A TOP-DOWN APPROACH

TransEo rt Laxer

KUROSE * ROSS

A note on the use of these Powerpoint slides:

We’ re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you see the animations; and can add, modify,
and delete slides (including this one) and slide content to suit your needs.
They obviously represent a /ot of work on our part. In return for use, we only

ask the following: Computer
= If you use these slides (e.g., in a class) that you mention their source Networking: A Top

(after all, we’ d like people to use our book!)

= If you post any slides on a www site, that you note that they are adapted DO Wn Approach

from (or perhaps identical to) our slides, and note our copyright of this

material. .
7th edition
Thanks and enjoy! JFK/KWR Jim Ku rose, Keith Ross
All material copyright 1996-2016 Pearson/Addison Wesley
© | F Kurose and K.W. Ross, All Rights Reserved April 2016

Transport Layer 2-1

Chapter 3: Transport Layer

our goals:
= understand principles ® learn about Internet
behind transport transport layer protocols:
layer services: « UDP: connectionless
 multiplexing, transport
demultiplexing * TCP: connection-oriented
* reliable data transfer reliable transport
e flow control * TCP congestion control

* congestion control

Transport Layer 3-2

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure
 reliable data transfer

* flow control

* connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-3

Transport services and protocols

_ : . o
provide logical communication
between app processes

running on different hosts

" transport protocols run in
end systems

* send side: breaks app
messages into segments,
passes to network layer

e rcv side: reassembles
segments into messages, transport

networ

passes to app layer Gt I

= more than one transport T g e = gi
protocol available to apps v~ N

* Internet;: TCP and UDP

Transport Layer 3-4

Transport vs. network layer

= network layer: logical
communication
between hosts

" transport layer:
logical
communication
between processes

 relies on, enhances,

network layer
services

- household analogy:

| 2 kids in Ann’s house sending

letters to |2 kids in Bill ’s
house:

hosts = houses
processes = kids

app messages = letters in
envelopes

transport protocol = Ann
and Bill who demux to in-
house siblings

network-layer protocol =
postal service

Transport Layer 3-5

Internet transport-layer protocols

application
< DO

= reliable, in-order
delivery (TCP)
* congestion control
* flow control
* connection setup

= unreliable, unordered
delivery: UDP

* no-frills extension of
best-effort IP

" services not available:
* delay guarantees
* bandwidth guarantees

net

physical

ST o8
data li
hysic
Py network
netw data link
data [ink(e, hysical
physical O
Shwork .
' k
(E I (p
q network €%
e data link A
O
[_networkN(®,
data link
~mtemshySical
network

network Sl
data link gaegvl(ijrr]k
1 physical
7 oL P physical

Transport Layer 3-6

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure
 reliable data transfer

* flow control

* connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-7

Multiplexing/demultiplexing

- multiplexing at sender:
handle data from multiple

sockets, add transport header
(later used for demultiplexing)

application

application

— demultiplexing at receiver: —
use header info to deliver
received segments to correct
socket

»

transport

n

t

t

rk

network

[{rk

Y$i

ral

link
L ! physical

e —
application |:| socket

.m Q process

A

trandport

network

limk @
physical

Transport Layer 3-8

How demultiplexing works

" host receives |IP datagrams

* each datagram has source IP
address, destination IP
address

* each datagram carries one
transport-layer segment

* each segment has source,

destination port number

* host uses IP addresses &
pbort numbers to direct

segment to appropriate
socket

32 bits -

source port # | dest port #

other header fields

application
data

(payload)

TCP/UDP segment format

Transport Layer 3-9

Connectionless demultiplexing

" recall: created socket has " recall: when creating
host-local port #: datagram to send into
DatagramSocket mySocketl UDP socket, must specify
= new DatagramSocket (12534); . .

* destination IP address

* destination port #

= when host receives UDP IP datagrams with same
segment: dest. port #, but different

source IP addresses and/

* checks destination port # mmm)
i sesment P or source port numbers
. & will be directed to same
* directs UDP segment to socket at dest

socket with that port #

Transport Layer 3-10

Connectionless demux: example

DatagramSocket
serverSocket = new
DatagramSocket DatagramSocket DatagramSocket
mySocket2 = new mySocketl = new
DatagramSocket (6428) ; DatagramSocket
(9157); application (5775);
application application
vy
L4 trasport
trangport e V\lO n
network | n'(netivork
link plh‘/sical link
q physical phykical @
It I =
source port: 6428 source port: ?
; dest port: 9157] dest port: ?
> e v
source port: 9157 source port: ?
dest port: 6428 dest port: ?

Transport Layer 3-11

Connection-oriented demux

= TCP socket identified " server host may support
by 4-tuple: many simultaneous TCP
* source IP address sockets:
* source port number * each socket identified by
* dest IP address its own 4-tuple

* dest port number = web servers have
different sockets for
each connecting client

* non-persistent HT TP will
have different socket for
each request

" demux: receiver uses all
four values to direct
segment to appropriate

socket

Transport Layer 3-12

Connection-oriented demux: example

application e ——
application application
4 angport HTR
tranpport detwlork transport
net*vork lilk network
ik hysical link
q physical ol || server: |P physical b
e address B ——
host: IP source IP,port: B,80 T host: IP
address A dest IP,port: A,9157 source IP,port: C,5775 address C
- dest IP,port: B,80
source IP,port: A,9157 -
dest IP, port: B,80

source IPport: C,9157
dest IP,port: B,80_

three segments, all destined to IP address: B,

dest port: 80 are demultiplexed to different sockets Transport Layer 3-13

Connection-oriented demux: example

threaded server

application

application

4
tranpport

net*vork

q phylsical

<4

: source IP,port: B,80
azzf-gslf A dest IP,port: A,9157

source IP,port: A,9157
dest IP, port: B,80

application
B “transport
network
link
server: IP physical v
address B S
-] host: IP
~ source IP,port: C,5775 address C
dest IP,port: B,80

source IPport: C,9157
dest IP,port: B,80

Transport Layer 3-14

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure
 reliable data transfer

* flow control

* connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-15

UDP: User Datagram Protocol [RFC 768]

L2 11

= “no frills,” “bare bones”
Internet transport
protocol

= “best effort” service, UDP

segments may be:

e |ost

e delivered out-of-order
to app

m connectionless:

* no handshaking
between UDP sender,

receiver

* each UDP segment
handled independently
of others

= UDP use:

" streaming multimedia
apps (loss tolerant, rate
sensitive)

= DNS
= SNMP

= reliable transfer over
UDP:

" add reliability at
application layer

= application-specific error
recovery!

Transport Layer 3-16

UDP: segment header

length, in bytes of
UDP segment,
including header

32 bits

source port #

length <~ | checksum

— why is there a UDP? —

" NO cohnection

application establishment (which can
data add delay)
(payload)

" simple: no connection
state at sender, receiver

= small header size

" no congestion control:
UDP can blast away as fast
as desired

UDP segment format

Transport Layer 3-17

UDP checksum

Goal: detect “errors’” (e.g., flipped bits) in transmitted

segment

sender:

" treat segment contents,
including header fields,
as sequence of 16-bit
integers

" checksum: addition
(one s complement sum)
of segment contents

= sender puts checksum
value into UDP checksum
field

receiver:

= compute checksum of
received segment

" check if computed checksum
equals checksum field value:

* NO - error detected

* YES - no error detected.
But maybe errors
nonetheless? More later

Transport Layer 3-18

Internet checksum: example

example: add two | 6-bit integers
1110011001 10011
110101010101 01O01

wraparound 101110111011 1011
P >

sum

1011101110111 100
checksum 01 000100O0O1O0O0OO0OO01

Note: when adding numbers, a carryout from the most
significant bit needs to be added to the result

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/ Transport Layer 3-19

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure
 reliable data transfer

* flow control

* connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-20

