests should be
relatively infrequent, so we make them slightly cumbersome in order to avoid a penalty in the
normal case.

To issue a cancel request, the frontend opens a new connection to the postmaster and sends a
CancelRequest message, rather than the StartupPacket message that would ordinarily be sent
across a new connection. The postmaster will process this request and then close the
connection. For security reasons, no direct reply is made to the cancel request message.

Chapter 25. Frontend/Backend Protocol

208

A CancelRequest message will be ignored unless it contains the same key data (PID and secret
key) passed to the frontend during connection startup. If the request matches the PID and secret
key for a currently executing backend, the postmaster signals the backend to abort processing
of the current query.

The cancellation signal may or may not have any effect --- for example, if it arrives after the
backend has finished processing the query, then it will have no effect. If the cancellation is
effective, it results in the current command being terminated early with an error message.

The upshot of all this is that for reasons of both security and efficiency, the frontend has no
direct way to tell whether a cancel request has succeeded. It must continue to wait for the
backend to respond to the query. Issuing a cancel simply improves the odds that the current
query will finish soon, and improves the odds that it will fail with an error message instead of
succeeding.

Since the cancel request is sent to the postmaster and not across the regular frontend/backend
communication link, it is possible for the cancel request to be issued by any process, not just
the frontend whose query is to be canceled. This may have some benefits of flexibility in
building multiple-process applications. It also introduces a security risk, in that unauthorized
persons might try to cancel queries. The security risk is addressed by requiring a dynamically
generated secret key to be supplied in cancel requests.

Termination

The normal, graceful termination procedure is that the frontend sends a Terminate message and
immediately closes the connection. On receipt of the message, the backend immediately closes
the connection and terminates.

An ungraceful termination may occur due to software failure (i.e., core dump) at either end. If
either frontend or backend sees an unexpected closure of the connection, it should clean up and
terminate. The frontend has the option of launching a new backend by recontacting the
postmaster, if it doesn’t want to terminate itself.

Message Data Types

This section describes the base data types used in messages.

 Intn(i)

 An n bit integer in network byte order. If i is specified it is the literal value. Eg. Int16,
Int32(42).

 LimStringn(s)

 A character array of exactly n bytes interpreted as a ’\0’ terminated string. The ’\0’ is
omitted if there is insufficient room. If s is specified it is the literal value. Eg.
LimString32, LimString64("user").

 String(s)

 A conventional C ’\0’ terminated string with no length limitation. A frontend should
always read the full string even though it may have to discard characters if its buffers
aren’t big enough.

Chapter 25. Frontend/Backend Protocol

209

Note: Is 8193 bytes the largest allowed size?

 If s is specified it is the literal value. Eg. String, String("user").

 Byten(c)

 Exactly n bytes. If c is specified it is the literal value. Eg. Byte, Byte1(’\n’).

Message Formats

This section describes the detailed format of each message. Each can be sent by either a
frontend (F), a postmaster/backend (B), or both (F & B).

AsciiRow (B)

 Byte1(’D’)

 Identifies the message as an ASCII data row. (A prior RowDescription message
defines the number of fields in the row and their data types.)

 Byten

 A bit map with one bit for each field in the row. The 1st field corresponds to bit 7
(MSB) of the 1st byte, the 2nd field corresponds to bit 6 of the 1st byte, the 8th field
corresponds to bit 0 (LSB) of the 1st byte, the 9th field corresponds to bit 7 of the 2nd
byte, and so on. Each bit is set if the value of the corresponding field is not NULL. If
the number of fields is not a multiple of 8, the remainder of the last byte in the bit
map is wasted.

 Then, for each field with a non-NULL value, there is the following:

 Int32

 Specifies the size of the value of the field, including this size.

 Byten

 Specifies the value of the field itself in ASCII characters. n is the above size
minus 4. There is no trailing ’\0’ in the field data; the front end must add one if
it wants one.

AuthenticationOk (B)

 Byte1(’R’)

 Identifies the message as an authentication request.

 Int32(0)

 Specifies that the authentication was successful.

Chapter 25. Frontend/Backend Protocol

210

AuthenticationKerberosV4 (B)

 Byte1(’R’)

 Identifies the message as an authentication request.

 Int32(1)

 Specifies that Kerberos V4 authentication is required.

AuthenticationKerberosV5 (B)

 Byte1(’R’)

 Identifies the message as an authentication request.

 Int32(2)

 Specifies that Kerberos V5 authentication is required.

AuthenticationUnencryptedPassword (B)

 Byte1(’R’)

 Identifies the message as an authentication request.

 Int32(3)

 Specifies that an unencrypted password is required.

AuthenticationEncryptedPassword (B)

 Byte1(’R’)

 Identifies the message as an authentication request.

 Int32(4)

 Specifies that an encrypted password is required.

 Byte2

 The salt to use when encrypting the password.

BackendKeyData (B)

 Byte1(’K’)

 Identifies the message as cancellation key data. The frontend must save these values
if it wishes to be able to issue CancelRequest messages later.

Chapter 25. Frontend/Backend Protocol

211

 Int32

 The process ID of this backend.

 Int32

 The secret key of this backend.

BinaryRow (B)

 Byte1(’B’)

 Identifies the message as a binary data row. (A prior RowDescription message
defines the number of fields in the row and their data types.)

 Byten

 A bit map with one bit for each field in the row. The 1st field corresponds to bit 7
(MSB) of the 1st byte, the 2nd field corresponds to bit 6 of the 1st byte, the 8th field
corresponds to bit 0 (LSB) of the 1st byte, the 9th field corresponds to bit 7 of the 2nd
byte, and so on. Each bit is set if the value of the corresponding field is not NULL. If
the number of fields is not a multiple of 8, the remainder of the last byte in the bit
map is wasted.

 Then, for each field with a non-NULL value, there is the following:

 Int32

 Specifies the size of the value of the field, excluding this size.

 Byten

 Specifies the value of the field itself in binary format. n is the above size.

CancelRequest (F)

 Int32(16)

 The size of the packet in bytes.

 Int32(80877102)

 The cancel request code. The value is chosen to contain "1234" in the most
significant 16 bits, and "5678" in the least 16 significant bits. (To avoid confusion,
this code must not be the same as any protocol version number.)

 Int32

 The process ID of the target backend.

 Int32

 The secret key for the target backend.

Chapter 25. Frontend/Backend Protocol

212

CompletedResponse (B)

 Byte1(’C’)

 Identifies the message as a completed response.

 String

 The command tag. This is usually (but not always) a single word that identifies
which SQL command was completed.

CopyDataRows (B & F)

 This is a stream of rows where each row is terminated by a Byte1(’\n’). This is then
followed by the sequence Byte1(’\\’), Byte1(’.’), Byte1(’\n’).

CopyInResponse (B)

 Byte1(’G’)

 Identifies the message as a Start Copy In response. The frontend must now send a
CopyDataRows message.

CopyOutResponse (B)

 Byte1(’H’)

 Identifies the message as a Start Copy Out response. This message will be followed
by a CopyDataRows message.

CursorResponse (B)

 Byte1(’P’)

 Identifies the message as a cursor response.

 String

 The name of the cursor. This will be "blank" if the cursor is implicit.

EmptyQueryResponse (B)

 Byte1(’I’)

 Identifies the message as a response to an empty query string.

 String("")

 Unused.

Chapter 25. Frontend/Backend Protocol

213

EncryptedPasswordPacket (F)

 Int32

 The size of the packet in bytes.

 String

 The encrypted (using crypt()) password.

ErrorResponse (B)

 Byte1(’E’)

 Identifies the message as an error.

 String

 The error message itself.

FunctionCall (F)

 Byte1(’F’)

 Identifies the message as a function call.

 String("")

 Unused.

 Int32

 Specifies the object ID of the function to call.

 Int32

 Specifies the number of arguments being supplied to the function.

 Then, for each argument, there is the following:

 Int32

 Specifies the size of the value of the argument, excluding this size.

 Byten

 Specifies the value of the field itself in binary format. n is the above size.

FunctionResultResponse (B)

 Byte1(’V’)

 Identifies the message as a function call result.

Chapter 25. Frontend/Backend Protocol

214

 Byte1(’G’)

 Specifies that a nonempty result was returned.

 Int32

 Specifies the size of the value of the result, excluding this size.

 Byten

 Specifies the value of the result itself in binary format. n is the above size.

 Byte1(’0’)

 Unused. (Strictly speaking, FunctionResultResponse and FunctionVoidResponse are
the same thing but with some optional parts to the message.)

FunctionVoidResponse (B)

 Byte1(’V’)

 Identifies the message as a function call result.

 Byte1(’0’)

 Specifies that an empty result was returned.

NoticeResponse (B)

 Byte1(’N’)

 Identifies the message as a notice.

 String

 The notice message itself.

NotificationResponse (B)

 Byte1(’A’)

 Identifies the message as a notification response.

 Int32

 The process ID of the notifying backend process.

 String

 The name of the condition that the notify has been raised on.

Query (F)

Chapter 25. Frontend/Backend Protocol

215

 Byte1(’Q’)

 Identifies the message as a query.

 String

 The query string itself.

ReadyForQuery (B)

 Byte1(’Z’)

 Identifies the message type. ReadyForQuery is sent whenever the backend is ready
for a new query cycle.

RowDescription (B)

 Byte1(’T’)

 Identifies the message as a row description.

 Int16

 Specifies the number of fields in a row (may be zero).

 Then, for each field, there is the following:

 String

 Specifies the field name.

 Int32

 Specifies the object ID of the field type.

 Int16

 Specifies the type size.

 Int32

 Specifies the type modifier.

StartupPacket (F)

 Int32(296)

 The size of the packet in bytes.

 Int32

 The protocol version number. The most significant 16 bits are the major version
number. The least 16 significant bits are the minor version number.

Chapter 25. Frontend/Backend Protocol

216

 LimString64

 The database name, defaults to the user name if empty.

 LimString32

 The user name.

 LimString64

 Any additional command line arguments to be passed to the backend by the
postmaster.

 LimString64

 Unused.

 LimString64

 The optional tty the backend should use for debugging messages.

Terminate (F)

 Byte1(’X’)

 Identifies the message as a termination.

UnencryptedPasswordPacket (F)

 Int32

 The size of the packet in bytes.

 String

 The unencrypted password.

217

Chapter 26. Postgres Signals

Note: Contributed by Massimo Dal Zotto (mailto:dz@cs.unitn.it)

Postgres uses the following signals for communication between the postmaster and backends:

Table 26-1. Postgres Signals

Signal postmaster Action Server Action

SIGHUP kill(*,sighup) read_pg_options

SIGINT die cancel query

SIGQUIT kill(*,sigterm) handle_warn

SIGTERM kill(*,sigterm), kill(*,9), die die

SIGPIPE ignored die

SIGUSR1 kill(*,sigusr1), die quickdie

SIGUSR2 kill(*,sigusr2) async notify (SI flush)

SIGCHLD reaper ignored (alive test)

SIGTTIN ignored

SIGTTOU ignored

SIGCONT dumpstatus

SIGFPE FloatExceptionHandler

Note: kill(*,signal) means sending a signal to all backends.

The main changes to the old signal handling are the use of SIGQUIT instead of SIGHUP to
handle warns, SIGHUP to re-read the pg_options file and the redirection to all active backends
of SIGHUP, SIGTERM, SIGUSR1 and SIGUSR2 sent to the postmaster. In this way these
signals sent to the postmaster can be sent automatically to all the backends without need to
know their pids. To shut down postgres one needs only to send a SIGTERM to postmaster and
it will stop automatically all the backends.

The SIGUSR2 signal is also used to prevent SI cache table overflow which happens when some
backend doesn’t process SI cache for a long period. When a backend detects the SI table full at
70% it simply sends a signal to the postmaster which will wake up all idle backends and make
them flush the cache.

Chapter 26. Postgres Signals

218

The typical use of signals by programmers could be the following:

stop postgres
kill -TERM $postmaster_pid

kill all the backends
kill -QUIT $postmaster_pid

kill only the postmaster
kill -INT $postmaster_pid

change pg_options
cat new_pg_options > $DATA_DIR/pg_options
kill -HUP $postmaster_pid

change pg_options only for a backend
cat new_pg_options > $DATA_DIR/pg_options
kill -HUP $backend_pid
cat old_pg_options > $DATA_DIR/pg_options

219

Chapter 27. gcc Default Optimizations

Note: Contributed by Brian Gallew (mailto:geek+@cmu.edu)

Configuring gcc to use certain flags by default is a simple matter of editing the
/usr/local/lib/gcc-lib/platform/version/specs file. The format of this file pretty simple. The file
is broken into sections, each of which is three lines long. The first line is "*section_name:"
(e.g. "*asm:"). The second line is a list of flags, and the third line is blank.

The easiest change to make is to append the desired default flags to the list in the appropriate
section. As an example, let’s suppose that I have linux running on a ’486 with gcc 2.7.2
installed in the default location. In the file /usr/local/lib/gcc-lib/i486-linux/2.7.2/specs, 13 lines
down I find the following section:

- ----------SECTION----------
*cc1:

- ----------SECTION----------

As you can see, there aren’t any default flags. If I always wanted compiles of C code to use
"-m486 -fomit-frame-pointer", I would change it to look like:

- ----------SECTION----------
*cc1:
- -m486 -fomit-frame-pointer

- ----------SECTION----------

If I wanted to be able to generate 386 code for another, older linux box lying around, I’d have
to make it look like this:

- ----------SECTION----------
*cc1:
%{!m386:-m486} -fomit-frame-pointer

- ----------SECTION----------

This will always omit frame pointers, any will build 486-optimized code unless -m386 is
specified on the command line.

You can actually do quite a lot of customization with the specs file. Always remember,
however, that these changes are global, and affect all users of the system.

220

Chapter 28. Backend Interface

Backend Interface (BKI) files are scripts that are input to the Postgres backend running in the
special "bootstrap" mode that allows it to perform database functions without a database system
already existing. BKI files can therefore be used to create the database system in the first place.
initdb uses BKI files to do just that: to create a database system. However, initdb’s BKI files
are generated internally. It generates them using the files global1.bki.source and
local1.template1.bki.source, which it finds in the Postgres "library" directory. They get
installed there as part of installing Postgres. These .source files get build as part of the Postgres
build process, by a build program called genbki. genbki takes as input Postgres source files that
double as genbki input that builds tables and C header files that describe those tables.

Related information may be found in documentation for initdb, createdb, and the SQL
command CREATE DATABASE.

BKI File Format

The Postgres backend interprets BKI files as described below. This description will be easier to
understand if the global1.bki.source file is at hand as an example. (As explained above, this
.source file isn’t quite a BKI file, but you’ll be able to guess what the resulting BKI file would
be anyway).

Commands are composed of a command name followed by space separated arguments.
Arguments to a command which begin with a $ are treated specially. If $$ are the first two
characters, then the first $ is ignored and the argument is then processed normally. If the $ is
followed by space, then it is treated as a NULL value. Otherwise, the characters following the $
are interpreted as the name of a macro causing the argument to be replaced with the macro’s
value. It is an error for this macro to be undefined.

Macros are defined using

define macro macro_name = macro_value

and are undefined using

undefine macro macro_name

and redefined using the same syntax as define.

Lists of general commands and macro commands follow.

General Commands

OPEN classname

 Open the class called classname for further manipulation.

Chapter 28. Backend Interface

221

CLOSE [classname]

 Close the open class called classname. It is an error if classname is not already opened. If
no classname is given, then the currently open class is closed.

PRINT

 Print the currently open class.

INSERT [OID=oid_value] (value1 value2 ...)

 Insert a new instance to the open class using value1, value2, etc., for its attribute values
and oid_value for its OID. If oid_value is not 0 , then this value will be used as the
instance’s object identifier. Otherwise, it is an error.

INSERT (value1 value2 ...)

 As above, but the system generates a unique object identifier.

CREATE classname (name1 = type1 [,name2 = type2[,...]])

 Create a class named classname with the attributes given in parentheses.

OPEN (name1 = type1 [,name2 = type2[,...]]) AS classname

 Open a class named classname for writing but do not record its existence in the system
catalogs. (This is primarily to aid in bootstrapping.)

DESTROY classname

 Destroy the class named classname.

DEFINE INDEX indexname ON class_name USING amname (opclass attr | (function(attr))

 Create an index named indexname on the class named classname using the amname access
method. The fields to index are called name1, name2 etc., and the operator collections to
use are collection_1, collection_2 etc., respectively.

Note: This last sentence doesn’t reference anything in the example. Should be changed to
make sense. - Thomas 1998-08-04

Macro Commands

DEFINE FUNCTION macro_name AS rettype function_name(args)

 Define a function prototype for a function named macro_name which has its value of type
rettype computed from the execution function_name with the arguments args declared in a
C-like manner.

DEFINE MACRO macro_name FROM FILE filename

 Define a macro named macro_name which has its value read from the file called filename.

Chapter 28. Backend Interface

222

Debugging Commands

Note: This section on debugging commands was commented-out in the original
documentation. Thomas 1998-08-05

r

 Randomly print the open class.

m -1

 Toggle display of time information.

m 0

 Set retrievals to now.

m 1 Jan 1 01:00:00 1988

 Set retrievals to snapshots of the specfied time.

m 2 Jan 1 01:00:00 1988, Feb 1 01:00:00 1988

 Set retrievals to ranges of the specified times. Either time may be replaced with space if an
unbounded time range is desired.

&A classname natts name1 type1 name2 type2 ...

 Add natts attributes named name1, name2, etc. of types type1, type2, etc. to the class
classname.

&RR oldclassname newclassname

 Rename the oldclassname class to newclassname.

&RA classname oldattname newattname classname oldattname
newattname

 Rename the oldattname attribute in the class named classname to newattname.

Example

The following set of commands will create the pg_opclass class containing the int_ops
collection as an object with an OID of 421, print out the class, and then close it.

create pg_opclass (opcname=name)
open pg_opclass
insert oid=421 (int_ops)
print
close pg_opclass

223

Chapter 29. Page Files

A description of the database file default page format.

This section provides an overview of the page format used by Postgres classes. User-defined
access methods need not use this page format.

In the following explanation, a byte is assumed to contain 8 bits. In addition, the term item
refers to data which is stored in Postgres classes.

Page Structure

The following table shows how pages in both normal Postgres classes and Postgres index
classes (e.g., a B-tree index) are structured.

Table 29-1. Sample Page Layout

Item Description

itemPointerData

filler

itemData...

Unallocated Space

ItemContinuationData

Special Space

‘‘ItemData 2’’

‘‘ItemData 1’’

ItemIdData

PageHeaderData

The first 8 bytes of each page consists of a page header (PageHeaderData). Within the header,
the first three 2-byte integer fields (lower, upper, and special) represent byte offsets to the start
of unallocated space, to the end of unallocated space, and to the start of special space. Special
space is a region at the end of the page which is allocated at page initialization time and which
contains information specific to an access method. The last 2 bytes of the page header, opaque,
encode the page size and information on the internal fragmentation of the page. Page size is
stored in each page because frames in the buffer pool may be subdivided into equal sized pages
on a frame by frame basis within a class. The internal fragmentation information is used to aid
in determining when page reorganization should occur.

Chapter 29. Page Files

224

Following the page header are item identifiers (ItemIdData). New item identifiers are allocated
from the first four bytes of unallocated space. Because an item identifier is never moved until it
is freed, its index may be used to indicate the location of an item on a page. In fact, every
pointer to an item (ItemPointer) created by Postgres consists of a frame number and an index of
an item identifier. An item identifier contains a byte-offset to the start of an item, its length in
bytes, and a set of attribute bits which affect its interpretation.

The items themselves are stored in space allocated backwards from the end of unallocated
space. Usually, the items are not interpreted. However when the item is too long to be placed
on a single page or when fragmentation of the item is desired, the item is divided and each
piece is handled as distinct items in the following manner. The first through the next to last
piece are placed in an item continuation structure (ItemContinuationData). This structure
contains itemPointerData which points to the next piece and the piece itself. The last piece is
handled normally.

Files

data/

 Location of shared (global) database files.

data/base/

 Location of local database files.

Bugs

The page format may change in the future to provide more efficient access to large objects.

This section contains insufficient detail to be of any assistance in writing a new access method.

225

Appendix DG1. The CVS Repository

 The Postgres source code is stored and managed using the CVS code management system.

 At least two methods, anonymous CVS and CVSup, are available to pull the CVS code tree
from the Postgres server to your local machine.

CVS Tree Organization

Author: Written by Marc G. Fournier (mailto:scrappy@hub.org) on 1998-11-05.

 The command cvs checkout has a flag, -r, that lets you check out a certain revision of a
module. This flag makes it easy to, for example, retrieve the sources that make up release 1.0 of
the module ‘tc’ at any time in the future:

$ cvs checkout -r REL6_4 tc

 This is useful, for instance, if someone claims that there is a bug in that release, but you cannot
find the bug in the current working copy.

Tip: You can also check out a module as it was at any given date using the -D option.

 When you tag more than one file with the same tag you can think about the tag as "a curve
drawn through a matrix of filename vs. revision number". Say we have 5 files with the
following revisions:

 file1 file2 file3 file4 file5

 1.1 1.1 1.1 1.1 /--1.1* <-*- TAG
 1.2*- 1.2 1.2 -1.2*-
 1.3 \- 1.3*- 1.3 / 1.3
 1.4 \ 1.4 / 1.4
 \-1.5*- 1.5
 1.6

 then the tag TAG will reference file1-1.2, file2-1.3, etc.

Note: For creating a release branch, other then a -b option added to the command, it’s the
same thing.

 So, to create the v6.4 release I did the following:

$ cd pgsql
$ cvs tag -b REL6_4

Appendix DG1. The CVS Repository

226

 which will create the tag and the branch for the RELEASE tree.

 Now, for those with CVS access, it’s too simple. First, create two subdirectories, RELEASE
and CURRENT, so that you don’t mix up the two. Then do:

cd RELEASE
cvs checkout -P -r REL6_4 pgsql
cd ../CURRENT
cvs checkout -P pgsql

 which results in two directory trees, RELEASE/pgsql and CURRENT/pgsql. From that point
on, CVS will keep track of which repository branch is in which directory tree, and will allow
independent updates of either tree.

 If you are only working on the CURRENT source tree, you just do everything as before we
started tagging release branches.

 After you’ve done the initial checkout on a branch

$ cvs checkout -r REL6_4

 anything you do within that directory structure is restricted to that branch. If you apply a patch
to that directory structure and do a

cvs commit

 while inside of it, the patch is applied to the branch and only the branch.

Getting The Source Via Anonymous CVS

 If you would like to keep up with the current sources on a regular basis, you can fetch them
from our CVS server and then use CVS to retrieve updates from time to time.

Anonymous CVS

1. You will need a local copy of CVS (Concurrent Version Control System), which you can
get from http://www.cyclic.com/ or any GNU software archive site. We currently
recommend version 1.10 (the most recent at the time of writing). Many systems have a
recent version of cvs installed by default.

2. Do an initial login to the CVS server:

$ cvs -d :pserver:anoncvs@postgresql.org:/usr/local/cvsroot login

 You will be prompted for a password; enter ’postgresql’. You should only need to do this
once, since the password will be saved in .cvspass in your home directory.

3. Fetch the Postgres sources:

cvs -z3 -d :pserver:anoncvs@postgresql.org:/usr/local/cvsroot co -P
pgsql

 which installs the Postgres sources into a subdirectory pgsql of the directory you are
currently in.

Appendix DG1. The CVS Repository

227

Note: If you have a fast link to the Internet, you may not need -z3, which instructs CVS to
use gzip compression for transferred data. But on a modem-speed link, it’s a very
substantial win.

 This initial checkout is a little slower than simply downloading a tar.gz file; expect it to
take 40 minutes or so if you have a 28.8K modem. The advantage of CVS doesn’t show up
until you want to update the file set later on.

4. Whenever you want to update to the latest CVS sources, cd into the pgsql subdirectory,
and issue

$ cvs -z3 update -d -P

 This will fetch only the changes since the last time you updated. You can update in just a
couple of minutes, typically, even over a modem-speed line.

5. You can save yourself some typing by making a file .cvsrc in your home directory that
contains

cvs -z3
update -d -P

 This supplies the -z3 option to all cvs commands, and the -d and -P options to cvs update.
Then you just have to say

$ cvs update

 to update your files.

Caution

 Some older versions of CVS have a bug that causes all checked-out files to be
stored world-writable in your directory. If you see that this has happened, you can do
something like

$ chmod -R go-w pgsql

 to set the permissions properly. This bug is fixed as of CVS version 1.9.28.

 CVS can do a lot of other things, such as fetching prior revisions of the Postgres sources rather
than the latest development version. For more info consult the manual that comes with CVS, or
see the online documentation at http://www.cyclic.com/.

Appendix DG1. The CVS Repository

228

Getting The Source Via CVSup

 An alternative to using anonymous CVS for retrieving the Postgres source tree is CVSup.
CVSup was developed by John Polstra (mailto:jdp@polstra.com) to distribute CVS repositories
and other file trees for the FreeBSD project (http://www.freebsd.org).

 A major advantage to using CVSup is that it can reliably replicate the entire CVS repository on
your local system, allowing fast local access to cvs operations such as log and diff. Other
advantages include fast synchronization to the Postgres server due to an efficient streaming
transfer protocol which only sends the changes since the last update.

Preparing A CVSup Client System

 Two directory areas are required for CVSup to do it’s job: a local CVS repository (or simply a
directory area if you are fetching a snapshot rather than a repository; see below) and a local
CVSup bookkeeping area. These can coexist in the same directory tree.

 Decide where you want to keep your local copy of the CVS repository. On one of our systems
we recently set up a repository in /home/cvs/, but had formerly kept it under a Postgres
development tree in /opt/postgres/cvs/. If you intend to keep your repository in /home/cvs/, then
put

setenv CVSROOT /home/cvs

 in your .cshrc file, or a similar line in your .bashrc or .profile file, depending on your shell.

 The cvs repository area must be initialized. Once CVSROOT is set, then this can be done with
a single command:

$ cvs init

 after which you should see at least a directory named CVSROOT when listing the CVSROOT
directory:

$ ls $CVSROOT
CVSROOT/

Running a CVSup Client

 Verify that cvsup is in your path; on most systems you can do this by typing

which cvsup

Appendix DG1. The CVS Repository

229

 Then, simply run cvsup using:

$ cvsup -L 2 postgres.cvsup

 where -L 2 enables some status messages so you can monitor the progress of the update, and
postgres.cvsup is the path and name you have given to your CVSup configuration file.

 Here is a CVSup configuration file modified for a specific installation, and which maintains a
full local CVS repository:

This file represents the standard CVSup distribution file
for the PostgreSQL ORDBMS project
Modified by lockhart@alumni.caltech.edu 1997-08-28
- Point to my local snapshot source tree
- Pull the full CVS repository, not just the latest snapshot
#
Defaults that apply to all the collections
*default host=postgresql.org
*default compress
*default release=cvs
*default delete use-rel-suffix
enable the following line to get the latest snapshot
#*default tag=.
enable the following line to get whatever was specified above or by
default
at the date specified below
#*default date=97.08.29.00.00.00

base directory points to where CVSup will store its ’bookmarks’
file(s)
will create subdirectory sup/
#*default base=/opt/postgres # /usr/local/pgsql
*default base=/home/cvs

prefix directory points to where CVSup will store the actual
distribution(s)
*default prefix=/home/cvs

complete distribution, including all below
pgsql

individual distributions vs ’the whole thing’
pgsql-doc
pgsql-perl5
pgsql-src

Appendix DG1. The CVS Repository

230

 The following is a suggested CVSup config file from the Postgres ftp site
(ftp://ftp.postgresql.org/pub/CVSup/README.cvsup) which will fetch the current snapshot
only:

This file represents the standard CVSup distribution file
for the PostgreSQL ORDBMS project
#
Defaults that apply to all the collections
*default host=postgresql.org
*default compress
*default release=cvs
*default delete use-rel-suffix
*default tag=.

base directory points to where CVSup will store its ’bookmarks’
file(s)
*default base=/usr/local/pgsql

prefix directory points to where CVSup will store the actual
distribution(s)
*default prefix=/usr/local/pgsql

complete distribution, including all below
pgsql

individual distributions vs ’the whole thing’
pgsql-doc
pgsql-perl5
pgsql-src

Installing CVSup

 CVSup is available as source, pre-built binaries, or Linux RPMs. It is far easier to use a binary
than to build from source, primarily because the very capable, but voluminous, Modula-3
compiler is required for the build.

CVSup Installation from Binaries

 You can use pre-built binaries if you have a platform for which binaries are posted on the
Postgres ftp site (ftp://postgresql.org/pub), or if you are running FreeBSD, for which CVSup is
available as a port.

Note: CVSup was originally developed as a tool for distributing the FreeBSD source tree. It
is available as a "port", and for those running FreeBSD, if this is not sufficient to tell how to
obtain and install it then please contribute a procedure here.

 At the time of writing, binaries are available for Alpha/Tru64, ix86/xBSD,
HPPA/HPUX-10.20, MIPS/irix, ix86/linux-libc5, ix86/linux-glibc, Sparc/Solaris, and
Sparc/SunOS.

1. Retrieve the binary tar file for cvsup (cvsupd is not required to be a client) appropriate for
your platform.

a. If you are running FreeBSD, install the CVSup port.

Appendix DG1. The CVS Repository

231

b. If you have another platform, check for and download the appropriate binary
from the Postgres ftp site (ftp://postgresql.org/pub).

2. Check the tar file to verify the contents and directory structure, if any. For the linux tar file
at least, the static binary and man page is included without any directory packaging.

a. If the binary is in the top level of the tar file, then simply unpack the tar file into
your target directory:

$ cd /usr/local/bin
$ tar zxvf /usr/local/src/cvsup-16.0-linux-i386.tar.gz
$ mv cvsup.1 ../doc/man/man1/

b. If there is a directory structure in the tar file, then unpack the tar file within
/usr/local/src and move the binaries into the appropriate location as above.

3. Ensure that the new binaries are in your path.

$ rehash
$ which cvsup
$ set path=(path to cvsup $path)
$ which cvsup
/usr/local/bin/cvsup

Installation from Sources

 Installing CVSup from sources is not entirely trivial, primarily because most systems will need
to install a Modula-3 compiler first. This compiler is available as Linux RPM, FreeBSD
package, or source code.

Note: A clean-source installation of Modula-3 takes roughly 200MB of disk space, which
shrinks to roughly 50MB of space when the sources are removed.

Linux installation

1. Install Modula-3.

a. Pick up the Modula-3 distribution from Polytechnique Montréal
(http://m3.polymtl.ca/m3), who are actively maintaining the code base originally
developed by the DEC Systems Research Center
(http://www.research.digital.com/SRC/modula-3/html/home.html). The PM3
RPM distribution is roughly 30MB compressed. At the time of writing, the
1.1.10-1 release installed cleanly on RH-5.2, whereas the 1.1.11-1 release is
apparently built for another release (RH-6.0?) and does not run on RH-5.2.

Tip: This particular rpm packaging has many RPM files, so you will likely want to
place them into a separate directory.

b. Install the Modula-3 rpms:

rpm -Uvh pm3*.rpm

Appendix DG1. The CVS Repository

232

2. Unpack the cvsup distribution:

cd /usr/local/src
tar zxf cvsup-16.0.tar.gz

3. Build the cvsup distribution, suppressing the GUI interface feature to avoid requiring X11
libraries:

make M3FLAGS="-DNOGUI"

 and if you want to build a static binary to move to systems which may not have Modula-3
installed, try:

make M3FLAGS="-DNOGUI -DSTATIC"

4. Install the built binary:

make M3FLAGS="-DNOGUI -DSTATIC" install

233

Appendix DG2. Documentation

 The purpose of documentation is to make Postgres easier to learn, use, and develop. The
documentation set should describe the Postgres system, language, and interfaces. It should be
able to answer common questions and to allow a user to find those answers on his own without
resorting to mailing list support.

Documentation Roadmap

 Postgres has four primary documentation formats:

 Plain text for pre-installation information.

 HTML, for on-line browsing and reference.

 Hardcopy, for in-depth reading and reference.

 man pages, for quick reference.

Table DG2-1. Postgres Documentation Products

 File Description

./COPYRIGHT Copyright notice

./INSTALL Installation instructions (text from
sgml->rtf->text)

./README Introductory info

./register.txt Registration message during make

./doc/bug.template Bug report template

./doc/postgres.tar.gz Integrated docs (HTML)

./doc/programmer.ps.gz Programmer’s Guide (Postscript)

./doc/programmer.tar.gz Programmer’s Guide (HTML)

./doc/reference.ps.gz Reference Manual (Postscript)

./doc/reference.tar.gz Reference Manual (HTML)

./doc/tutorial.ps.gz Introduction (Postscript)

./doc/tutorial.tar.gz Introduction (HTML)

./doc/user.ps.gz User’s Guide (Postscript)

./doc/user.tar.gz User’s Guide (HTML)

Appendix DG2. Documentation

234

 There are man pages available for installation, as well as a large number of plain-text
README-type files throughout the Postgres source tree.

The Documentation Project

 Packaged documentation is available in both HTML and Postscript formats. These are
available as part of the standard Postgres installation. We discuss here working with the
documentation sources and generating documentation packages.

 The documentation sources are written using SGML markup of plain text files. The purpose of
DocBook SGML is to allow an author to specify the structure and content of a technical
document (using the DocBook DTD), and to have a document style define how that content is
rendered into a final form (e.g. using Norm Walsh’s Modular Style Sheets).

 See Introduction to DocBook (http://nis-www.lanl.gov/~rosalia/mydocs/docbook-intro.html)
for a nice "quickstart" summary of DocBook features. DocBook Elements
(http://www.ora.com/homepages/dtdparse/docbook/3.0/) provides a powerful cross-reference
for features of DocBook.

 This documentation set is constructed using several tools, including James Clark’s jade
(http://www.jclark.com/jade/) and Norm Walsh’s Modular DocBook Stylesheets
(http://nwalsh.com/docbook/dsssl).

 Currently, hardcopy is produced by importing Rich Text Format (RTF) output from jade into
ApplixWare for minor formatting fixups, then exporting as a Postscript file.

 TeX (http://sunsite.unc.edu/pub/packages/TeX/systems/unix/) is a supported format for jade
output, but was not used at this time for several reasons, including the inability to make minor
format fixes before committing to hardcopy and generally inadequate table support in the TeX
stylesheets.

Documentation Sources

Documentation sources include plain text files, man pages, and html. However, most new
Postgres documentation will be written using the Standard Generalized Markup Language
(SGML) DocBook (http://www.ora.com/davenport/) Document Type Definition (DTD). Much
of the existing documentation has been or will be converted to SGML.

The purpose of SGML is to allow an author to specify the structure and content of a document
(e.g. using the DocBook DTD), and to have the document style define how that content is
rendered into a final form (e.g. using Norm Walsh’s stylesheets).

Documentation has accumulated from several sources. As we integrate and assimilate existing
documentation into a coherent documentation set, the older versions will become obsolete and
will be removed from the distribution. However, this will not happen immediately, and will not
happen to all documents at the same time. To ease the transition, and to help guide developers
and writers, we have defined a transition roadmap.

Here is the documentation plan for v6.5:

Appendix DG2. Documentation

235

Start compiling index information for the User’s and Administrator’s Guides.

Write more sections for the User’s Guide covering areas outside the reference pages. This
would include introductory information and suggestions for approaches to typical design
problems.

Merge information in the existing man pages into the reference pages and User’s Guide.
Condense the man pages down to reminder information, with references into the primary doc
set.

Convert the new sgml reference pages to new man pages, replacing the existing man pages.

Convert all source graphics to CGM format files for portability. Currently we mostly have
Applix Graphics sources from which we can generate .gif output. One graphic is only
available in .gif and .ps, and should be redrawn or removed.

Document Structure

There are currently five separate documents written in DocBook. Each document has a
container source document which defines the DocBook environment and other document
source files. These primary source files are located in doc/src/sgml/, along with many of the
other source files used for the documentation. The primary source files are:

postgres.sgml

 This is the integrated document, including all other documents as parts. Output is
generated in HTML since the browser interface makes it easy to move around all of the
documentation by just clicking. The other documents are available in both HTML and
hardcopy.

tutorial.sgml

 The introductory tutorial, with examples. Does not include programming topics, and is
intended to help a reader unfamiliar with SQL. This is the "getting started" document.

user.sgml

 The User’s Guide. Includes information on data types and user-level interfaces. This is the
place to put information on "why".

reference.sgml

 The Reference Manual. Includes Postgres SQL syntax. This is the place to put information
on "how".

programming.sgml

 The Programmer’s Guide. Includes information on Postgres extensibility and on the
programming interfaces.

admin.sgml

 The Administrator’s Guide. Include installation and release notes.

Appendix DG2. Documentation

236

Styles and Conventions

DocBook has a rich set of tags and constructs, and a suprisingly large percentage are directly
and obviously useful for well-formed documentation. The Postgres documentation set has only
recently been adapted to SGML, and in the near future several sections of the set will be
selected and maintained as prototypical examples of DocBook usage. Also, a short summary of
DocBook tags will be included below.

SGML Authoring Tools

The current Postgres documentation set was written using a plain text editor (or emacs/psgml;
see below) with the content marked up using SGML DocBook tags.

SGML and DocBook do not suffer from an oversupply of open-source authoring tools. The
most common toolset is the emacs/xemacs editing package with the psgml feature extension.
On some systems (e.g. RedHat Linux) these tools are provided in a typical full installation.

emacs/psgml

emacs (and xemacs) have an SGML major mode. When properly configured, this will allow
you to use emacs to insert tags and check markup consistancy.

 Put the following in your ~/.emacs environment file:

; ********** for SGML mode (psgml)

(setq sgml-catalog-files "/usr/lib/sgml/CATALOG")
(setq sgml-local-catalogs "/usr/lib/sgml/CATALOG")

(autoload ’sgml-mode "psgml" "Major mode to edit SGML files." t)

and add an entry in the same file for SGML into the (existing) definition for auto-mode-alist:

(setq
 auto-mode-alist
 ’(("\\.sgml$" . sgml-mode)
))

Each SGML source file has the following block at the end of the file:

!-- Keep this comment at the end of the file
Local variables:
mode: sgml
sgml-omittag:t
sgml-shorttag:t
sgml-minimize-attributes:nil
sgml-always-quote-attributes:t
sgml-indent-step:1
sgml-indent-data:t
sgml-parent-document:nil
sgml-default-dtd-file:"./reference.ced"
sgml-exposed-tags:nil
sgml-local-catalogs:"/usr/lib/sgml/catalog"
sgml-local-ecat-files:nil
End:
--

 The Postgres distribution includes a parsed DTD definitions file reference.ced. You may find
that

Appendix DG2. Documentation

237

When using emacs/psgml, a comfortable way of working with these separate files of book parts
is to insert a proper DOCTYPE declaration while you’re editing them. If you are working on
this source, for instance, it’s an appendix chapter, so you would specify the document as an
"appendix" instance of a DocBook document by making the first line look like this:

!doctype appendix PUBLIC "-//Davenport//DTD DocBook V3.0//EN"

This means that anything and everything that reads SGML will get it right, and I can verify the
document with "nsgmls -s docguide.sgml".

Building Documentation

GNU make is used to build documentation from the DocBook sources. There are a few
environment definitions which may need to be set or modified for your installation. The
Makefile looks for doc/../src/Makefile and (implicitly) for doc/../src/Makefile.custom to obtain
environment information. On my system, the src/Makefile.custom looks like

Makefile.custom
Thomas Lockhart 1998-03-01

POSTGRESDIR= /opt/postgres/current
CFLAGS+= -m486
YFLAGS+= -v

documentation

HSTYLE= /home/tgl/SGML/db107.d/docbook/html
PSTYLE= /home/tgl/SGML/db107.d/docbook/print

where HSTYLE and PSTYLE determine the path to docbook.dsl for HTML and hardcopy
(print) stylesheets, respectively. These stylesheet file names are for Norm Walsh’s Modular
Style Sheets; if other stylesheets are used then one can define HDSL and PDSL as the full path
and file name for the stylesheet, as is done above for HSTYLE and PSTYLE. On many
systems, these stylesheets will be found in packages installed in /usr/lib/sgml/,
/usr/share/lib/sgml/, or /usr/local/lib/sgml/.

HTML documentation packages can be generated from the SGML source by typing

% cd doc/src
% make tutorial.tar.gz
% make user.tar.gz
% make admin.tar.gz
% make programmer.tar.gz
% make postgres.tar.gz
% make install

These packages can be installed from the main documentation directory by typing

% cd doc
% make install

Hardcopy Generation for v6.5

 The hardcopy Postscript documentation is generated by converting the SGML source code to
RTF, then importing into ApplixWare-4.4.1. After a little cleanup (see the following section)
the output is "printed" to a postscript file.

Appendix DG2. Documentation

238

RTF Cleanup Procedure

 Several items must be addressed in generating Postscript hardcopy:

Applixware RTF Cleanup

 Applixware does not seem to do a complete job of importing RTF generated by jade/MSS. In
particular, all text is given the Header1 style attribute label, although the text formatting itself
is acceptable. Also, the Table of Contents page numbers do not refer to the section listed in the
table, but rather refer to the page of the ToC itself.

1. Generate the RTF input by typing

% cd doc/src/sgml
% make tutorial.rtf

2. Open a new document in Applix Words and then import the RTF file.

3. Print out the existing Table of Contents, to mark up in the following few steps.

4. Insert figures into the document. Center each figure on the page using the centering
margins button.

 Not all documents have figures. You can grep the SGML source files for the string
Graphic to identify those parts of the documentation which may have figures. A few
figures are replicated in various parts of the documentation.

5. Work through the document, adjusting page breaks and table column widths.

6. If a bibliography is present, Applix Words seems to mark all remaining text after the first
title as having an underlined attribute. Select all remaining text, turn off underlining using
the underlining button, then explicitly underline each document and book title.

7. Work through the document, marking up the ToC hardcopy with the actual page number of
each ToC entry.

8. Replace the right-justified incorrect page numbers in the ToC with correct values. This
only takes a few minutes per document.

9. Save the document as native Applix Words format to allow easier last minute editing later.

10. Export the document to a file in Postscript format.

11. Compress the Postscript file using gzip. Place the compressed file into the doc directory.

Toolsets

We have documented experience with two installation methods for the various tools that are
needed to process the documentation. One is installation from RPMs on Linux, the other is a
general installation from original distributions of the individual tools. Both will be described
below.

We understand that there are some other packaged distributions for these tools. FreeBSD seems
to have them available. Please report package status to the docs mailing list and we will include
that information here.

Appendix DG2. Documentation

239

RPM installation on Linux

Install RPMs (ftp://ftp.cygnus.com/pub/home/rosalia/) for Jade and related packages.

Manual installation of tools

This is a brief run-through of the process of obtaining and installing the software you’ll need to
edit DocBook source with Emacs and process it with Norman Walsh’s DSSSL style sheets to
create HTML and RTF.

These instructions do not cover new jade/DocBook support in the sgml-tools
(http://www.sgmltools.org/) package. The authors have not tried this package since it adopted
DocBook, but it is almost certainly a good candidate for use.

Prerequisites

What you need:

A working installation of GCC 2.7.2

A working installation of Emacs 19.19 or later

An unzip program for UNIX to unpack things

What you must fetch:

James Clark’s Jade (ftp://ftp.jclark.com/pub/jade/) (version 1.1 in file jade1_1.zip was
current at the time of writing)

DocBook version 3.0 (http://www.ora.com/davenport/docbook/current/docbk30.zip)

Norman Walsh’s Modular Stylesheets (http://nwalsh.com/docbook/dsssl/) (version 1.41 was
used to produce these documents)

Lennart Staflin’s PSGML (ftp://ftp.lysator.liu.se/pub/sgml/) (version 1.0.1 in
psgml-1.0.1.tar.gz was available at the time of writing)

Important URLs:

The Jade web page (http://www.jclark.com/jade/)

The DocBook web page (http://www.ora.com/davenport/)

The Modular Stylesheets web page (http://nwalsh.com/docbook/dsssl/)

The PSGML web page (http://www.lysator.liu.se/projects/about_psgml.html)

Steve Pepper’s Whirlwind Guide (http://www.infotek.no/sgmltool/guide.htm)

Robin Cover’s database of SGML software (http://www.sil.org/sgml/publicSW.html)

Installing Jade

Installing Jade

1. Read the installation instructions at the above listed URL.

2. Unzip the distribution kit in a suitable place. The command to do this will be something
like

unzip -aU jade1_1.zip

Appendix DG2. Documentation

240

3. Jade is not built using GNU Autoconf, so you’ll need to edit a Makefile yourself. Since
James Clark has been good enough to prepare his kit for it, it is a good idea to make a build
directory (named for your machine architecture, perhaps) under the main directory of the
Jade distribution, copy the file Makefile from the main directory into it, edit it there, and
then run make there.

However, the Makefile does need to be edited. There is a file called Makefile.jade in the
main directory, which is intended to be used with make -f Makefile.jade when building
Jade (as opposed to just SP, the SGML parser kit that Jade is built upon). We suggest that
you don’t do that, though, since there is more that you need to change than what is in
Makefile.jade, so you’d have to edit one of them anyway.

Go through the Makefile, reading James’ instructions and editing as needed. There are
various variables that need to be set. Here is a collected summary of the most important
ones, with typical values:

prefix = /usr/local
XDEFINES =
-DSGML_CATALOG_FILES_DEFAULT=\"/usr/local/share/sgml/catalog\"
XLIBS = -lm
RANLIB = ranlib
srcdir = ..
XLIBDIRS = grove spgrove style
XPROGDIRS = jade

Note the specification of where to find the default catalog of SGML support files -- you
may want to change that to something more suitable for your own installation. If your
system doesn’t need the above settings for the math library and the ranlib command, leave
them as they are in the Makefile.

4. Type make to build Jade and the various SP tools.

5. Once the software is built, make install will do the obvious.

Installing the DocBook DTD Kit

Installing the DocBook DTD Kit

1. You’ll want to place the files that make up the DocBook DTD kit in the directory you built
Jade to expect them in, which, if you followed our suggestion above, is
/usr/local/share/sgml/. In addition to the actual DocBook files, you’ll need to have a
catalog file in place, for the mapping of document type specifications and external entity
references to actual files in that directory. You’ll also want the ISO character set mappings,
and probably one or more versions of HTML.

One way to install the various DTD and support files and set up the catalog file, is to
collect them all into the above mentioned directory, use a single file named CATALOG to
describe them all, and then create the file catalog as a catalog pointer to the former, by
giving it the single line of content:

CATALOG /usr/local/share/sgml/CATALOG

2. The CATALOG file should then contain three types of lines. The first is the (optional)
SGML declaration, thus:

SGMLDECL docbook.dcl

Next, the various references to DTD and entity files must be resolved. For the DocBook
files, these lines look like this:

PUBLIC "-//Davenport//DTD DocBook V3.0//EN" docbook.dtd

Appendix DG2. Documentation

241

PUBLIC "-//USA-DOD//DTD Table Model 951010//EN" cals-tbl.dtd
PUBLIC "-//Davenport//ELEMENTS DocBook Information Pool V3.0//EN"
dbpool.mod
PUBLIC "-//Davenport//ELEMENTS DocBook Document Hierarchy V3.0//EN"
dbhier.mod
PUBLIC "-//Davenport//ENTITIES DocBook Additional General Entities
V3.0//EN" dbgenent.mod

3. Of course, a file containing these comes with the DocBook kit. Note that the last item on
each of these lines is a file name, given here without a path. You can put the files in
subdirectories of your main SGML directory if you like, of course, and modify the
reference in the CATALOG file. DocBook also references the ISO character set entities, so
you need to fetch and install these (they are available from several sources, and are easily
found by way of the URLs listed above), along with catalog entries for all of them, such as:

PUBLIC "ISO 8879-1986//ENTITIES Added Latin 1//EN" ISO/ISOlat1

Note how the file name here contains a directory name, showing that we’ve placed the ISO
entity files in a subdirectory named ISO. Again, proper catalog entries should accompany
the entity kit you fetch.

Installing Norman Walsh’s DSSSL Style Sheets

Installing Norman Walsh’s DSSSL Style Sheets

1. Read the installation instructions at the above listed URL.

2. To install Norman’s style sheets, simply unzip the distribution kit in a suitable place. A
good place to dot this would be /usr/local/share, which places the kit in a directory tree
under /usr/local/share/docbook. The command will be something like

unzip -aU db119.zip

3. One way to test the installation is to build the HTML and RTF forms of the PostgreSQL
User’s Guide.

a. To build the HTML files, go to the SGML source directory, doc/src/sgml, and
say

jade -t sgml -d /usr/local/share/docbook/html/docbook.dsl -D
../graphics postgres.sgml

book1.htm is the top level node of the output..

b. To generate the RTF output, ready for importing into your favorite word
processing system and printing, type:

jade -t rtf -d /usr/local/share/docbook/print/docbook.dsl -D
../graphics postgres.sgml

Installing PSGML

Installing PSGML

1. Read the installation instructions at the above listed URL.

2. Unpack the distribution file, run configure, make and make install to put the byte-compiled
files and info library in place.

3. Then add the following lines to your /usr/local/share/emacs/site-lisp/site-start.el file to
make Emacs properly load PSGML when needed:

(setq load-path
 (cons "/usr/local/share/emacs/site-lisp/psgml" load-path))
(autoload ’sgml-mode "psgml" "Major mode to edit SGML files." t)

Appendix DG2. Documentation

242

4. If you want to use PSGML when editing HTML too, also add this:

(setq auto-mode-alist
 (cons ’("\\.s?html?\\’" . sgml-mode) auto-mode-alist))

5. There is one important thing to note with PSGML: its author assumed that your main
SGML DTD directory would be /usr/local/lib/sgml. If, as in the examples in this chapter,
you use /usr/local/share/sgml, you have to compensate for this.

a. You can set the SGML_CATALOG_FILES environment variable.

b. You can customize your PSGML installation (its manual tells you how).

c. You can even edit the source file psgml.el before compiling and installing
PSGML, changing the hard-coded paths to match your own default.

Installing JadeTeX

If you want to, you can also install JadeTeX to use TeX as a formatting backend for Jade. Note
that this is still quite unpolished software, and will generate printed output that is inferior to
what you get from the RTF backend. Still, it works all right, especially for simpler documents
that don’t use tables, and as both JadeTeX and the style sheets are under continuous
improvement, it will certainly get better over time.

To install and use JadeTeX, you will need a working installation of TeX and LaTeX2e,
including the supported tools and graphics packages, Babel, AMS fonts and AMS-LaTeX, the
PSNFSS extension and companion kit of "the 35 fonts", the dvips program for generating
PostScript, the macro packages fancyhdr, hyperref, minitoc, url and ot2enc, and of course
JadeTeX itself. All of these can be found on your friendly neighborhood CTAN site.

JadeTeX does not at the time of writing come with much of an installation guide, but there is a
makefile which shows what is needed. It also includes a directory cooked, wherein you’ll find
some of the macro packages it needs, but not all, and not complete -- at least last we looked.

Before building the jadetex.fmt format file, you’ll probably want to edit the jadetex.ltx file, to
change the configuration of Babel to suit your locality. The line to change looks something like

\RequirePackage[german,french,english]{babel}[1997/01/23]

and you should obviously list only the languages you actually need, and have configured Babel
for.

With JadeTeX working, you should be able to generate and format TeX output for the
PostgreSQL manuals by giving the commands (as above, in the doc/src/sgml directory)

jade -t tex -d /usr/local/share/docbook/print/docbook.dsl -D
../graphics postgres.sgml
jadetex postgres.tex
jadetex postgres.tex
dvips postgres.dvi

Of course, when you do this, TeX will stop during the second run, and tell you that its capacity
has been exceeded. This is, as far as we can tell, because of the way JadeTeX generates cross
referencing information. TeX can, of course, be compiled with larger data structure sizes. The
details of this will vary according to your installation.

Appendix DG2. Documentation

243

Alternate Toolsets

sgml-tools v2.x now supports jade and DocBook. It may be the preferred toolset for working
with SGML but we have not had a chance to evaluate the new package.

244

Bibliography

 Selected references and readings for SQL and Postgres.

SQL Reference Books

 The Practical SQL Handbook , Bowman et al, 1993 , Using Structured Query Language , 3,
Judity Bowman, Sandra Emerson, and Marcy Damovsky, 0-201-44787-8, 1996,
Addison-Wesley, 1997.

 A Guide to the SQL Standard , Date and Darwen, 1997 , A user’s guide to the standard
database language SQL , 4, C. J. Date and Hugh Darwen, 0-201-96426-0, 1997,
Addison-Wesley, 1997.

 An Introduction to Database Systems , Date, 1994 , 6, C. J. Date, 1, 1994, Addison-Wesley,
1994.

 Understanding the New SQL , Melton and Simon, 1993 , A complete guide, Jim Melton and
Alan R. Simon, 1-55860-245-3, 1993, Morgan Kaufmann, 1993.

Abstract

Accessible reference for SQL features.

 Principles of Database and Knowledge : Base Systems , Ullman, 1988 , Jeffrey D. Ullman, 1,
Computer Science Press , 1988 .

PostgreSQL-Specific Documentation

 The PostgreSQL Administrator’s Guide, Edited by Thomas Lockhart, 1999-06-01, The
PostgreSQL Global Development Group.

 The PostgreSQL Developer’s Guide, Edited by Thomas Lockhart, 1999-06-01, The
PostgreSQL Global Development Group.

 The PostgreSQL Programmer’s Guide, Edited by Thomas Lockhart, 1999-06-01, The
PostgreSQL Global Development Group.

 The PostgreSQL Tutorial Introduction, Edited by Thomas Lockhart, 1999-06-01, The
PostgreSQL Global Development Group.

 The PostgreSQL User’s Guide, Edited by Thomas Lockhart, 1999-06-01, The PostgreSQL
Global Development Group.

 Enhancement of the ANSI SQL Implementation of PostgreSQL, Stefan Simkovics,
O.Univ.Prof.Dr.. Georg Gottlob, November 29, 1998, Department of Information
Systems, Vienna University of Technology .

 Discusses SQL history and syntax, and describes the addition of INTERSECT and
EXCEPT constructs into Postgres. Prepared as a Master’s Thesis with the support of
O.Univ.Prof.Dr. Georg Gottlob and Univ.Ass. Mag. Katrin Seyr at Vienna University of
Technology.

Bibliography

245

 The Postgres95 User Manual, A. Yu and J. Chen, The POSTGRES Group , Sept. 5, 1995,
University of California, Berkeley CA.

Proceedings and Articles

 Partial indexing in POSTGRES: research project , Olson, 1993 , Nels Olson, 1993, UCB Engin
T7.49.1993 O676, University of California, Berkeley CA.

 A Unified Framework for Version Modeling Using Production Rules in a Database System ,
Ong and Goh, 1990 , L. Ong and J. Goh, April, 1990, ERL Technical Memorandum
M90/33, University of California, Berkeley CA.

 The Postgres Data Model , Rowe and Stonebraker, 1987 , L. Rowe and M. Stonebraker, Sept.
1987, VLDB Conference, Brighton, England, 1987.

 Generalized partial indexes
(http://simon.cs.cornell.edu/home/praveen/papers/partindex.de95.ps.Z) , , P. Seshadri and
A. Swami, March 1995, Eleventh International Conference on Data Engineering, 1995,
Cat. No.95CH35724, IEEE Computer Society Press.

 The Design of Postgres , Stonebraker and Rowe, 1986 , M. Stonebraker and L. Rowe, May
1986, Conference on Management of Data, Washington DC, ACM-SIGMOD, 1986.

 The Design of the Postgres Rules System, Stonebraker, Hanson, Hong, 1987 , M. Stonebraker,
E. Hanson, and C. H. Hong, Feb. 1987, Conference on Data Engineering, Los Angeles,
CA, IEEE, 1987.

 The Postgres Storage System , Stonebraker, 1987 , M. Stonebraker, Sept. 1987, VLDB
Conference, Brighton, England, 1987.

 A Commentary on the Postgres Rules System , Stonebraker et al, 1989, M. Stonebraker, M.
Hearst, and S. Potamianos, Sept. 1989, Record 18(3), SIGMOD, 1989.

 The case for partial indexes (DBMS)
(http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M89-17.pdf) , Stonebraker,
M, 1989b, M. Stonebraker, Dec. 1989, Record 18(no.4):4-11, SIGMOD, 1989.

 The Implementation of Postgres , Stonebraker, Rowe, Hirohama, 1990 , M. Stonebraker, L. A.
Rowe, and M. Hirohama, March 1990, Transactions on Knowledge and Data Engineering
2(1), IEEE.

 On Rules, Procedures, Caching and Views in Database Systems , Stonebraker et al, ACM,
1990 , M. Stonebraker and et al, June 1990, Conference on Management of Data,
ACM-SIGMOD.

