Discrete Random Variables

Chapter 3: Discrete Random Variables

Anduo Wang Temple University Email: anduo.wang@gmail.com https://cis-linux1.temple.edu/~tug29203/25fall-2033/index.html

Random Variables

- To analyze random experiments, we focus on numerical aspects of the experiment.
- For example, if an entire soccer game is a random experiment, then numerical results like goals, shots, fouls, etc are *random variables*.
- Random Variable is a real valued variable whose value is determined by an underlying random experiment.

Random Variable- A Simple Example

- I toss a coin five times. This is a random experiment.
- The sample space is

$$S = \{TTTTT, TTTTH, ..., HHHHHH\}.$$

- Say we are interested in the number of heads.
- We define random variable X whose value is the number of observed heads.
- *X* can take values 0,1,2,3,4 or 5 depending on the outcomes of the experiment.
- For example, X = 0 for the outcome TTTTT and X = 2 for THTHT.
- Thus we see X is a function from the space S to real numbers.

- the board game "Snakes and Ladders," where the moves are determined by the sum of two independent throws with a die
- the obvious sample space

$$\Omega = \{(\omega_1, \omega_2) : \omega_1, \omega_2 \in \{1, 2, \cdots, 6\}\}$$

= \{(1, 1), (1, 2), \cdots, (1, 6), (2, 1), \cdots, (6, 5), (6, 6)\}.

 players of the game only interested in the sum of the outcomes of the two throw

$$S(\omega_1, \omega_2) = \omega_1 + \omega_2$$
, for $(\omega_1, \omega_2) \in \Omega$.

		ω_1								
ω_2	1	2	3	4	5	6				
1	2	3	4	5	6	7				
2	3	4	5	6	7	8				
3	4	5	6	7	8	9				
4	5	6	7	8	9	10				
5	6	7	8	9	10	11				
6	7	8	9	10	11	12				

Figure: Two throws with a die and the corresponding sum

• denote the event that the function S attains the value k by S = k

$${S = k} = {(\omega_1, \omega_2) \in \Omega : S(\omega_1, \omega_2) = k}.$$

		ω_1									
ω_2	1	2	3	4	5	6					
1	2	3	4	5	6	7					
2	3	4	5	6	7	8					
3	4	5	6	7	8	9					
4	5	6	7	8	9	10					
5	6	7	8	9	10	11					
6	7	8	9	10	11	12					

Figure: Two throws with a die and the corresponding sum

• denote the event that the function S attains the value k by S = k

$${S = k} = {(\omega_1, \omega_2) \in \Omega : S(\omega_1, \omega_2) = k}.$$

• list the outcomes in the event S = 8.

		ω_1								
ω_2	1	2	3	4	5	6				
1	2	3	4	5	6	7				
2	3	4	5	6	7	8				
3	4	5	6	7	8	9				
4	5	6	7	8	9	10				
5	6	7	8	9	10	11				
6	7	8	9	10	11	12				

Figure: Two throws with a die and the corresponding sum

• denote the probability of the event $\{S = k\}$ by P(S = k)

		ω_1									
ω_2	1	2	3	4	5	6					
1	2	3	4	5	6	7					
2	3	4	5	6	7	8					
3	4	5	6	7	8	9					
4	5	6	7	8	9	10					
5	6	7	8	9	10	11					
6	7	8	9	10	11	12					

Figure: Two throws with a die and the corresponding sum

- denote the probability of the event $\{S = k\}$ by P(S = k)
- P(S = 2) = P((1,1)) = 1/36

		ω_1									
ω_2	1	2	3	4	5	6					
1	2	3	4	5	6	7					
2	3	4	5	6	7	8					
3	4	5	6	7	8	9					
4	5	6	7	8	9	10					
5	6	7	8	9	10	11					
6	7	8	9	10	11	12					

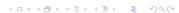
Figure: Two throws with a die and the corresponding sum

- denote the probability of the event $\{S = k\}$ by P(S = k)
- P(S = 2) = P((1,1)) = 1/36
- $P(S = 3) = P(\{(1, 2), (2, 1)\}) = 2/36$

		ω_1								
ω_2	1	2	3	4	5	6				
1	2	3	4	5	6	7				
2	3	4	5	6	7	8				
3	4	5	6	7	8	9				
4	5	6	7	8	9	10				
5	6	7	8	9	10	11				
6	7	8	9	10	11	12				

Figure: Two throws with a die and the corresponding sum

- denote the probability of the event $\{S = k\}$ by P(S = k)
- P(S = 2) = P((1,1)) = 1/36
- $P(S = 3) = P(\{(1,2),(2,1)\}) = 2/36$
- determine P(S = k) for $k = 4, 5, \dots, 12$



Example M

		ω_1								
ω_2	1	2	3	4	5	6				
1	1	2	3	4	5	6				
2	2	2	3	4	5	6				
3	3	3	3	4	5	6				
4	4	4	4	4	5	6				
5	5	5	5	5	5	6				
6	6	6	6	6	6	6				

Figure: Two throws with a die and the corresponding maximum

• In this case we are interested in the value of the function $M:\Omega \to \mathbb{R}$, given by

$$M(\omega_1, \omega_2) = max\{\omega_1, \omega_2\} \text{for } (\omega_1, \omega_2) \in \Omega$$

Important Definitions

Random Variables: A random variable X is a function from the sample space to the real numbers.

$$X:\Omega \to \mathbb{R}$$

The range of a random variable X, shown by Range(X) or R_X , is the set of possible values of X.

Important Definitions

Random Variables: A random variable X is a function from the sample space to the real numbers.

$$X:\Omega \to \mathbb{R}$$

a discrete random variable X "transforms" a sample space Ω to a more "tangible" sample space $\tilde{\Omega}$

Discrete Random Variables

- Two important classes of random variables- discrete and continuous.
- A third class mixed random variables can be thought of as a mixture of discrete and continuous random variables.
- We define a discrete random variable as the following

X is a discrete random variable if its range is countable.

- A set A is countable if either
 - A is a finite set such as $\{1, 2, 3, 4\}$, or
 - it can be put in one-to-one correspondence with natural numbers (in this case, the set is said to be countably infinite).

Probability Mass Function (PMF)

• A event $A = \{X = a\}$ is defined as the set of outcomes s in the sample space S for which the value of X is a.

$$A = \{s \in S | X(s) = a\}.$$

• The probabilities of events $\{X = a\}$ is given by the **probability mass** function (PMF) of X.

Let X be a discrete random variable with range $R_X=\{a_1,a_2,a_3,...\}$ (finite or countably infinite). The function

$$P_X(a_k) = P(X = a_k), \text{ for } k = 1, 2, 3, ...,$$

is called the probability mass function (PMF) of X.

Probability Mass Function (PMF)

- The PMF is a probability measure that gives us probabilities of the possible values of a random variable.
- We use P_X as the standard notation where the subscript indicates that this is the PMF of the random variable X.

Probability Mass Function (PMF)

Properties of PMF:

- $0 \le P_X(a_i) \le 1$ for all a_i ;
- $\bullet \ \sum_{a \in R_X} P_X(a) = 1;$
- for any set $A \subset R_X$, $P(X \in A) = \sum_{a \in A} P_X(a)$.

Example

• the probability mass function p of M

a	1	2	3	4	5	6
p(a)	1/36	3/36	5/36	7/36	9/36	11/36

The probability mass function & the distribution function

Definitions

The probability mass function p of a discrete random variable X is the function $p:\mathbb{R}\to [0,1]$, defined by

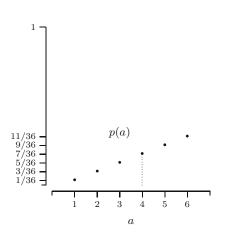
$$p(a) = P(X = a)$$
 for $-\infty < a < \infty$.

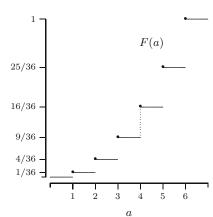
Definitions

The distribution function F of a random variable X is the function $F: \mathbb{R} \to [0,1]$, defined by

$$F(a) = P(X \le a)$$
 for $-\infty < a < \infty$.

Example: Probability mass function and distribution function of M





- Cumulative distribution function (CDF) of a random variable is a method to describe the distribution of random variables.
- The advantage of CDF is that it can be defined for any kind of random variable; while PMF cannot be defined for a continuous random variable.
- We have

Definition: The cumulative distribution function (CDF) of random variable X is defined as

$$F_X(x) = P(X \le x)$$
, for all $x \in \mathbb{R}$.

- In general, let X be a discrete random variable with range $R_X = \{x_1, x_2, x_3, ...\}$, such that $x_1 < x_2 < x_3 < ...$
- $F_X(x) = 0$ for $x < x_1$. Note that the CDF starts at 0, i.e., $F_X(-\infty) = 0$.
- CDF is in the form of a staircase. It jumps at each point in the range.
- CDF stays flat between x_k and x_{k+1} , so we can write

$$F_X(x) = F_X(x_k), \text{ for } x_k \le x < x_{k+1}.$$

• CDF jumps at each x_k . We can write

$$F_X(x_k) - F_X(x_k - \epsilon) = P_X(x_k)$$
, for $\epsilon > 0$ small enough.

- CDF is always a non-decreasing function, i.e., if $y \ge x$ then $F_Y(y) \ge F_X(x)$.
- It approaches 1 as x becomes large. We can write

$$\lim_{x\to\infty} F_X(x) = 1.$$

• If we have the PMF, we can calculate the CDF. If $R_X = \{x_1, x_2, x_3, ...\}$, then

$$F_X(x) = \sum_{x_k < x} P_X(x_k).$$

We have a useful formula that

For all $a \leq b$, we have

$$P(a < X \le b) = F_X(b) - F_X(a)$$

• The CDF of a discrete random variable.

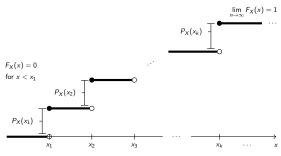


Figure: CDF of a discrete random variable

• Let X be a discrete random variable with range $R_X = \{1, 2, 3, ...\}$. Suppose the PMF of X is given by

$$P_X(k) = \frac{1}{2^k}$$

- Find and plot the CDF of $X, F_X(x)$?
- Find $P(2 < X \le 5)$?
- Find P(X > 4)?