
5617, Spring 2020
computer networking and 

communication

anduo wang, Temple University
TTLMAN 305, T 17:30-20:00
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endtoend.pdf

2

http://web.mit.edu/Saltzer/www/publications/endtoend/endtoend.pdf
http://web.mit.edu/Saltzer/www/publications/endtoend/endtoend.pdf


End-To-End argument
design principle
-the placement of functions among the modules of a 

distributed system
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End-To-End argument
design principle
-the placement of functions among the modules of a 

distributed system
-functions placed at lower level
- redundant
- of little value
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moving a function upward
placing a function in a layered system closer to the 
application that uses the function
-one class of function placement
-sharpened by the emergence of data communication network
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data communication network
for a distributed system that includes 
communication
-draw a modular boundary around the communication 

subsystem (network) and a firm interface between it and the 
rest of the system

-a function can be placed at?
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End-To-End argument
• the function in question can completely and 

correctly be implemented only with the 
knowledge and help of the application standing at 
the endpoints of the communication subsystem

• providing that questioned function as a feature of 
the communication subsystem is impossible



example function — reliable data transfer (rdt)

from host A to host B, failures can occur at various 
points
-A passes (app) data to the rdt program
-A rdt program askes the network subsystem to transmit
-the network subsystem moves packets from A to B
-B communication program removes packets from the 

network protocol to the rdt app
-rdt app writes the received data on the disc
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reliable data transfer (rdt) —1st attempt

brute force countermeasure
-reinforce each of the steps along the way
- using duplicates, time-out, retry, redundancy, error checking
-reduce the probability of each individual threat

10



rdt — alternate approach
end-to-end check and retry 
-if something wrong, retry from the beginning
-when failure rare:
- normally work on a first try, occasionally a 2nd/3rd tries
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brute force countermeasure VS. end-to-end check 
and retry

Q: whether or not this attempt to be helpful on 
the part of the network is useful to the rdt app 
-brute force
- even the threat of one step (e.g., step 4) is eliminated, the rdt app must 

still counter the remaining threats
- only reduce the frequency of retries
- no effect on the inevitability of correctness of the outcome
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brute force countermeasure VS. end-to-end check 
and retry

Q: whether or not this attempt to be helpful on 
the part of the network is useful to the rdt app 
-brute force
- even the threat of one step (e.g., step 4) is eliminated, the rdt app must 

still counter the remaining threats
- only reduce the frequency of retries
- no effect on the inevitability of correctness of the outcome
- for the network to go out of its way to be extraordinarily reliable does 

not reduce the burden on the app …  
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brute force countermeasure VS. end-to-end check 
and retry

Q: amount of effort to put into reliable measures
-an engineering trade-off based on performance, rather than a 

requirement for correctness, frequently the trade-off is 
complex

-brute force
- more efficient (hop-by-hop), but some app may find the cost of the 

enhancement not worth the result
-end to end check and retry
- within app, simplifies the network but increases overall cost
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other functions
delivery guarantees
secure transmission
duplicate message suppression
in order message delivery
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delivery guarantee
lower level support may be wasting effort
-the acknowledgement really desired is an end-to-end one
- knowing the message was delivered to the target host is not very 

important
- what the app wants is whether or not the target host acted on the 

message
- implemented at the app level anyway, originated only by the 

target app
-but (still) useful within the network as a form of congestion 

control
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secure transmission
not need for the network to provide encryption / 
decryption of traffic
-the network trusted to securely manage the keys?
-data still vulnerable as they pass into the target node / or fan 

out the target app
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secure transmission
not need for the network to provide encryption / 
decryption of traffic
-the network trusted to securely manage the keys?
-data still vulnerable as they pass into the target node / or fan 

out the target app

network-level / app-level protection can be 
complementary 
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duplicate message suppression
causes
-time-out triggered failures detection and retry within the 

network
-originated by the app itself in its own failure / retry
- e.g. 1 a remote user, puzzled by lack of response, initiate a new login to 

a time-sharing server
- e.g. 2 system crashes at one end of a multisite transaction
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duplicate message suppression
causes
-time-out triggered failures detection and retry within the 

network
-originated by the app itself in its own failure / retry
- e.g. 1 a remote user, puzzled by lack of response, initiate a new login to 

a time-sharing server
- e.g. 2 system crashes at one end of a multisite transaction

suppression must be accomplished by the app 
itself, with knowledge of how to detect its own 
duplicates

21



in order message delivery
why not in network?
-messages may be sent along independent virtual circuits / 

paths
-messages may be originated by distributed app 
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identify the endpoints
end-to-end argument is a property of the specific 
application
-speech message system
- scenario 1: two people in real-time conversation
- scenario 2: voice packets stored for later listening
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historical notes
the debate: datagram VS. virtual circuit
RISC
open OS
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the debate
datagram? virtual circuit?
-modularity argument
- reliable, in order, duplicate-suppressed stream of data within the 

network
- favors virtual circuit
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the debate
datagram? virtual circuit?
-modularity argument
- reliable, in order, duplicate-suppressed stream of data within the 

network
- favors virtual circuit
-end-to-end argument
- centrally provided versions of those functions incomplete for some app, 

others will find it easier to build their own
- favors datagram & connectionless protocol
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reduced instruction set computer (RISC)

-better performance by implemented exactly the instructions 
needed from primitive tools

-attempt to anticipate the client’s requirements for an 
esoteric feature will miss the target

-client will reimplement those features anyway
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open OS
-against making any function a permeant fixture of lower level 

modules
-make functions always replaceable by an app’s special version
-more flexible for apps
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end to end argument and “Occam’s Razor”

Occam’s Razor
-do not make more assumptions than the minimum needed

end-to-end argument is a kind of “Occam’s Razor”
-when it comes to choosing the functions to be provided 

within a subsystem
- the subsystem frequently specified before app that uses the subsystem 

are known
- a rational principle for organizing the subsystem
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