
5617, Spring 2020
computer networking and

communication

anduo wang, Temple University
TTLMAN 305, T 17:30-20:00

End-To-End Arguments in
System Design

http://web.mit.edu/Saltzer/www/publications/endtoend/
endtoend.pdf

2

http://web.mit.edu/Saltzer/www/publications/endtoend/endtoend.pdf
http://web.mit.edu/Saltzer/www/publications/endtoend/endtoend.pdf

End-To-End argument
design principle
-the placement of functions among the modules of a

distributed system

3

End-To-End argument
design principle
-the placement of functions among the modules of a

distributed system
-functions placed at lower level
- redundant
- of little value

4

moving a function upward
placing a function in a layered system closer to the
application that uses the function
-one class of function placement
-sharpened by the emergence of data communication network

5

data communication network
for a distributed system that includes
communication
-draw a modular boundary around the communication

subsystem (network) and a firm interface between it and the
rest of the system

-a function can be placed at?

6

data communication network
for a distributed system that includes
communication
-draw a modular boundary around the communication

subsystem (network) and a firm interface between it and the
rest of the system

-a function can be placed at
- the network subsystem
- the client (application that uses the function)
- the joint nature
- redundantly

7

data communication network
for a distributed system that includes
communication
-draw a modular boundary around the communication

subsystem (network) and a firm interface between it and the
rest of the system

-a function can be placed at
- the network subsystem
- the client (application that uses the function)
- the joint nature
- redundantly

8

End-To-End argument
• the function in question can completely and

correctly be implemented only with the
knowledge and help of the application standing at
the endpoints of the communication subsystem

• providing that questioned function as a feature of
the communication subsystem is impossible

example function — reliable data transfer (rdt)

from host A to host B, failures can occur at various
points
-A passes (app) data to the rdt program
-A rdt program askes the network subsystem to transmit
-the network subsystem moves packets from A to B
-B communication program removes packets from the

network protocol to the rdt app
-rdt app writes the received data on the disc

9

reliable data transfer (rdt) —1st attempt

brute force countermeasure
-reinforce each of the steps along the way
- using duplicates, time-out, retry, redundancy, error checking
-reduce the probability of each individual threat

10

rdt — alternate approach
end-to-end check and retry
-if something wrong, retry from the beginning
-when failure rare:
- normally work on a first try, occasionally a 2nd/3rd tries

11

brute force countermeasure VS. end-to-end check
and retry

Q: whether or not this attempt to be helpful on
the part of the network is useful to the rdt app
-brute force
- even the threat of one step (e.g., step 4) is eliminated, the rdt app must

still counter the remaining threats
- only reduce the frequency of retries
- no effect on the inevitability of correctness of the outcome

12

brute force countermeasure VS. end-to-end check
and retry

Q: whether or not this attempt to be helpful on
the part of the network is useful to the rdt app
-brute force
- even the threat of one step (e.g., step 4) is eliminated, the rdt app must

still counter the remaining threats
- only reduce the frequency of retries
- no effect on the inevitability of correctness of the outcome
- for the network to go out of its way to be extraordinarily reliable does

not reduce the burden on the app …

13

brute force countermeasure VS. end-to-end check
and retry

Q: amount of effort to put into reliable measures
-an engineering trade-off based on performance, rather than a

requirement for correctness, frequently the trade-off is
complex

-brute force
- more efficient (hop-by-hop), but some app may find the cost of the

enhancement not worth the result
-end to end check and retry
- within app, simplifies the network but increases overall cost

14

other functions
delivery guarantees
secure transmission
duplicate message suppression
in order message delivery

15

delivery guarantee
lower level support may be wasting effort
-the acknowledgement really desired is an end-to-end one
- knowing the message was delivered to the target host is not very

important
- what the app wants is whether or not the target host acted on the

message
- implemented at the app level anyway, originated only by the

target app
-but (still) useful within the network as a form of congestion

control

16

delivery guarantee
lower level support may be wasting effort
-the acknowledgement really desired is an end-to-end one
- knowing the message was delivered to the target host is not very

important
- what the app wants is whether or not the target host acted on the

message
- implemented at the app level anyway, originated only by the

target app
-but (still) useful within the network as a form of congestion

control

17

secure transmission
not need for the network to provide encryption /
decryption of traffic
-the network trusted to securely manage the keys?
-data still vulnerable as they pass into the target node / or fan

out the target app

18

secure transmission
not need for the network to provide encryption /
decryption of traffic
-the network trusted to securely manage the keys?
-data still vulnerable as they pass into the target node / or fan

out the target app

network-level / app-level protection can be
complementary

19

duplicate message suppression
causes
-time-out triggered failures detection and retry within the

network
-originated by the app itself in its own failure / retry
- e.g. 1 a remote user, puzzled by lack of response, initiate a new login to

a time-sharing server
- e.g. 2 system crashes at one end of a multisite transaction

20

duplicate message suppression
causes
-time-out triggered failures detection and retry within the

network
-originated by the app itself in its own failure / retry
- e.g. 1 a remote user, puzzled by lack of response, initiate a new login to

a time-sharing server
- e.g. 2 system crashes at one end of a multisite transaction

suppression must be accomplished by the app
itself, with knowledge of how to detect its own
duplicates

21

in order message delivery
why not in network?
-messages may be sent along independent virtual circuits /

paths
-messages may be originated by distributed app

22

identify the endpoints
end-to-end argument is a property of the specific
application
-speech message system
- scenario 1: two people in real-time conversation
- scenario 2: voice packets stored for later listening

23

historical notes
the debate: datagram VS. virtual circuit
RISC
open OS

24

the debate
datagram? virtual circuit?
-modularity argument
- reliable, in order, duplicate-suppressed stream of data within the

network
- favors virtual circuit

25

the debate
datagram? virtual circuit?
-modularity argument
- reliable, in order, duplicate-suppressed stream of data within the

network
- favors virtual circuit
-end-to-end argument
- centrally provided versions of those functions incomplete for some app,

others will find it easier to build their own
- favors datagram & connectionless protocol

26

reduced instruction set computer (RISC)

-better performance by implemented exactly the instructions
needed from primitive tools

-attempt to anticipate the client’s requirements for an
esoteric feature will miss the target

-client will reimplement those features anyway

27

open OS
-against making any function a permeant fixture of lower level

modules
-make functions always replaceable by an app’s special version
-more flexible for apps

28

end to end argument and “Occam’s Razor”

Occam’s Razor
-do not make more assumptions than the minimum needed

end-to-end argument is a kind of “Occam’s Razor”
-when it comes to choosing the functions to be provided

within a subsystem
- the subsystem frequently specified before app that uses the subsystem

are known
- a rational principle for organizing the subsystem

29

