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TCP: Overview Recs: 793,1122,1323, 2018, 2581

" point-to-point: " full duplex data:

* one sender, one receiver * bi-directional data flow
= reliable, in-order byte In same connection

steam: * MSS: maximum segment
“ size
* N0 message . .
boundaries’’ " connection-oriented:

= pipelined: * handshaking (exchange

of control msgs) inits
sender, receiver state
before data exchange

* flow controlled:

* sender will not
overwhelm receiver

* TCP congestion and
flow control set window
size
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TCP segment structure

32 bits

A

URG: urgent data

(generally not used)™_ source port # | dest port #

ACK: ACK #
valid

v

counting

by bytes

of data

(not segments!)

. Sequence number
\olqmwledgement number

PSH: push data now
(generally not used) —

head
len wEAIEJBSF receive window

7

# bytes

Urg data pointer rovr willing

RST SYN, FIN:/

to accept

op/( s (variable length)

connection estab
(setup, teardown
commands)

Internet/

checksum
(as in UDP)

/ application

data
(variable length)
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TCP seq. numbers, ACKs

outgoing segment from sender

Sequence numbers: source port # dest port #
i “ ’ sequence number
¢ b)’te stream number’ of acknowledgement number
. . ’
first byte in segment’s [ | rwnd
checksum urg pointer
data
window size
acknowledgements: N
expected from other side
sender sequence number space

e cumulative ACK
. . sent sent not- usable not
Q: how receiver handles ACKed yet ACKed butnot usable
out-of-order segments (“in-  yetsent
, flight™)

* A: TCP spec doesn' t say, incoming segment to sender

- UP to |mplementor~ source port# | dest port #

sequence number

llll acknowledgement number

A rwnd

checksum urg pointer
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TCP seq. numbers, ACKs

Seq=42, ACK=79, data = ‘C’
host ACKs

receipt of
/ ‘C’ , eChoes
Seq=79, ACK=43, data = ‘C’ .,
host ACKs back ‘C

receipt

of echoed ~—___
C Seq=43, ACK=80___

simple telnet scenario
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TCP round trip time, timeout

Q: how to set TCP
timeout value!?

" l[onger than RTT
* but RTT varies
" too short: premature

timeout, unnecessary
retransmissions

" too long: slow reaction
to segment loss

Q: how to estimate RTT?

* SampleRTT: measured
time from segment
transmission until ACK
receipt

* ignore retransmissions

* SampleRTT will vary, want
estimated RTT “smoother”

* average several recent
measurements, not just
current SampleRTT
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TCP round trip time, timeout

EstimatedRTT = (1- o) *EstimatedRTT + oa*SampleRTT

= exponential weighted moving average
" influence of past sample decreases exponentially fast
= typical value:a =0.125

RTT (milliseconds)

350 +

300

250

200 -

150

100

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr,

& sampleRTT

EstimatedRTT

8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconds) Transport Layer 3-8



TCP round trip time, timeout

" timeout interval: EstimatedRTT plus “safety margin”
* large variation in EstimatedRTT -> larger safety margin

= estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-PB)*DevRTT +
B* | SampleRTT-EstimatedRTT |

(typically, B = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT
estimated RTT “safety margin”

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/ Transport Layer 3-9
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TCP reliable data transfer

= TCP creates rdt service
on top of IP" s unreliable

service
* pipelined segments A '
e cumulative acks let s initially consider
+ single retransmission simplified TCP sender:
timer * ignore duplicate acks
B retransmissions ¢ ignore flow Control,
triggered by: congestion control

* timeout events
* duplicate acks
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TCP sender events:

data rcvd from app:

" create segment with
seq #

" seq # is byte-stream
number of first data
byte in segment

= start timer if not
already running
* think of timer as for

oldest unacked
segment

* expiration interval:
TimeOutInterval

timeout;

" retransmit segment
that caused timeout

" restart timer
ack rcvd:

" if ack acknowledges
previously unacked
segments

* update what is known
to be ACKed

* start timer if there are
still unacked segments
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TCP sender (simplified)

data received from application above

create segment, seq. #: NextSegNum

pass segment to IP (i.e., “send”)
NextSegNum = NextSegNum + length(data)
if (timer currently not running)

A T start timer
NextSegqNum = InitialSeqNum

SendBase = InitialSeqNum

timeout

retransmit not-yet-acked segment
with smallest seq. #
start timer

ACK received, with ACK field value y

if (y > SendBase) {
SendBase =y
[* SendBase—1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)
start timer

else stop timer

}
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TCP: retransmission scenarios

Host A Ho
B/
4“:&’
\
Seq=92, 8 bytes of data
/
ACK=100

—— timeout —

S

x/

Seq=92, 8 bytes of data

/

ACK=100

—

lost ACK scenario

-

Host A

e ——

SendBase=92

—— timeout ——

SendBase=100
SendBase=120

SendBase=120

w

Seq=92, 8 bytes of data

\

Seq=100, 20 bytes of dat

ACK=10/

ACK=120

/

Seq=92, 8
bytes of data\

/

ACK=120

\

premature timeout
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TCP: retransmission scenarios

I
(®)
n
~t
>

I

o——— timeout —*

Host B
\
=
\
Seq=92, 8 bytes of data
\ \

Seq=100, 20 bytes of da

ACK=100
X
ACK=120

it

\

Seq=120, 15 bytes of data

/

cumulative ACK
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TCP ACK generation [RFC 1122, RFC 2581]

event at receiver TCP receiver action
arrival of in-order segment with delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,

expected seq # already ACKed send ACK

arrival of in-order segment with immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

arrival of out-of-order segment immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte
Gap detected

arrival of segment that immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap
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TCP fast retransmit

" time-out period often
relatively long:

* long delay before
resending lost packet

" detect lost segments
via duplicate ACKs.

e sender often sends
many segments back-
to-back

* if segment is lost, there

will likely be many
duplicate ACKs.

— JTCP fast retransmit —

if sender receives 3
ACKs for same data
(“triple duplicate ACKs"),
resend unacked
segment with smallest
seq #

" |ikely that unacked

segment lost, so don ' t

wait for timeout
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TCP fast retransmit

Host A Host B
e S

— Seq=92, 8 bytes of data

Seq= 100%%
\X

|_ACK=100

timeout

TSeq=100, 20 bytes of data

A 4

v

fast retransmit after sender

receipt of triple duplicate ACK
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TCP flow control —_—

application
application may process
remove data from S
TCP socket buffers .... FV | E_]Ep_“f‘—it'_o_n
TCP socket OS
receiver buffers
... slower than TCP N\
receiver is delivering —|—— ‘
(sender is sending) TCP
code
[l _ |
- IP
ﬂOW control code \
receiver controls sender, so T
sender won’ t overflow , R | =
receiver s buffer by transmitting from sender:
too much, too fast _
receiver protocol stack
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TCP flow control

. 11 . a4
= receiver advertises free

buffer space by including to application process

rwnd value in TCP header rlj

of receiver-to-sender f

segments RcvBuffer buffered data
ovbutter duesers
is 4096 bytes) L - ///

° many operating systems
autoadjust RcvBuffer
= sender limits amount of
15 o ”
unacked (" in-flight) data to
o ’
receiver s rwnd value

TCP segment payloads

receiver-side buftfering

" guarantees receive buffer
will not overflow
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