Introduction to Probability, Statistics and Random Processes

Chapter 1: Basic Concepts

Anduo Wang Temple University

 ${\bf Email:\ and uo.wang@gmail.com}$

 $https://cis\hbox{-}linux1.temple.edu/{\sim}tug29203/25fall\hbox{-}2033/index.html$

Set Theory

- A set is a collection of things called elements.
- A set is denoted in capital letters and defined by simply listing its elements in curly brackets. Example: $A = \{b, c\}$.
- Can also be defined as $A = \{x:x \text{ satisfies some property}\}.$
- Ordering does not matter in sets. Thus $\{1, 2, 3, 4\}$ and $\{3, 2, 1, 4\}$ are the same set.
- $b \in A$ b belongs to A where \in means belongs to.
- And $d \notin A$, where \notin means does not belong.

Important Sets

- The set of natural numbers, $\mathbb{N} = \{1, 2, 3, 4, \ldots\}$
- The set of integers, $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$
- The set of rational numbers Q.
- ullet The set of real numbers ${\mathbb R}$ and the set of complex numbers ${\mathbb C}.$
- Closed intervals on the real line. Example: [2,3] is set of real numbers such that $2 \le x \le 3$.
- Open intervals on the real line. Example: (1,2) is the set of real numbers such that 1 < x < 2.

More on Sets

- Set A is a subset of set B if every member of A is also a member of B. We write A ⊂ B, where ⊂ indicates subset.
- Equivalently B is the **superset** of A, $B \supset A$.
- Two sets are **equal** A = B, if they contain the same elements, that is $A \subset B$ and $B \subset A$
- The **universal set** S or Ω is the set of all things that we could possibly consider in the context we are studying.
- The universal set in probability is also called the sample space.
- The set with no elements is called the **empty** or **null set** $\phi = \emptyset$.

Venn Diagrams

- Venn Diagrams are very useful in visualizing relations between sets.
- In Venn Diagrams, a set is depicted by a closed region.

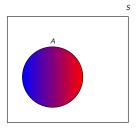


Figure: Venn Diagram

Venn Diagrams

- The figure below shows two sets, A and B, where $B \subset A$.
- Both A and B are subsets of the universal set S.

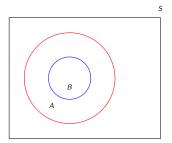


Figure: Venn Diagram for two sets A and B, where $B \subset A$.

Set Operations: Union

- The union of two sets is a set containing all elements that are in A or in B.
- Example: $\{1,2\} \cup \{2,3\} = \{1,2,3\}.$
- In general the union of n sets $A_1, A_2, ..., A_n$ is represented as $\bigcup_{i=1}^n A_i$.

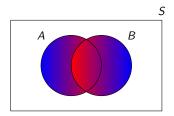


Figure: The shaded area shows the set $B \cup A$.

Set Operations: Intersection

- The intersection of two sets A and B is a set containing all elements that are in A and B.
- Example: $\{1,2\} \cap \{2,3\} = \{2\}.$
- In general, the intersection of n sets $\bigcap_{i=1}^{n} A_i$ is the set consisting of elements that are in all n sets.

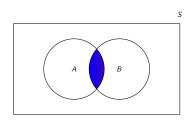


Figure: The shaded area shows the set $B \cap A$.

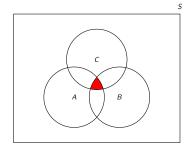


Figure: The shaded area shows the set $A \cap B \cap C$.

Set Operations: Complement

 The complement of a set A is the set of all elements that are in the universal set S but not in A.

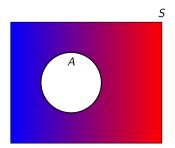


Figure: The shaded area shows the set $\bar{A} = A^c$.

Set Operations: Difference (Subtraction)

- The set A B consists of elements that are in A but not in B.
- Example: $A = \{1, 2, 3\}$ and $B = \{3, 5\}$, then $A B = \{1, 2\}$

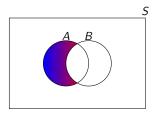


Figure: The shaded area shows the set A - B.

Mutually Exclusive or Disjoint Sets

- Sets A and B are mutually exclusive or disjoint if they do not have any shared elements.
- The intersection of two sets that are disjoint is the empty set i.e. $A \cap B = \emptyset$.
- In general, several sets are disjoint if they are pairwise disjoint.

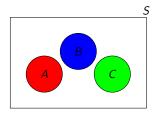


Figure: Sets *A*, *B*, and *C* are disjoint.

Partition of Sets

• A collection of non-empty set $A_1, A_2, ...$ is a **partition** of A if they are disjoint and their union is A.

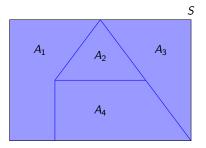


Figure: The collection of sets A_1 , A_2 , A_3 and A_4 is a partition of S.

Important Theorems

• De Morgan's Law:

For any sets A_1, A_2, \ldots, A_n , we have:

- $(A_1 \cup A_2 \cup A_3 \cup \ldots \cup A_n)^c = A_1^c \cap A_2^c \cap A_3^c \cap \ldots \cap A_n^c$
- $(A_1 \cap A_2 \cap A_3 \cap \ldots \cap A_n)^c = A_1^c \cup A_2^c \cup A_3^c \cup \ldots \cup A_n^c$
- Distributive Law

For any sets

•
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

•
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Cardinality in Finite sets

- Cardinality is basically the size of the set.
- If set A only has a finite number of elements, its cardinality is simply the number of elements in A.
- For example, if $A = \{2, 4, 6, 8, 10\}$, then |A| = 5.
- We will discuss cardinality of infinite sets later.

Inclusion-Exclusion Principle

- The inclusion-exclusion principle states that for two finite sets A, B and C.
 - $|A \cup B| = |A| + |B| |A \cap B|$.
- $|A \cup B \cup C| = |A| + |B| + |C| |A \cap B| |A \cap C| |B \cap C| + |A \cap B \cap C|$.
- In general for n finite sets A_1, A_2, \ldots, A_n

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{i=1}^{n} |A_i| - \sum_{i < j} |A_i \cap A_j|$$

$$+ \sum_{i < j < k} |A_i \cap A_j \cap A_k| - \cdots$$

$$+ (-1)^{n+1} |A_1 \cap \cdots \cap A_n|.$$

Cardinality in Infinite Sets

- There are two kinds of infinite sets: countable sets and uncountable sets.
- The difference between the two is that you can list elements in a countable set, so $A = \{a_1, a_2, \ldots\}$, but you cannot list elements in an uncountable set.
- The set $\mathbb R$ is uncountable and much *larger* than countably infinite sets $\mathbb N$ and $\mathbb Z$.

Countable vs. Uncountable Sets

- A more rigorous definition of a countable set A is
 - if it is a finite set, $|A| < \infty$; or
 - \bullet it can be put in one-to-one correspondence with natural numbers $\mathbb{N},$ in which case the set is said to be countably infinite.
- ullet $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ and any of their subsets are countable.
- Any set containing an interval on the real line such as [a, b], (a, b], [a, b) and (a, b), where a < b is uncountable.

Useful Theorems on Countability

- Any subset of a countable set is countable. Any superset of an uncountable set is uncountable.
- If A_1, A_2, \cdots is a list of countable sets, then the set $\bigcup_i A_i = A_1 \cup A_2 \cup A_3 \cdots$ is also countable.
- If A and B are countable, then $A \times B$ is also countable.

The Cartesian Product

- The Cartesian Product of two sets A and B, written as $A \times B$, is the set containing ordered pairs from A and B.
- Thus $A \times B = \{(x, y) \mid x \in A \text{ and } y \in B\}$
- For example, if $A = \{1, 2, 3\}$ and $B = \{H, T\}$, then $A \times B = \{(1, H), (1, T), (2, H), (2, T), (3, H), (3, T)\}$
- It is important to note that the pairs are ordered, thus $(1, H) \neq (H, 1)$ and $A \times B \neq B \times A$.

Multiplication Principle

- Multiplication principle: If two finite sets A has M elements and B has N elements, then $A \times B$ has $M \times N$ elements.
- In general for sets $A_1, A_2, \dots A_n$ with $|A_1| = M_1, |A_2| = M_2, \dots, |A_n| = M_n$, we have $|A_1 \times A_2 \times \dots \times A_n| = M_1 \times M_2 \times \dots \times M_n$.
- An important example is \mathbb{R}^n where n is a natural number. $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ is set of all points in the 2-D plane.

Functions

- A function maps elements from the domain set to elements in another set called the co-domain.
- Each input in the domain is mapped to exactly one output in the co-domain.
- It is denoted as $f: A \rightarrow B$.
- The range of a function is the set of all possible values of f(x) and is a subset of the co-domain.

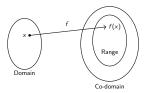


Figure: Function $f : A \rightarrow B$, the range is always a subset of the co-domain.

Random Experiments Revisited

- A random experiment is the process of observing something uncertain. For example: rolling a die.
- An **outcome** is a result of a random experiment.
- The set of all possible outcomes is called the sample space and in this context the universal set.
- When we repeat a random experiment several times, we call each one a trial.
- An event is a subset of the sample space.

Probability

- We assign a probability measure P(A) to an event A.
- This is a value set between 0 and 1 that shows how likely the event is and is such that
 - If P(A) is close to 0, the event A is very unlikely to occur.
 - If P(A) is close to 1, the event A is very likely to occur.
- Probability theory is based on the following axioms that act as the foundation for the theory.

Example: toss the coin

- In a coin-tossing experiment.
- What is the sample space? $\Omega (= \{H, T\} \text{ (head, tail)})$
- Assign $P({H}) = P({T}) = 0.5$, what does it mean?

Example: the birthday experiment

- When we ask for the month in which the next person we meet has his or her birthday
- What is the sample space? Ω (= { Jan, Feb, \cdots }
- Assign $P({Jan}) = P({Feb}) = 1/12$

Axioms of Probability

- **Axiom 1**: For any event $A, P(A) \ge 0$
- **Axiom 2**: Probability of the sample space S is P(S) = 1
- **Axiom 3**: If $A_1, A_2, A_3 ...$ are disjoint events, then $P(A_1 \cup A_2 \cup A_3 ...) = P(A_1) + P(A_2) + P(A_3) + ...$
- It is important to note that *union* means *or* and *intersection* means *and*.
 - a. $P(A \cap B) = P(A \text{ and } B) = P(A, B) = P(AB)$.
 - b. $P(A \cup B) = P(A \text{ or } B)$.

Discrete Probability Models

- Consider a sample space S. If S is a countable set, this refers to a discrete probability model. Since S is countable, we can list all the elements in S as $S = \{s_1, s_2, \ldots\}$.
- \bullet If A \subset S is an event, then A is also countable, and by the 3rd axiom of probability, we can say that

$$P(A) = P(\bigcup_{s_j \in A} \{s_j\}) = \sum_{s_j \in A} P(s_j)$$

 We sum the probability of individual elements in that set to find the probability of an event.

Finite Sample Space with Equally Likely Outcomes

- A special case of discrete probability model is a finite sample space where each outcome is equally likely that is $S = \{s_1, s_2, \dots, s_N\}$ where $P(s_i) = P(s_j)$ for all $i, j \in \{1, 2, \dots, N\}$.
- Since all outcomes are equally likely we have $P(s_i) = \frac{1}{N}$ for all $i \in \{1, 2, ..., N\}$.
- If A is an event with cardinality |A| = M, we have

$$P(A) = \sum_{s_i \in A} P(s_j) = \sum_{s_i \in A} \frac{1}{N} = \frac{M}{N} = \frac{|A|}{|S|}.$$

• Finding probability of A reduces to a counting problem.

The birthday experiment revisited

- In the birthday experiment we ask the next person we meet on the street in which month her birthday falls.
 - Event L (long month), R(contains a 'r')
- What is the probability of the event when the outcome is either a long month or contains a r?

Finding Probabilities

- To find the probability of an event, we usually follow these two steps
 - a. We use the specific information that we have about the random experiment.
 - b. We then use the probability axioms seen in the previous slide.
- We shall employ these steps in discrete and continuous probability models.

Inclusion Exclusion Principle and Other Useful Results

• Inclusion-Exclusion Principle

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) -$$

$$P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C).$$

- $P(A^C) = 1 P(A)$.
- Probability of the empty set is zero $P(\phi) = 0$.

 $P(A \cup B) = P(A) + P(B) - P(A \cap B),$

• For any event $P(A) \leq 1$.

The Addition Law for Probabilities

Theorem

Given any n events A_1, A_2, \cdots, A_n , let

$$P_1 = \sum_{i=1}^n P(A_i),$$

$$P_2 = \sum_{1 \le i < j \le n} P(A_i A_j),$$

$$P_3 = \sum_{1 \le i < j \le k \le n} P(A_i A_j A_k), \cdots$$

Then
$$P(\bigcup_{k=1}^{n} A_k) = P_1 - P_2 + P_3 - P_4 + \cdots \pm P_n$$

Example*: Coincidences

- Suppose n students have n identical raincoats which they unwittingly hang on the same coat rack while attending class. After class, each student selects a raincoat at random, being unable to tell it apart from all the others. What is the probability that at least one raincoat ends up with its original owner?
- **Hint:** Number both the students and the raincoats from 1 to n, with the k-th raincoat belonging to the k-th student (k = 1, 2,..., n). Let A_k be the event that the k-th student retrieves his own raincoat. Then the event A that "at least one raincoat ends up with its original owner" is just $A = \bigcup_{k=1}^n A_K$

• Suppose n students have n identical raincoats which they unwittingly hang on the same coat rack while attending class. After class, each student selects a raincoat at random, being unable to tell it apart from all the others. What is the probability that at least one raincoat ends up with its original owner?

- Suppose n students have n identical raincoats which they unwittingly hang on the same coat rack while attending class. After class, each student selects a raincoat at random, being unable to tell it apart from all the others. What is the probability that at least one raincoat ends up with its original owner?
 - $P(A_{k_1}A_{k_2}\cdots A_{k_m})=\frac{(n-m)!}{n!}$ (Why? What does it mean?)

- Suppose n students have n identical raincoats which they unwittingly hang on the same coat rack while attending class. After class, each student selects a raincoat at random, being unable to tell it apart from all the others. What is the probability that at least one raincoat ends up with its original owner?
 - $P(A_{k_1}A_{k_2}\cdots A_{k_m})=\frac{(n-m)!}{n!}$ (Why? What does it mean?)
 - Let $P_m = \sum_{1 \le k_1 < k_2 < \dots < k_m \le n} P(A_{k_1} A_{k_2} \cdots A_{k_m}) = C_m^n \frac{(n-m)!}{n!} = \frac{1}{m!}$ (Why)

- Suppose n students have n identical raincoats which they unwittingly hang on the same coat rack while attending class. After class, each student selects a raincoat at random, being unable to tell it apart from all the others. What is the probability that at least one raincoat ends up with its original owner?
 - $P(A_{k_1}A_{k_2}\cdots A_{k_m})=\frac{(n-m)!}{n!}$ (Why? What does it mean?)
 - Let $P_m = \sum_{1 \le k_1 < k_2 < \dots < k_m \le n} P(A_{k_1} A_{k_2} \cdots A_{k_m}) = C_m^n \frac{(n-m)!}{n!} = \frac{1}{m!}$ (Why)
 - $P(A) = P(\bigcup_{k=1}^{n} A_{K}) = 1 \frac{1}{2!} + \frac{1}{3!} \frac{1}{4!} + \cdots + \frac{1}{n!}$

Continuous Probability Models

- Consider a scenario where the sample space is uncountable. For example S=[0,1].
- At this time we have not yet developed the tools needed to deal with this model.
- We can develop the intuition with this simple example, but will look at it in detail in later chapters.

Continuous Probability Model: A Simple Example

- Consider the random experiment of picking any number in the interval [1,2). Since we do not have any other information, we assume that it is completely random.
- The sample space S = [1, 2) is uncountable.
- Suppose we want probability of picking the number 1.5.
- Since we have no other information, we say the probability of picking a number is *uniformly* distributed on the [1,2) interval.

Figure: Uniform ditribution over the interval [1,2)

Continuous Probability Model: A Simple Example

- In uniform distribution, the probability of an interval is directly proportional to the length of the interval. We know that P(S) = P([1,2)) = 1
- For example, P([1, 1.5]) = 0.5, P([1.5, 1.75]) = 0.25.
- In general for $1 \le a < b < 2$, we have

$$P([a,b]) = (b-a)$$

- Thus we have P(1.5) = P([1.5, 1.5)) = 1.5 1.5 = 0.
- In general P(x) = 0 for all $x \in [1, 2)$.

Discussion

• Recall: probability of an impossible event is 0, but P(x) = 0 for all $x \in [1,2)$ states that any event (zero probability) is impossible? Contradiction? No?

Discussion

- Recall: probability of an impossible event is 0, but P(x) = 0 for all $x \in [1,2)$ states that any event (zero probability) is impossible? Contradiction? No?
- Can you give an explanation using relative frequency?

Discussion

- Recall: probability of an impossible event is 0, but P(x) = 0 for all $x \in [1, 2)$ states that any event (zero probability) is impossible? Contradiction? No?
- Can you give an explanation using relative frequency?
- What about the subjective belief?