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Introduction Why Probability?

Cars and goats: the Monty Hall dilemma

On Sunday September 9, 1990, the following question appeared in the
“Ask Marilyn” column in Parade, a Sunday supplement to many
newspapers across the United States:

Suppose you’re on a game show, and you’re given the choice of
three doors; behind one door is a car; behind the others, goats.
You pick a door, say No. 1, and the host, who knows what’s
behind the doors, opens another door, say No. 3, which has a
goat. He then says to you, “Do you want to pick door No. 2?” Is
it to your advantage to switch your choice? — Craig F. Whitaker,
Columbia, Md.

Marilyn’s answer — one should switch
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Introduction Why Probability?

To change or not to change

Why it matters?

Why the odds not always a fifty-fifty?
To stress the point of switching, consider a generalization of the
problem: suppose there are 10 000 doors, behind one is a car and
behind the rest, goats. After you make your choice, the host will open
9998 doors with goats, and offers you the option to switch. To change
or not to change, that’s the question!
Switching doubles the likelihood (probability) of winning the car!
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Introduction Why Probability?

What is the probility of seeing the car behind the other
door.

The Monty Hall dilemma asks ...
Suppose you’re on a game show, and you’re given the choice of
three doors; behind one door is a car; behind the others, goats.
You pick a door, say No. 1, and the host, who knows what’s
behind the doors, opens another door, say No. 3, which has a
goat. He then says to you, “Do you want to pick door No. 2?” Is
it to your advantage to switch your choice? — Craig F. Whitaker,
Columbia, Md.

The host will always open a door with a goat. With probability 2/3
your initial choice was wrong, and with probability 1/3 it was right:
So seeing the car behind the remaining door is 2/3. You should
switch.
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Introduction Why Statistics?

Statistics versus intelligence agencies

During World War II: to obtain more reliable estimates of German war
production (potentials), experts from the Economic Warfare Division
of the American Embassy and the British Ministry of Economic
Warfare started to analyze markings and serial numbers obtained
from captured German equipment ...
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Introduction Why Statistics?

Statistics versus intelligence agencies: Analyzing the serial
numbers

Analyze tires taken from German aircraft shot over Britain and from
supply dumps of aircraft and motor vehicle tires captured in North
Africa. The marking on each tire contained the maker’s name, a
serial number, and a two-letter code for the date of manufacture.
First step: breaking the two-letter date code

8 1 Why probability and statistics?

a serial number, and a two-letter code for the date of manufacture. The first
step in analyzing the tire markings involved breaking the two-letter date code.
It was conjectured that one letter represented the month and the other the
year of manufacture, and that there should be 12 letter variations for the
month code and 3 to 6 for the year code. This, indeed, turned out to be true.
The following table presents examples of the 12 letter variations used by four
different manufacturers.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Dunlop T I E B R A P O L N U D
Fulda F U L D A M U N S T E R
Phoenix F O N I X H A M B U R G
Sempirit A B C D E F G H I J K L

Reprinted with permission from “An empirical approach to economic intelli-
gence” by R.Ruggles and H.Brodie, pp.72-91, Vol. 42, No. 237. 1947 by
the American Statistical Association. All rights reserved.

For instance, the Dunlop code was Dunlop Arbeit spelled backwards. Next,
the year code was broken and the numbering system was solved so that for
each manufacturer individually the serial numbers could be dated. Moreover,
for each month, the serial numbers could be recoded to numbers running
from 1 to some unknown largest number N , and the observed (recoded) serial
numbers could be seen as a subset of this. The objective was to estimate N
for each month and each manufacturer separately by means of the observed
(recoded) serial numbers. In Chapter 20 we discuss two different methods
of estimation, and we show that the method based on only the maximum
observed (recoded) serial number is much better than the method based on
the average observed (recoded) serial numbers.

With a sample of about 1400 tires from five producers, individual monthly
output figures were obtained for almost all months over a period from 1939
to mid-1943. The following table compares the accuracy of estimates of the
average monthly production of all manufacturers of the first quarter of 1943
with the statistics of the Speer Ministry that became available after the war.
The accuracy of the estimates can be appreciated even more if we compare
them with the figures obtained by Allied intelligence agencies. They estimated,
using other methods, the production between 900 000 and 1 200 000 per month!

Type of tire Estimated production Actual production

Truck and passenger car 147 000 159 000
Aircraft 28 500 26 400

——— ———
Total 175 500 186100

Reprinted with permission from “An empirical approach to economic intelli-
gence” by R.Ruggles and H.Brodie, pp.72-91, Vol. 42, No. 237. 1947 by
the American Statistical Association. All rights reserved.

Figure: The 12 letter variations used by four different manufacturers.

We now have for each month serial numbers recoded to numbers
running from 1 to some unknown largest number N.
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Introduction Why Statistics?

Statistics versus intelligence agencies: estimate the
production (potential) based on observed serial numbers

Next, estimate the largest number N for each month and each
manufacturer separately by means of the observed (recoded) serial
numbers.

Option 1: only the maximum observed (recoded) serial number
Option 2: the average observed (recoded) serial number
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Figure: With a sample of about 1400 tires from five producers, individual
monthly output figures were obtained for almost all months over a period
from 1939 to mid-1943.
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Introduction What is Probability?

What is Probability Theory?

A mathematical framework that allows us to analyze random
phenomena.

Probability theory provides us such a framework.

But what do we mean by random phenomena and probability?
How can we express randomness?
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Introduction What is Probability?

Randomness

We define random phenomena as events and experiments whose
outcomes we cannot predict with certainty.

Example: Flipping a fair coin; Throwing a die. We cannot predict
whether the outcome would be heads or tails.

Remember these experiments. We will come back to them a lot.
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Introduction What is Probability?

More on Randomness

We can think about randomness as a way to express what we do not
know.

Let’s go back to the coin experiment again. What if we knew more
about the force with which the coin was flipped, the initial
orientation, etc.

With all the information provided we might be able to predict the
outcome of the coin flip every time.

When our knowledge about the outcome is limited, we say that it is
random.
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Introduction What is Probability?

Interpretations of Probability

If we flip the fair coin many times, without prior information about
the flip, we say the probability of heads is 50% or 1

2 . What does this
mean?

Relative frequency: If we flip the coin a large number of times, it
will come to heads about 1

2 the time.

Subjective personal belief: Probability is the quantification of our
belief that something would happen. For example: What we think is
the chance of rain today?
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Introduction What is Probability?

Interpretations of Probability

The two interpretations often coincide since personal beliefs are based
on the assessment of relative frequency of events.

The beauty of probability theory is that it is applicable in both cases.

It provides a solid framework to study random phenomena and starts
with the axioms of probability.
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Relative frequency

Relative frequency

Consider an experiment with a finite number of mutually exclusive
outcomes which are equiprobable (“equally likely”)

Let A denote some event associated with the possible outcomes of
the experiment. Then the probability P(A) of the event A is defined
as the fraction of the outcomes in which A occurs. More exactly

P(A) = N(A)
N

N: the total number of outcomes of the experiment

N(A): the number of outcomes leading to the occurrence of the
event A.
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Relative frequency

Example

In throwing a pair of dice, there are N = 36 mutually exclusive
equiprobable events, each represented by an ordered pair (a,b), where
a is the number of spots showing on the first die and b the number
showing on the second die. Let A be the event that both dice show
the same number of spots. What is the probability of A?

A occurs whenever a = b, i.e., n(A) = 6. Therefore P(A) = 6/36.
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Relative frequency

Relative frequency and Probability

In an experiment with a finite number of mutually exclusive
outcomes which are equiprobable, the relative frequencies n(A)/n
observed in different series of trials are virtually the same for large n:

P ∼ n(A)
n
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Relative frequency

De Mere’s paradox

As a result of extensive observation of dice games, the French
gambler de Mere noticed that the total number of spots showing on
three dice thrown simultaneously turns out to be 11 (the event A1,)
more often than it turns out to be 12 (the event A2), although from
his point of view both events should occur equally often: A1 occurs in
just six ways (6:4:1, 6:3:2, 5:5:1, 5:4:2, 5:3:3, 4:4:3), and A2 also
occurs in just six ways (6:5:1, 6:4:2, 6:3:3, 5:5:2, 5:4:3, 4:4:4)

Do you see the fallacy (found by Pascal)? Can you calculate N(A1)
and N(A2)?

Hint: There are six distinct outcomes leading to the combination 6:4:
1, namely (6,4,1), (6,1,4), (4,6,1), (4,1,6), (1,6,4) and (1,4,6)...
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Random Experiments: Sample Spaces, Events, and Sets Random Experiments

Random Experiments

A random experiment is the process of observing something
uncertain. For example: rolling a die.

When we repeat a random experiment several times, we call each one a
trial.

An outcome is a result of a random experiment.

The set of all possible outcomes is called the sample space, and in
this context is called the universal set Ω.

An event is a subset of the sample space.

An event A occurs if the outcome of the experiment is an element of
the set A.

18 / 30
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Random Experiments: Sample Spaces, Events, and Sets Sample spaces

Sample spaces

Sample spaces are simply sets whose elements describe the outcomes
of the experiment in which we are interested.

Example: Consider an experiment of tossing a coin. Assuming that
we will never see the coin land on its rim.

What is the sample space Ω?
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Random Experiments: Sample Spaces, Events, and Sets Sample spaces

Sample spaces

In another experiment we ask the next person we meet on the street
in which month her birthday falls.

What is the sample space Ω?

20 / 30



Random Experiments: Sample Spaces, Events, and Sets Sample spaces

Sample spaces

In a third experiment, we find on our doormat three envelopes, sent
to us by three different persons, and we look in which order the
envelopes lie on top of each other. Coding them 1, 2, and 3.

Ω = {123, 132, 213, 231, 312, 321}
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Random Experiments: Sample Spaces, Events, and Sets Events

Events

Recall subsets of the sample space are called events.

We say that an event A occurs if the outcome of the experiment is an
element of the set A.

For example, in the birthday experiment we can ask for the outcomes
that correspond to a long month (a month with 31 days).

This is the event L = {Jan,Mar ,May , Jul ,Aug ,Oct,Dec}.
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Random Experiments: Sample Spaces, Events, and Sets Events

Events

In the birthday experiment, if R is the event that corresponds to the
months that have the letter r in their (full) name, what is R?

What is the event that corresponds to long months that contain the
letter r?

L ∩ R

Events may be combined according to the usual set operations.
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Random Experiments: Sample Spaces, Events, and Sets Combination of events

Identical (equivalent) events

Given two events A and B, suppose A occurs if and only if B, occurs.
Then A, and B are said to be identical (or equivalent), and we write
A=B.

Example: In throwing a pair of dice, let A be the event that “the
total number of spots is even” and B the event that “both dice turn
up even or both dice turn up odd.” Then A = B.
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Random Experiments: Sample Spaces, Events, and Sets Combination of events

Mutually exclusive events

Two events A, and B are said to be mutually exclusive or
incompatible if the occurrence of one event precludes the occurrence
of the other, i.e., if A, and B cannot occur simultaneously.
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Random Experiments: Sample Spaces, Events, and Sets Combination of events
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Random Experiments: Sample Spaces, Events, and Sets Combination of events

Union, intersection, difference, complementary, implication

A ∪ B, the union of A and B: the event consisting of the occurrence
of at least one of the events A and B

A ∩ B, the intersection of two events A and B: the event consisting of
the occurrence of both events

A− B, the difference: the event in which A occurs but not B

A ⊂ B, the occurrence of the event A implies that of the event B
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Random Experiments: Sample Spaces, Events, and Sets Combination of events

Example

In throwing a pair of dice, let U be the event that “the total number
of spots is even”; A the event that “both dice turn up even”, and B
the event that “both dice turn up odd.”

A and B are mutually exclusive

U = A ∪ B

A = U − B
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Random Experiments: Sample Spaces, Events, and Sets Combination of events

Events and sets

COMBINATION OF EVENTS 15

given events A1, A, and A, A, U A, is the union of the sets A1 and A2,
A, n A2 is the intersection of the sets A1 and A2 , A = Q-A is the comple-
ment of the set A relative to the whole space Q, and so on. Thus the symbols
u, r), etc. have their customary set-theoretic meaning. Moreover, the
statement that "the occurrence of the event Al implies that of the event A,"
(or simply, "Al implies A2") means that A, - A2, i.e., that the set Al is a
subset of the set A2.3

(c) ) ( Cb) )

A,

(d) (e) (f )

FIGURE 2. (a) The events A. and A, are mutually exclusive;
(b) The unshaded figure represents the union Al U As; (c) The
unshaded figure represents the intersection A1 rl A.; (d) The
unshaded figure represents the difference A -A 2 ; (e) The shaded
and unshaded events (Al and A2) are complements of each other;
(f) Event A1 implies event A2.

To visualize relations between events, it is convenient to represent the
sample space Q schematically by some plane region and the elementary
events X by points in this region. Then events, i.e., sets of points a, become
various plane figures. Thus Figure 2 shows various relations between two
events Al and A2, represented by circular disks lying inside a rectangle Q,
schematically representing the whole sample space. In turn, this way of
representing events in terms of plane figures can be used to deduce general
relations between events, e.g.,

a) If A1 C A2, then AT v A2 ;
b) If A ALuA 2,thenA 1  TlA2,;
c) If A A1 nA 2 ,then-A=AUA2 .

The symbol c means "is a subset of" or "is contained in," while:=, means "contains."

SEC. 3

<
Figure: (a) mutually exclusive; (b) the unshaded figure represents the union ; (c)
The unshaded figure represents the intersection; (d) The unshaded figure
represents the difference; (e) The shaded and unshaded events are complements
of each other; (f) Event A2 implies event A1.
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Random Experiments: Sample Spaces, Events, and Sets Products of sample spaces

Repeated experiments

Basic to statistics is that one usually does not consider one
experiment, but that the same experiment is performed several times.

For example, throw a coin two times. What is the sample space
associated with this new experiment?

Ω = {H,T} × {H,T} = {(H,H), (H,T ), (T ,H), (T ,T )}
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