Chapter 3

A TOP-DOWN APPROACH
Transport Layer

KUROSE * ROSS

A note on the use of these Powerpoint slides:

We’ re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you see the animations; and can add, modify,
and delete slides (including this one) and slide content to suit your needs. L
They obviously represent a /ot of work on our part. In return for use, we only CO

ask the following: mpUtEf
= |f you use these slides (e.g., in a class) that you mention their source Network/ng" A TOp

(after all, we’ d like people to use our book!)

= |f you post any slides on a www site, that you note that they are adapted DOW” Approach

from (or perhaps identical to) our slides, and note our copyright of this

material. 7th aedition
Thanks and enjoy! JFK/IKWR Jim Kurose. Keith Ross
4
All material copyright 1996-2016 Pearson/Addison Wesley
© | F Kurose and KW. Ross, All Rights Reserved April 2016

Transport Layer 2-1

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure
 reliable data transfer

* flow control

* connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-2

TCP: Overview Recs: 793,1122,1323, 2018, 2581

" point-to-point: " full duplex data:

* one sender, one receiver * bi-directional data flow
= reliable, in-order byte In same connection

steam: * MSS: maximum segment
“ size
* N0 message . .
boundaries’’ " connection-oriented:

= pipelined: * handshaking (exchange

of control msgs) inits
sender, receiver state
before data exchange

* flow controlled:

* sender will not
overwhelm receiver

* TCP congestion and
flow control set window
size

Transport Layer 3-3

TCP segment structure

32 bits

A

URG: urgent data

(generally not used)™_ source port # | dest port #

ACK: ACK #
valid

v

counting

by bytes

of data

(not segments!)

. Sequence number
\olqmwledgement number

PSH: push data now
(generally not used) —

head
len wEAIEJBSF receive window

7

bytes

Urg data pointer rovr willing

RST SYN, FIN:/

to accept

op/(s (variable length)

connection estab
(setup, teardown
commands)

Internet/

checksum
(as in UDP)

/ application

data
(variable length)

Transport Layer 3-4

TCP seq. numbers, ACKs

outgoing segment from sender

Sequence numbers: source port # dest port #
i “ ’ sequence number
¢ b)’te stream number’ of acknowledgement number
. . ’
first byte in segment’s [| rwnd
checksum urg pointer
data
window size
acknowledgements: N
expected from other side
sender sequence number space

e cumulative ACK
. . sent sent not- usable not
Q: how receiver handles ACKed yet ACKed butnot usable
out-of-order segments (“in- yetsent
, flight™)

* A: TCP spec doesn' t say, incoming segment to sender

- UP to |mplementor~ source port# | dest port #

sequence number

llll acknowledgement number

A rwnd

checksum urg pointer

Transport Layer 3-5

TCP seq. numbers, ACKs

Seq=42, ACK=79, data = ‘C’
host ACKs

receipt of
/ ‘C’ , eChoes
Seq=79, ACK=43, data = ‘C’ .,
host ACKs back ‘C

receipt

of echoed ~—___
C Seq=43, ACK=80___

simple telnet scenario

Transport Layer 3-6

TCP round trip time, timeout

Q: how to set TCP
timeout value!?

" l[onger than RTT
* but RTT varies
" too short: premature

timeout, unnecessary
retransmissions

" too long: slow reaction
to segment loss

Q: how to estimate RTT?

* SampleRTT: measured
time from segment
transmission until ACK
receipt

* ignore retransmissions

* SampleRTT will vary, want
estimated RTT “smoother”

* average several recent
measurements, not just
current SampleRTT

Transport Layer 3-7

TCP round trip time, timeout

EstimatedRTT = (1- o) *EstimatedRTT + oa*SampleRTT

= exponential weighted moving average
" influence of past sample decreases exponentially fast
= typical value:a =0.125

RTT (milliseconds)

350 +

300

250

200 -

150

100

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr,

& sampleRTT

EstimatedRTT

8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconds) Transport Layer 3-8

TCP round trip time, timeout

" timeout interval: EstimatedRTT plus “safety margin”
* large variation in EstimatedRTT -> larger safety margin

= estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-PB)*DevRTT +
B* | SampleRTT-EstimatedRTT |

(typically, B = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT
estimated RTT “safety margin”

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/ Transport Layer 3-9

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure
 reliable data transfer

* flow control

* connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-10

TCP reliable data transfer

= TCP creates rdt service
on top of IP" s unreliable

service
* pipelined segments A '
e cumulative acks let s initially consider
+ single retransmission simplified TCP sender:
timer * ignore duplicate acks
B retransmissions ¢ ignore flow Control,
triggered by: congestion control

* timeout events
* duplicate acks

Transport Layer 3-11

TCP sender events:

data rcvd from app:

" create segment with
seq #

" seq # is byte-stream
number of first data
byte in segment

= start timer if not
already running
* think of timer as for

oldest unacked
segment

* expiration interval:
TimeOutInterval

timeout;

" retransmit segment
that caused timeout

" restart timer
ack rcvd:

" if ack acknowledges
previously unacked
segments

* update what is known
to be ACKed

* start timer if there are
still unacked segments

Transport Layer 3-12

TCP sender (simplified)

data received from application above

create segment, seq. #: NextSegNum

pass segment to IP (i.e., “send”)
NextSegNum = NextSegNum + length(data)
if (timer currently not running)

A T start timer
NextSegqNum = InitialSeqNum

SendBase = InitialSeqNum

timeout

retransmit not-yet-acked segment
with smallest seq. #
start timer

ACK received, with ACK field value y

if (y > SendBase) {
SendBase =y
[* SendBase—1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)
start timer

else stop timer

}

Transport Layer 3-13

TCP: retransmission scenarios

Host A Ho
B/
4“:&’
\
Seq=92, 8 bytes of data
/
ACK=100

—— timeout —

S

x/

Seq=92, 8 bytes of data

/

ACK=100

—

lost ACK scenario

-

Host A

e ——

SendBase=92

—— timeout ——

SendBase=100
SendBase=120

SendBase=120

w

Seq=92, 8 bytes of data

\

Seq=100, 20 bytes of dat

ACK=10/

ACK=120

/

Seq=92, 8
bytes of data\

/

ACK=120

\

premature timeout

Transport Layer 3-14

TCP: retransmission scenarios

I
(®)
n
~t
>

I

o——— timeout —*

Host B
\
=
\
Seq=92, 8 bytes of data
\ \

Seq=100, 20 bytes of da

ACK=100
X
ACK=120

it

\

Seq=120, 15 bytes of data

/

cumulative ACK

Transport Layer 3-15

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver TCP receiver action
arrival of in-order segment with delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,

expected seq # already ACKed send ACK

arrival of in-order segment with immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

arrival of out-of-order segment immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte
Gap detected

arrival of segment that immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

Transport Layer 3-16

TCP fast retransmit

" time-out period often
relatively long:

* long delay before
resending lost packet

" detect lost segments
via duplicate ACKs.

e sender often sends
many segments back-
to-back

* if segment is lost, there

will likely be many
duplicate ACKs.

— JTCP fast retransmit —

if sender receives 3
ACKs for same data
(“triple duplicate ACKs"),
resend unacked
segment with smallest
seq #

" |ikely that unacked

segment lost, so don ' t

wait for timeout

Transport Layer 3-17

TCP fast retransmit

Host A Host B
e S

— Seq=92, 8 bytes of data

Seq= 100%%
\X

|_ACK=100

timeout

TSeq=100, 20 bytes of data

A 4

v

fast retransmit after sender

receipt of triple duplicate ACK
Transport Layer 3-18

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure
 reliable data transfer

* flow control

* connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-19

TCP flow control —_—

application
application may process
remove data from S
TCP socket buffers FV | E_]Ep_“f‘—it'_o_n
TCP socket OS
receiver buffers
... slower than TCP N\
receiver is delivering —|—— ‘
(sender is sending) TCP
code
[l _ |
- IP
ﬂOW control code \
receiver controls sender, so T
sender won’ t overflow , R | =
receiver s buffer by transmitting from sender:
too much, too fast _
receiver protocol stack

Transport Layer 3-20

TCP flow control

. 11 . a4
= receiver advertises free

buffer space by including to application process

rwnd value in TCP header rlj

of receiver-to-sender f

segments RcvBuffer buffered data
ovbutter duesers
is 4096 bytes) L - ///

° many operating systems
autoadjust RcvBuffer
= sender limits amount of
15 o ”
unacked (" in-flight) data to
o ’
receiver s rwnd value

TCP segment payloads

receiver-side buftfering

" guarantees receive buffer
will not overflow

Transport Layer 3-21

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure
 reliable data transfer

* flow control

* connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-22

