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Review of Set Theory

Set Theory

A set is a collection of things called elements.

A set is denoted in capital letters and defined by simply listing its
elements in curly brackets. Example: A = {b, c}.
Can also be defined as A = {x:x satisfies some property}.
Ordering does not matter in sets. Thus {1, 2, 3, 4} and {3, 2, 1, 4} are
the same set.

b ∈ A - b belongs to A where ∈ means belongs to.

And d ̸∈ A, where ̸∈ means does not belong.
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Review of Set Theory

Important Sets

The set of natural numbers, N = {1, 2, 3, 4, . . .}
The set of integers, Z = {. . . ,−2,−1, 0, 1, 2, . . .}
The set of rational numbers Q.

The set of real numbers R and the set of complex numbers C.
Closed intervals on the real line. Example: [2,3] is set of real numbers
such that 2 ≤ x ≤ 3.

Open intervals on the real line. Example: (1,2) is the set of real
numbers such that 1 < x < 2.
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Review of Set Theory

More on Sets

Set A is a subset of set B if every member of A is also a member of
B. We write A ⊂ B, where ⊂ indicates subset.

Equivalently B is the superset of A, B ⊃ A.

Two sets are equal A = B, if they contain the same elements, that is
A ⊂ B and B ⊂ A

The universal set S or Ω is the set of all things that we could
possibly consider in the context we are studying.

The universal set in probability is also called the sample space.

The set with no elements is called the empty or null set ϕ = ∅.
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Review of Set Theory Venn Diagrams

Venn Diagrams

Venn Diagrams are very useful in visualizing relations between sets.

In Venn Diagrams, a set is depicted by a closed region.

S

A

Figure: Venn Diagram
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Review of Set Theory Venn Diagrams

Venn Diagrams

The figure below shows two sets, A and B, where B ⊂ A.

Both A and B are subsets of the universal set S.

S

B

A

Figure: Venn Diagram for two sets A and B, where B ⊂ A.
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Review of Set Theory Set Operations

Set Operations: Union

The union of two sets is a set containing all elements that are in A or
in B.

Example: {1, 2} ∪ {2, 3} = {1, 2, 3}.
In general the union of n sets A1,A2, ...,An is represented as

⋃n
i=1 Ai .

S

A B

Figure: The shaded area shows the set B ∪ A.
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Review of Set Theory Set Operations

Set Operations: Intersection

The intersection of two sets A and B is a set containing all elements
that are in A and B.
Example: {1, 2} ∩ {2, 3} = {2}.
In general, the intersection of n sets

⋂n
i=1 Ai is the set consisting of

elements that are in all n sets.

S

A B

Figure: The shaded area shows the set
B ∩ A.

S

A B

C

Figure: The shaded area shows the set
A ∩ B ∩ C . 8 / 38
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Review of Set Theory Set Operations

Set Operations: Complement

The complement of a set A is the set of all elements that are in the
universal set S but not in A.

S

A

Figure: The shaded area shows the set
Ā = Ac .
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Review of Set Theory Set Operations

Set Operations: Difference (Subtraction)

The set A− B consists of elements that are in A but not in B.

Example: A = {1, 2, 3} and B = {3, 5}, then A− B = {1, 2}

S

A B

Figure: The shaded area shows the set
A− B.
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Review of Set Theory Set Operations

Mutually Exclusive or Disjoint Sets

Sets A and B are mutually exclusive or disjoint if they do not have
any shared elements.

The intersection of two sets that are disjoint is the empty set i.e.
A ∩ B = ∅.
In general, several sets are disjoint if they are pairwise disjoint.

A

B

C

S

Figure: Sets A,B, and C are disjoint.
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Review of Set Theory Set Operations

Partition of Sets

A collection of non-empty set A1,A2, ... is a partition of A if they are
disjoint and their union is A.

S

A1 A2
A3

A4

Figure: The collection of sets A1,A2,A3 and A4 is a partition of S .
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Review of Set Theory Set Operations

Important Theorems

De Morgan’s Law:

For any sets A1,A2, . . . ,An, we have:

(A1 ∪ A2 ∪ A3 ∪ . . . ∪ An)
c = A1

c ∩ A2
c ∩ A3

c ∩ . . . ∩ An
c

(A1 ∩ A2 ∩ A3 ∩ . . . ∩ An)
c = A1

c ∪ A2
c ∪ A3

c ∪ . . . ∪ An
c

Distributive Law
For any sets

A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C )
A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C )
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Review of Set Theory Cardinality

Cardinality in Finite sets

Cardinality is basically the size of the set.

If set A only has a finite number of elements, its cardinality is simply
the number of elements in A.

For example, if A = {2, 4, 6, 8, 10}, then | A |= 5.

We will discuss cardinality of infinite sets later.
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Review of Set Theory Cardinality

Inclusion-Exclusion Principle

The inclusion-exclusion principle states that for two finite sets A, B
and C.

|A ∪ B| = |A|+ |B| − |A ∩ B|,
|A∪B ∪C | = |A|+ |B|+ |C |− |A∩B|− |A∩C |− |B ∩C |+ |A∩B ∩C |.

In general for n finite sets A1,A2, . . . ,An∣∣∣∣ n⋃
i=1

Ai

∣∣∣∣ = n∑
i=1

|Ai | −
∑
i<j

|Ai ∩ Aj |

+
∑

i<j<k

|Ai ∩ Aj ∩ Ak | − · · ·

+ (−1)n+1 |A1 ∩ · · · ∩ An| .
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Review of Set Theory Cardinality in infinite sets, countable vs. uncountable sets

Cardinality in Infinite Sets

There are two kinds of infinite sets: countable sets and uncountable
sets.

The difference between the two is that you can list elements in a
countable set, so A = {a1, a2, . . .}, but you cannot list elements in an
uncountable set.

The set R is uncountable and much larger than countably infinite sets
N and Z.
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Review of Set Theory Cardinality in infinite sets, countable vs. uncountable sets

Countable vs. Uncountable Sets

A more rigorous definition of a countable set A is

if it is a finite set, | A |< ∞; or
it can be put in one-to-one correspondence with natural numbers N, in
which case the set is said to be countably infinite.

N,Z,Q and any of their subsets are countable.

Any set containing an interval on the real line such as
[a, b], (a, b], [a, b) and (a, b), where a < b is uncountable.
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Review of Set Theory Cardinality in infinite sets, countable vs. uncountable sets

Useful Theorems on Countability

Any subset of a countable set is countable. Any superset of an
uncountable set is uncountable.

If A1,A2, · · · is a list of countable sets, then the set⋃
i Ai = A1 ∪ A2 ∪ A3 · · · is also countable.

If A and B are countable, then A× B is also countable.
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Review of Set Theory Products of sets

The Cartesian Product

The Cartesian Product of two sets A and B, written as A× B, is the
set containing ordered pairs from A and B.

Thus A× B = {(x , y) | x ∈ A and y ∈ B}
For example, if A = {1, 2, 3} and B = {H,T}, then
A× B = {(1,H), (1,T ), (2,H), (2,T ), (3,H), (3,T )}
It is important to note that the pairs are ordered, thus (1,H) ̸= (H, 1)
and A× B ̸= B × A.
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Review of Set Theory Products of sets

Multiplication Principle

Multiplication principle: If two finite sets A has M elements and B
has N elements, then A× B has M × N elements.

In general for sets A1,A2, . . .An with
|A1| = M1,|A2| = M2,...,|An| = Mn, we have
|A1 × A2 × . . .× An| = M1 ×M2 × . . .×Mn.

An important example is Rn where n is a natural number.
R2 = R× R is set of all points in the 2-D plane.
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Review of Set Theory Functions

Functions

A function maps elements
from the domain set to
elements in another set called
the co-domain.

Each input in the domain is
mapped to exactly one output
in the co-domain.

It is denoted as f : A → B.

The range of a function is the
set of all possible values of
f (x) and is a subset of the
co-domain.

Domain

Co-domain

Range

f

x

f (x)

•

Figure: Function f : A → B, the range
is always a subset of the co-domain.
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Random Experiments and Probabilities Random Experiments

Random Experiments Revisited

A random experiment is the process of observing something
uncertain. For example: rolling a die.

An outcome is a result of a random experiment.

The set of all possible outcomes is called the sample space and in
this context the universal set.

When we repeat a random experiment several times, we call each one
a trial.

An event is a subset of the sample space.
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Random Experiments and Probabilities Probability

Probability

We assign a probability measure P(A) to an event A.

This is a value set between 0 and 1 that shows how likely the event is
and is such that

If P(A) is close to 0, the event A is very unlikely to occur.
If P(A) is close to 1, the event A is very likely to occur.

Probability theory is based on the following axioms that act as the
foundation for the theory.
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Random Experiments and Probabilities Probability

Example: toss the coin

In a coin-tossing experiment.

What is the sample space? Ω (= {H,T} (head, tail))

Assign P({H}) = P({T}) = 0.5, what does it mean?
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Random Experiments and Probabilities Probability

Example: the birthday experiment

When we ask for the month in which the next person we meet has his
or her birthday

What is the sample space? Ω (= {Jan,Feb, · · · }
Assign P({Jan}) = P({Feb}) = 1/12
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Random Experiments and Probabilities Probability

Axioms of Probability

Axiom 1: For any event A,P(A) ≥ 0

Axiom 2: Probability of the sample space S is P(S) = 1

Axiom 3: If A1,A2,A3 . . . are disjoint events, then
P(A1 ∪ A2 ∪ A3 . . .) = P(A1) + P(A2) + P(A3) + . . ..

It is important to note that union means or and intersection means
and.

a. P(A ∩ B) = P(A and B) = P(A,B) = P(AB).
b. P(A ∪ B) = P(A or B).
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Random Experiments and Probabilities Discrete Probability Models

Discrete Probability Models

Consider a sample space S. If S is a countable set, this refers to a
discrete probability model. Since S is countable, we can list all the
elements in S as S = {s1, s2, . . .}.
If A ⊂ S is an event, then A is also countable, and by the 3rd axiom
of probability, we can say that

P(A) = P(
⋃

sj∈A{sj}) =
∑

sj∈A P(sj)

We sum the probability of individual elements in that set to find the
probability of an event.
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Random Experiments and Probabilities Discrete Probability Models

Finite Sample Space with Equally Likely Outcomes

A special case of discrete probability model is a finite sample space
where each outcome is equally likely that is S = {s1, s2, . . . , sN}
where P(si ) = P(sj) for all i , j ∈ {1, 2, . . . ,N}.
Since all outcomes are equally likely we have P(si ) =

1
N for all

i ∈ {1, 2, ...,N}.
If A is an event with cardinality |A| = M, we have

P(A) =
∑
sj∈A

P(sj) =
∑
sj∈A

1

N
=

M

N
=

|A|
|S |

.

Finding probability of A reduces to a counting problem.
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Random Experiments and Probabilities Discrete Probability Models

The birthday experiment revisited

In the birthday experiment we ask the next person we meet on the
street in which month her birthday falls.

Event L (long month), R(contains a ’r’)

What is the probability of the event when the outcome is either a
long month or contains a r?
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Random Experiments and Probabilities Finding Probabilities

Finding Probabilities

To find the probability of an event, we usually follow these two steps

a. We use the specific information that we have about the random
experiment.

b. We then use the probability axioms seen in the previous slide.

We shall employ these steps in discrete and continuous probability
models.

30 / 38

http://www.probabilitycourse.com/chapter1/1_3_3_finding_probabilities.php


Random Experiments and Probabilities Finding Probabilities

Inclusion Exclusion Principle and Other Useful Results

Inclusion-Exclusion Principle

P(A ∪ B) = P(A) + P(B)− P(A ∩ B),

P(A ∪ B ∪ C ) = P(A) + P(B) + P(C )−
P(A ∩ B)− P(A ∩ C )− P(B ∩ C ) + P(A ∩ B ∩ C ).

P(AC ) = 1− P(A).

Probability of the empty set is zero P(ϕ) = 0.

For any event P(A) ≤ 1.
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Random Experiments and Probabilities Finding Probabilities

The Addition Law for Probabilities

Theorem

Given any n events A1,A2, · · · ,An, let

P1 =
n∑

i=1

P(Ai ),

P2 =
∑

1≤i<j≤n

P(AiAj),

P3 =
∑

1≤i<j<k≤n

P(AiAjAk), · · ·

Then P(
⋃n

k=1 Ak) = P1 − P2 + P3 − P4 + · · · ± Pn
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Random Experiments and Probabilities Finding Probabilities

Example⋆: Coincidences

Suppose n students have n identical raincoats which they unwittingly
hang on the same coat rack while attending class. After class, each
student selects a raincoat at random, being unable to tell it apart
from all the others. What is the probability that at least one raincoat
ends up with its original owner?

Hint: Number both the students and the raincoats from 1 to n, with
the k-th raincoat belonging to the k-th student (k = 1, 2,..., n). Let
Ak be the event that the k-th student retrieves his own raincoat.
Then the event A that “at least one raincoat ends up with its original
owner” is just A =

⋃n
k=1 AK
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Random Experiments and Probabilities Finding Probabilities

Example⋆: Coincidences (answer)

Suppose n students have n identical raincoats which they unwittingly
hang on the same coat rack while attending class. After class, each
student selects a raincoat at random, being unable to tell it apart
from all the others. What is the probability that at least one raincoat
ends up with its original owner?

P(Ak1Ak2 · · ·Akm) =
(n−m)!

n! (Why? What does it mean?)

Let Pm =
∑

1≤k1<k2<···<km≤n P(Ak1Ak2 · · ·Akm) = C n
m

(n−m)!
n! = 1

m!
(Why)
P(A) = P(

⋃n
k=1 AK ) = 1− 1

2! +
1
3! −

1
4! + · · · ± 1

n!
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Random Experiments and Probabilities Continuous Probability Models

Continuous Probability Models

Consider a scenario where the sample space is uncountable. For
example S = [0, 1].

At this time we have not yet developed the tools needed to deal with
this model.

We can develop the intuition with this simple example, but will look
at it in detail in later chapters.
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Random Experiments and Probabilities Continuous Probability Models

Continuous Probability Model: A Simple Example

Consider the random experiment of picking any number in the
interval [1, 2). Since we do not have any other information, we
assume that it is completely random.

The sample space S = [1, 2) is uncountable.

Suppose we want probability of picking the number 1.5.

Since we have no other information, we say the probability of picking
a number is uniformly distributed on the [1, 2) interval.

1 1.5 2

Figure: Uniform ditribution over the interval [1, 2)
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Random Experiments and Probabilities Continuous Probability Models

Continuous Probability Model: A Simple Example

In uniform distribution, the probability of an interval is directly
proportional to the length of the interval. We know that
P(S) = P([1, 2)) = 1

For example, P([1, 1.5]) = 0.5, P([1.5, 1.75]) = 0.25.

In general for 1 ≤ a < b < 2, we have

P([a, b]) = (b − a)

Thus we have P(1.5) = P([1.5, 1.5)) = 1.5− 1.5 = 0.

In general P(x) = 0 for all x ∈ [1, 2).
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Random Experiments and Probabilities Continuous Probability Models

Discussion

Recall: probability of an impossible event is 0, but P(x) = 0 for all
x ∈ [1, 2) states that any event (zero probability) is impossible?
Contradiction? No?

Can you give an explanation using relative frequency?

What about the subjective belief?
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