
Computer
Networking: A Top
Down Approach

A note on the use of these Powerpoint slides:
We’re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you see the animations; and can add, modify,
and delete slides (including this one) and slide content to suit your needs.
They obviously represent a lot of work on our part. In return for use, we only
ask the following:

§ If you use these slides (e.g., in a class) that you mention their source
(after all, we’d like people to use our book!)

§ If you post any slides on a www site, that you note that they are adapted
from (or perhaps identical to) our slides, and note our copyright of this
material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2016
J.F Kurose and K.W. Ross, All Rights Reserved

7th edition
Jim Kurose, Keith Ross
Pearson/Addison Wesley
April 2016

Chapter 3
Transport Layer

Transport Layer 2-1

Transport Layer 3-2

Performance of rdt3.0

§ rdt3.0 is correct, but performance stinks
§ e.g.: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

§ U sender: utilization – fraction of time sender busy sending

U
sender =

.008
30.008

= 0.00027 L / R
RTT + L / R

=

§ if RTT=30 msec, 1KB pkt every 30 msec: 33kB/sec thruput
over 1 Gbps link

§ network protocol limits use of physical resources!

Dtrans = LR
8000 bits
109 bits/sec= = 8 microsecs

Transport Layer 3-3

rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

U
sender =

.008
30.008

= 0.00027 L / R
RTT + L / R

=

Transport Layer 3-4

Pipelined protocols

pipelining: sender allows multiple, “in-flight”, yet-
to-be-acknowledged pkts
• range of sequence numbers must be increased
• buffering at sender and/or receiver

§ two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-5

Pipelining: increased utilization

first packet bit transmitted, t = 0
sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases
utilization by a factor of 3!

U
sender =

.0024
30.008

= 0.00081 3L / R
RTT + L / R

=

Transport Layer 3-6

Pipelined protocols: overview

Go-back-N:
§ sender can have up to

N unacked packets in
pipeline

§ receiver only sends
cumulative ack
• doesn’t ack packet if

there’s a gap
§ sender has timer for

oldest unacked packet
• when timer expires,

retransmit all unacked
packets

Selective Repeat:
§ sender can have up to N

unack’ed packets in
pipeline

§ rcvr sends individual ack
for each packet

§ sender maintains timer
for each unacked packet
• when timer expires,

retransmit only that
unacked packet

Transport Layer 3-7

Go-Back-N: sender
§ k-bit seq # in pkt header
§ “window” of up to N, consecutive unack’ed pkts allowed

§ ACK(n): ACKs all pkts up to, including seq # n - “cumulative
ACK”
• may receive duplicate ACKs (see receiver)

§ timer for oldest in-flight pkt
§ timeout(n): retransmit packet n and all higher seq # pkts in

window

Transport Layer 3-8

GBN: sender extended FSM

Wait start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextseqnum)

start_timer
nextseqnum++
}

else
refuse_data(data)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)

stop_timer
else
start_timer

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base=1
nextseqnum=1

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)

L

Transport Layer 3-9

ACK-only: always send ACK for correctly-received
pkt with highest in-order seq #
• may generate duplicate ACKs
• need only remember expectedseqnum

§ out-of-order pkt:
• discard (don’t buffer): no receiver buffering!
• re-ACK pkt with highest in-order seq #

Wait

udt_send(sndpkt)
default

rdt_rcv(rcvpkt)
&& notcurrupt(rcvpkt)
&& hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

expectedseqnum=1
sndpkt =
make_pkt(expectedseqnum,ACK,chksum)

L

GBN: receiver extended FSM

Transport Layer 3-10

GBN in action

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, discard,
(re)send ack1rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send pkt2
send pkt3
send pkt4
send pkt5

Xloss

receive pkt4, discard,
(re)send ack1

receive pkt5, discard,
(re)send ack1

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

ignore duplicate ACK

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

Transport Layer 3-11

Selective repeat

§ receiver individually acknowledges all correctly
received pkts
• buffers pkts, as needed, for eventual in-order delivery

to upper layer
§ sender only resends pkts for which ACK not

received
• sender timer for each unACKed pkt

§ sender window
• N consecutive seq #’s
• limits seq #s of sent, unACKed pkts

Transport Layer 3-12

Selective repeat: sender, receiver windows

Transport Layer 3-13

Selective repeat

data from above:
§ if next available seq # in

window, send pkt
timeout(n):
§ resend pkt n, restart timer
ACK(n) in [sendbase,sendbase+N]:

§ mark pkt n as received
§ if n smallest unACKed pkt,

advance window base to
next unACKed seq #

sender
pkt n in [rcvbase, rcvbase+N-1]

§ send ACK(n)
§ out-of-order: buffer
§ in-order: deliver (also

deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

§ ACK(n)
otherwise:
§ ignore

receiver

Transport Layer 3-14

Selective repeat in action

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, buffer,
send ack3rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send pkt2

Xloss

receive pkt4, buffer,
send ack4

receive pkt5, buffer,
send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

record ack3 arrived

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

record ack4 arrived
record ack5 arrived

Q: what happens when ack2 arrives?

Transport Layer 3-15

Selective repeat:
dilemma

example:
§ seq #’s: 0, 1, 2, 3
§ window size=3

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0
pkt1
pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2X
X
X

will accept packet
with seq number 0(b) oops!

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0
pkt1
pkt2

0 1 2 3 0 1 2
pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X
will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

receiver can’t see sender side.
receiver behavior identical in both cases!

something’s (very) wrong!

§ receiver sees no
difference in two
scenarios!

§ duplicate data
accepted as new in (b)

Q: what relationship
between seq # size
and window size to
avoid problem in (b)?

Transport Layer 3-16

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
• segment structure
• reliable data transfer
• flow control
• connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-17

TCP: Overview RFCs: 793,1122,1323, 2018, 2581

§ full duplex data:
• bi-directional data flow

in same connection
• MSS: maximum segment

size
§ connection-oriented:
• handshaking (exchange

of control msgs) inits
sender, receiver state
before data exchange

§ flow controlled:
• sender will not

overwhelm receiver

§ point-to-point:
• one sender, one receiver

§ reliable, in-order byte
steam:
• no “message

boundaries”
§ pipelined:
• TCP congestion and

flow control set window
size

Transport Layer 3-18

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

receive window

Urg data pointerchecksum
FSRPAUhead

len
not

used

options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

Transport Layer 3-19

TCP seq. numbers, ACKs
sequence numbers:
• byte stream “number” of
first byte in segment’s
data

acknowledgements:
• seq # of next byte
expected from other side
• cumulative ACK

Q: how receiver handles
out-of-order segments
•A: TCP spec doesn’t say,
- up to implementor source port # dest port #

sequence number
acknowledgement number

checksum
rwnd

urg pointer

incoming segment to sender

A

sent
ACKed

sent, not-
yet ACKed
(“in-
flight”)

usable
but not
yet sent

not
usable

window size
N

sender sequence number space

source port # dest port #

sequence number
acknowledgement number

checksum
rwnd

urg pointer

outgoing segment from sender

Transport Layer 3-20

TCP seq. numbers, ACKs

User
types
‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

Transport Layer 3-21

TCP round trip time, timeout

Q: how to set TCP
timeout value?

§ longer than RTT
• but RTT varies

§ too short: premature
timeout, unnecessary
retransmissions

§ too long: slow reaction
to segment loss

Q: how to estimate RTT?
§ SampleRTT: measured

time from segment
transmission until ACK
receipt
• ignore retransmissions

§ SampleRTT will vary, want
estimated RTT “smoother”
• average several recent

measurements, not just
current SampleRTT

Transport Layer 3-22

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

RT
T

(m
illi

se
co

nd
s)

SampleRTT Estimated RTT

EstimatedRTT = (1- a)*EstimatedRTT + a*SampleRTT

§ exponential weighted moving average
§ influence of past sample decreases exponentially fast
§ typical value: a = 0.125

TCP round trip time, timeout

RT
T

(m
illi

se
co

nd
s)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT
EstimatedRTT

time (seconds)

Transport Layer 3-23

§ timeout interval: EstimatedRTT plus “safety margin”
• large variation in EstimatedRTT -> larger safety margin

§ estimate SampleRTT deviation from EstimatedRTT:
DevRTT = (1-b)*DevRTT +

b*|SampleRTT-EstimatedRTT|

TCP round trip time, timeout

(typically, b = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Transport Layer 3-24

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
• segment structure
• reliable data transfer
• flow control
• connection management

3.6 principles of congestion
control

3.7 TCP congestion control

