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CIS603 - Artificial Intelligence

Vasileios Megalooikonomou

(some material adopted from notes by M. Hauskrecht)

  Logistic regression 
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Supervised learning

Data:                                     a set of n examples                                 

is input vector, and y is desired output (given by a teacher)

Objective: learn the mapping 

s.t.

Two types of problems:
• Regression: Y is continuous

Example: earnings, product orders       company stock price

• Classification: Y is discrete
Example: temperature, heart rate        disease

Now:  BINARY classification problems
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Binary classification

• Two classes

• Our goal is to learn to classify correctly two types of examples

– Class 0 – labeled as 0, 

– Class 1 – labeled as 1

• We would like to learn

• First step: we need to devise a model of the function f

• Inspiration: neuron (nerve cells)
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Neuron

• neuron (nerve cell) and its activities
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Neuron-based binary classification model
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Binary classification

• Instead of learning the mapping to discrete values 0,1 

• It is easier to learn a probabilistic function

– where f’ describes the probability of a class 1 given x

• Transformation to discrete class values:

• Logistic regression model uses a probabilistic function 
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Logistic regression

• Logistic regression:
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Logistic function

function

• also referred to as sigmoid function

• replaces threshold function with smooth switching 

• takes a real number and outputs the number in the interval [0,1]

)1(

1
)(

ze
zg −+

=

-20 -15 -10 -5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



5

CIS603 - AI

Logistic regression - Decision boundary

Logistic regression model defines a linear decision boundary
• Example: 2 classes (crosses and circles)
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Binary classification - Error

• Two classes

• Our goal is to classify correctly as many examples as possible

• Zero-one error function 

• Error we would like to minimize:

• The error is minimized if we choose:

• We construct a probabilistic version of the error function based
on the
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• Likelihood of data

We want weights w that maximize the likelihood of data
• Trick: maximize the log-likelihood of data instead

• Rational: The optimal weights are the same for both the 
likelihood and the log-likelihood

Logistic regression: parameter learning
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Logistic regression: parameter estimation
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• Log likelihood

• On-line component of the log-likelihood

• Derivatives of the online error component (in terms of 
weights)
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Logistic regression. Online gradient.

• We want to find the set of parameters optimizing the log-
likelihood of data or minimizing the error

• On-line learning update for weight w

• (i+1)th update for the logistic regression and 
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The same, easy update rule as used in the linear regression !!!
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α - annealed learning rate (depends on the number of updates)
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Online logistic regression algorithm

Online-logistic-regression (D, number of iterations)

initialize weights

for i=1:1: number of iterations

do      select a data point d=<x,y> from D

set 
update weights (in parallel)

end for
return weights
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Online algorithm. Example.
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Online algorithm. Example.
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Online algorithm. Example.
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Limitations of basic linear units

Logistic regressionLinear regression
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Logistic regression -  Decision boundary

Logistic regression model defines a linear decision boundary
• Example: 2 classes (crosses and circles)
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Linear decision boundary
• Example when logistic regression model is not optimal, but 

not that bad
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When logistic regression fails?

• Example in which the logistic regression model fails
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Limitations of logistic regression. 
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Extensions of simple linear units
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The same trick can be done for the logistic regression

)(xjφ - an arbitrary function of x

Replace inputs to linear units with feature (basis) functions
to model nonlinearities
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Extension of simple linear units

• Example: Fitting of a polynomial of degree m
– Data points: pairs of 
– Feature functions:

– Function to learn:

– On line update for <x,y> pair
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Multi-layered neural networks

• Alternative way to introduce nonlinearities to 
regression/classification models

• Idea: Cascade several simple neural models (based on logistic 
regression). Much like neuron connections.


