Learning

Vasileios Megalooikonomou

(some material adopted from notes by M. Hauskrecht)

Machine Learning

- The field of machine learning studies design of computer programs (agents) capable of learning from past experience and adapt to the new environment

- The need for building agents capable of learning is everywhere
 - Medical diagnosis, text classification, speech recognition, image/text retrieval, commercial software

- Machine learning is not only the deduction but induction of rules from examples that facilitate prediction and decision making
Learning

• Learning process:
 – Learner (a computer program) processes data D representing the past experiences and tries to either derive something reasonable about the data seen or to develop some appropriate response to future data

• Example:
 – Learner sees a set of patient cases with corresponding disease labels and tries to predict the disease for future patient cases

Types of learning

Three main types:

• Supervised learning
 – Learning mapping between inputs x and desired outputs y
 – Teacher provides y’s for the learning purposes

• Unsupervised learning
 – Learning relations between data components

• Reinforcement learning
 – Learning mapping between inputs x and desired outputs y
 – Critic does not provide y’s but instead a signal (reinforcement) of how good my answer was
Supervised learning

Data: \(D = \{ d_1, d_2, ..., d_n \} \) \text{ a set of } \(n \) examples
\[d_i = \langle \mathbf{x}_i, y_i \rangle \]
\(\mathbf{x}_i \) is input vector, and \(y \) is desired output (provided by a teacher)

Objective: learn the mapping \(f : X \rightarrow Y \)
\[s.t. \quad y_i = f (\mathbf{x}_i) \quad \text{for all} \quad i = 1, ..., n \]

Two types of problems:
- **Regression:** \(Y \) is continuous
 Example: earnings, product orders \(\rightarrow \) company stock price
- **Classification:** \(Y \) is discrete
 Example: temperature, heart rate \(\rightarrow \) disease

Unsupervised learning

- **Data:** \(D = \{ d_1, d_2, ..., d_n \} \)
 \[d_i = \mathbf{x}_i \] vector of values
 No target value (output) \(y \) to learn

- **Objective:**
 – learn relations between samples, components of samples

Types of problems:
- **Clustering**
 Group together “similar” sample instances, e.g. patient cases
- **Density estimation**
 – Model probabilistically the population of samples
Unsupervised learning. Density estimation

• We want to build the probability model of a population from which we draw samples $d_i = x_i$.

Unsupervised learning. Density estimation

• Mixture of Gaussians – gives a probability distribution of a point in two dimensional space being seen.)
Reinforcement learning

- We want to learn: \(f : X \rightarrow Y \)
- We see samples of \(x \) but not \(y \)
- Instead of \(y \) we get a feedback (reinforcement) from a critic about how good our output was

The goal is to select output that leads to the BEST reinforcement

Learning

- Assume we see examples of pairs \((x, y)\) and want to learn the mapping \(f : X \rightarrow Y \) for all possible values of \(x \)
- We get the data what should we do?
Learning bias

- **Problem**: many possible functions \(f : X \rightarrow Y \) exists for representing the mapping between \(x \) and \(y \)
- Which one to choose? Many samples still unseen!

\[
\begin{align*}
\text{Problem is easier when we make an assumption about the model, say,} & \quad f(x) = ax + b + \epsilon \\
\epsilon & \sim N(0, \sigma) \quad \text{- random (normally distributed) noise} \\
\text{Restriction to the linear model is an example of learning bias}
\end{align*}
\]
Learning bias

- **Bias** provides the learner with some basis for choosing among possible representations of the function.
- **Bias**: constraints, restrictions, preferences among models
- **There is no learning without bias!**

Choosing a parametric model or a set of models is not enough. Still too many functions $f(x) = ax + b + \epsilon \quad \epsilon = N(0, \sigma)$

- One for every pair of parameters a, b
Fitting the data to the model

- We are interested in finding the best set of model parameters

Objective:
- Find the set of parameters that reduce the misfit between what model suggests and what data say
- Or, that explain the data the best

Error function:

Measure of misfit between data and the model

- Examples of error functions:
 - Mean square error
 \[
 \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2
 \]
 - Misclassification error
 Average # of misclassified cases \(y_i \neq f(x_i) \)

Fitting the data to the model

- **Linear regression**
 - Least squares fit with the linear model

![Graph showing linear regression](image_url)
Typical learning

Three basic steps:

- **Select a model** or a set of models (with parameters)

 E.g. \(y = ax + b + \varepsilon \quad \varepsilon = N(0, \sigma) \)

- **Select the error function** to be optimized

 E.g. \(\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \)

- **Find the set of parameters optimizing the error function**

 – The model and parameters with the smallest error represent the best fit of the model to the data

But there are other problems one must be careful about

– One of the most significant is **overfitting**

Overfitting

- Assume we have a set of 10 points and we consider polynomial functions as possible models
Overfitting

• Fitting a linear function with mean-squares error
• Error is nonzero

Overfitting

• Linear vs. cubic polynomial
• Higher order polynomial leads to a better fit, smaller error
Overfitting

• Is it always good to minimize the error for observed data?

For 10 data points, degree 9 polynomial gives a perfect fit (Lagrange interpolation). Error is zero.

• Is it always good to minimize the training error? NO!!
• More important: How do we perform on the unseen data?
Generalization

- We would like the learner to predict correctly the values on the whole population of samples (many of them unseen in the training set)
- The true error of the learner is defined upon this population
- **Generalization error:** \(E_{(x,y)} (y - f(x, w))^2 \)
 Expected squared error
- **(Mean) training error:** \(\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i, w))^2 \)
- How well the training error approximates the true error?
- How to compute the generalization error? Approximation: Use separate data set with \(m \) data samples to test it
- **(Mean) test error** \(\frac{1}{m} \sum_{j=1}^{m} (y_j - f(x_j, w))^2 \)

Overfitting

- Situation when training error is low and generalization (test) error is high. Causes of the phenomenon:
 - Model with more degrees of freedom (more parameters)
 - Small data size (as compared to the complexity of model)
Overfitting. Solutions.

- **Increase the number of samples**
 - May not be possible
- **Divide data set to a training set and validation set**
 - Train (fit) on the training set;
 - Check for the generalization error on the validation set, choose the model based on the validation set error.
- **Regularization (Occam’s Razor)**
 - Penalize for the model complexity (number of parameters)
 - Explicit preference towards simple models