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Special Distributions Poisson Distribution

The Poisson process

In many random phenomena we encounter, it is not just one or two
random variables that play a role but a whole collection — a random
process.

The Poisson process: a random process that models the occurrence of
random points in time or space.

describes in a certain sense the most random way to distribute points
in time or space
the notions of homogeneity and independence.
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Special Distributions Poisson Distribution

Random points

Typical examples of the occurrence of random time points

Arrival times of email messages at a server
The times at which asteroids hit the earth
Arrival times of radioactive particles at a Geiger counter
Times at which your computer crashes, the times at which electronic
components fail
Arrival times of people at a pump in an oasis.

Examples of the occurrence of random points in space

The locations of asteroid impacts with earth (2-dimensional)
The locations of imperfections in a material (3-dimensional)
The locations of trees in a forest (2-dimensional).

3 / 16



Special Distributions Poisson Distribution

Random points

Typical examples of the occurrence of random time points

Arrival times of email messages at a server
The times at which asteroids hit the earth
Arrival times of radioactive particles at a Geiger counter
Times at which your computer crashes, the times at which electronic
components fail
Arrival times of people at a pump in an oasis.

Examples of the occurrence of random points in space

The locations of asteroid impacts with earth (2-dimensional)
The locations of imperfections in a material (3-dimensional)
The locations of trees in a forest (2-dimensional).

3 / 16



Special Distributions Poisson Distribution

The Poisson process

The Poisson process model often applies in situations where there is a
very large population, and each member of the population has a very
small probability to produce a point of the process.

A property of the Poisson process: points may lie arbitrarily close
together.

The tree locations, not well modeled by the Poisson process.

In a huge collection of atoms, just a few will emit a radioactive
particle, well modeled
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Special Distributions Poisson Distribution

Random arrivals

Example

Calls arriving at a telephone exchange—the exchange is connected to a
large number of people who make phone calls now and then.

Telephone calls arrive at random times X1,X2, · · · at the telephone
exchange during a time interval [0, t].

168 12 The Poisson process

12.2 Taking a closer look at random arrivals

A well-known example that is usually modeled by the Poisson process is that
of calls arriving at a telephone exchange—the exchange is connected to a large
number of people who make phone calls now and then. This will be our leading
example in this section.

Telephone calls arrive at random times X1, X2, . . . at the telephone exchange
during a time interval [0, t].
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The two basic assumptions we make on these random arrivals are

1. (Homogeneity) The rate λ at which arrivals occur is constant over time:
in a subinterval of length u the expectation of the number of telephone
calls is λu.

2. (Independence) The numbers of arrivals in disjoint time intervals are in-
dependent random variables.

Homogeneity is also called weak stationarity. We denote the total number of
calls in an interval I by N(I), abbreviating N([0, t]) to Nt. Homogeneity then
implies that we require

E[Nt] = λt.

To get hold of the distribution of Nt we divide the interval [0, t] into n intervals
of length t/n. When n is large enough, every interval Ij,n = ((j − 1) t/n, j t/n]
will contain either 0 or 1 arrival: For such a large n (which also satisfies
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n > λt), let Rj be the number of arrivals in the time interval Ij,n. Since Rj is
0 or 1, Rj has a Ber(pj) distribution for some pj . Recall that for a Bernoulli
random variable E[Rj ] = 0 · (1 − pj) + 1 · pj = pj. By the homogeneity
assumption, for each j

pj = λ · length of Ij,n =
λt

n
.

Summing the number of calls in the intervals gives the total number of calls,
hence

Nt = R1 + R2 + · · · + Rn.

The two basic assumptions on these random arrivals:
(Homogeneity) The rate λ at which arrivals occur is constant over
time: in a subinterval of length δt the expectation of the number of
telephone calls is λδt .
(Independence) The numbers of arrivals in disjoint time intervals are
independent random variables.
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Special Distributions Poisson Distribution

An approximation

168 12 The Poisson process
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pj = λ · length of Ij,n =
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n
.

Summing the number of calls in the intervals gives the total number of calls,
hence

Nt = R1 + R2 + · · · + Rn.

Consider the total number of calls in an interval [0, t], denoted by
N([0, t]), abbreviating to Nt

Homogeneity implies E [Nt ] = λt

Derive the probability distribution of Nt

6 / 16



Special Distributions Poisson Distribution

An approximation

168 12 The Poisson process

12.2 Taking a closer look at random arrivals

A well-known example that is usually modeled by the Poisson process is that
of calls arriving at a telephone exchange—the exchange is connected to a large
number of people who make phone calls now and then. This will be our leading
example in this section.

Telephone calls arrive at random times X1, X2, . . . at the telephone exchange
during a time interval [0, t].

|
0

Time

X1 X2 X3 X4 X5

× × × × ×+ + + + + |
t

The two basic assumptions we make on these random arrivals are

1. (Homogeneity) The rate λ at which arrivals occur is constant over time:
in a subinterval of length u the expectation of the number of telephone
calls is λu.

2. (Independence) The numbers of arrivals in disjoint time intervals are in-
dependent random variables.

Homogeneity is also called weak stationarity. We denote the total number of
calls in an interval I by N(I), abbreviating N([0, t]) to Nt. Homogeneity then
implies that we require

E[Nt] = λt.

To get hold of the distribution of Nt we divide the interval [0, t] into n intervals
of length t/n. When n is large enough, every interval Ij,n = ((j − 1) t/n, j t/n]
will contain either 0 or 1 arrival: For such a large n (which also satisfies

|
0

Time

X1 X2 X3 X4 X5

× × × × ×+ + + + +| | | | |
t

|
t

n

| | | |
(n − 1)

t

n

|
t

n > λt), let Rj be the number of arrivals in the time interval Ij,n. Since Rj is
0 or 1, Rj has a Ber(pj) distribution for some pj . Recall that for a Bernoulli
random variable E[Rj ] = 0 · (1 − pj) + 1 · pj = pj. By the homogeneity
assumption, for each j

pj = λ · length of Ij,n =
λt

n
.

Summing the number of calls in the intervals gives the total number of calls,
hence

Nt = R1 + R2 + · · · + Rn.

Consider the total number of calls in an interval [0, t], denoted by
N([0, t]), abbreviating to Nt

Homogeneity implies E [Nt ] = λt

Derive the probability distribution of Nt

6 / 16



Special Distributions Poisson Distribution

Distribution of Nt
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n > λt), let Rj be the number of arrivals in the time interval Ij,n. Since Rj is
0 or 1, Rj has a Ber(pj) distribution for some pj . Recall that for a Bernoulli
random variable E[Rj ] = 0 · (1 − pj) + 1 · pj = pj. By the homogeneity
assumption, for each j

pj = λ · length of Ij,n =
λt

n
.

Summing the number of calls in the intervals gives the total number of calls,
hence

Nt = R1 + R2 + · · · + Rn.

Divide the interval [0, t] into n intervals of length t/n

Every interval Ij ,n = ((j − 1)t/n, jt/n] will contain either 0 or 1
arrival, when n is large enough

Let Rj be the number of arrivals in the time interval Ij ,n
Since Rj is 0 or 1, Rj has a Ber(pj) distribution for some pj

E [Rj ] = 0 · (1− pj) + 1 · pj = pj
(by homogeneity) pj = λ · length ofIj,n = λt/n

Nt = R1 + R2 + · · ·+ Rn has a Bin(n, p) distribution, with p = λt/n
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Poisson distribution

lim
n→∞

P(Nt = k) = (λt)k

k! e−λt is indeed a probability distribution on

the numbers 0, 1, 2, · · ·
Since e−λt

∑∞
k=0

(λt)k

k! = e−λteλt = 1

Definition

A discrete random variable X has a Poisson distribution with parameter µ,
where µ > 0 if its probability mass function p is given by

p(k) = P(X = k) =
µk

k!
e−µ for k = 0, 1, 2, · · ·
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Poisson Distribution

The Poisson distribution can be viewed as an approximation of the
binomial distribution.

This is useful as the Poisson PMF is much easier to compute than the
binomial.

Thus we have
Theorem: Let X ∼ Binomial(n, p = µ

n ), where µ > 0 is fixed. Then
for any k ∈ {0, 1, 2, ...}, we have

lim
n→∞

p(k) = P(X = k) =
e−µµk

k!
.
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Poisson Distribution

Very widely used probability distribution.

Used in counting the occurrences of certain events in an interval of
time or space.

Suppose we are counting the number of customers who visit a certain
store from 1pm to 2pm.

Based on data from previous days, we know that on average µ = 15
customers visit the store.

We can model the random variable X showing the number of
customers as Poisson random variable with parameter µ = 15.
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Poisson Distribution

Example: The number of emails that I get in a weekday can be
modeled by a Poisson distribution with an average of 0.2 emails per
minute.

What is the probability that I get no emails in an interval of length 5
minutes?
What is the probability that I get more than 3 emails in an interval of
length 10 minutes?
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Poisson Distribution

The PMF of a Poisson random variable with µ = 1
X ∼ Poisson(µ = 1)

PX (x)
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Figure: PMF of a Poisson(1) random variable
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Poisson Distribution

The PMF of a Poisson random variable with µ = 10
X ∼ Poisson(µ = 10)

PX (x)
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Figure: PMF of a Poisson(10) random variable
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Poisson distribution: more examples

170 12 The Poisson process

Definition. A discrete random variable X has a Poisson distribu-
tion with parameter µ, where µ > 0 if its probability mass function p
is given by

p(k) = P(X = k) =
µk

k!
e−µ for k = 0, 1, 2, . . . .

We denote this distribution by Pois(µ).

Figure 12.1 displays the graphs of the probability mass functions of the Poisson
distribution with µ = 0.9 (left) and the Poisson distribution with µ = 5
(right).
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Fig. 12.1. The probability mass functions of the Pois(0.9) and the Pois(5) distri-
butions.

Quick exercise 12.1 Consider the event “exactly one call arrives in the
interval [0, 2s].” The probability of this event is P(N2s = 1) = λ · 2s · e−λ·2s.
But note that this event is the same as “there is exactly one call in the interval
[0, s) and no calls in the interval [s, 2s], or no calls in [0, s) and exactly one call
in [s, 2s].” Verify (using assumptions 1 and 2) that you get the same answer
if you compute the probability of the event in this way.

We do have a hint1 about what the expectation and variance of a Poisson
random variable might be: since E[Nt] = λt for all n, we anticipate that the
limiting Poisson distribution will have expectation λt. Similarly, since Nt has
a Bin(n, λt

n ) distribution, we anticipate that the variance will be

1 This is really not more than a hint: there are simple examples where the distribu-
tions of random variables converge to a distribution whose expectation is different
from the limit of the expectations of the distributions! (cf. Exercise 12.14).

Figure: The probability mass functions of the Pois(0.9) and the Pois(5)
distributions.
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Expectation & Variance

Expectation: the limiting Poisson distribution will have expectation
λt

since E [Nt] = λt for all n

Variance: lim
n→∞

Var(Nt) = lim
n→∞

n · λt
n · (1− λt

n ) = λt

since Nt has a Bin(n, λt) distribution

The expectation and variance of a Poisson distribution.

Let X have a Poisson distribution with parameter µ; then

E [X ] = µ and Var(X ) = µ.
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