
Computer
Networking: A Top
Down Approach

A note on the use of these Powerpoint slides:
We’re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you see the animations; and can add, modify,
and delete slides (including this one) and slide content to suit your needs.
They obviously represent a lot of work on our part. In return for use, we only
ask the following:
§ If you use these slides (e.g., in a class) that you mention their source

(after all, we’d like people to use our book!)
§ If you post any slides on a www site, that you note that they are adapted

from (or perhaps identical to) our slides, and note our copyright of this
material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2016
J.F Kurose and K.W. Ross, All Rights Reserved

7th edition
Jim Kurose, Keith Ross
Pearson/Addison Wesley
April 2016

Chapter 2
Application Layer

Application Layer 2-1

Application Layer 2-2

Chapter 2: outline

2.1 principles of network
applications

2.2 Web and HTTP
2.3 electronic mail

• SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications
2.6 video streaming and

content distribution
networks

2.7 socket programming
with UDP and TCP

Application Layer 2-3

Web and HTTP

First, a review…
§ web page consists of objects
§ object can be HTML file, JPEG image, Java applet,

audio file,…
§ web page consists of base HTML-file which

includes several referenced objects
§ each object is addressable by a URL, e.g.,

www.someschool.edu/someDept/pic.gif

host name path name

Application Layer 2-4

HTTP overview

HTTP: hypertext
transfer protocol

§ Web’s application layer
protocol

§ client/server model
• client: browser that

requests, receives,
(using HTTP protocol)
and “displays”Web
objects

• server: Web server
sends (using HTTP
protocol) objects in
response to requests

PC running
Firefox browser

server
running

Apache Web
server

iPhone running
Safari browser

HTTP requestHTTP response

HTTP request

HTTP response

Application Layer 2-5

HTTP overview (continued)

uses TCP:
§ client initiates TCP

connection (creates socket)
to server, port 80

§ server accepts TCP
connection from client

§ HTTP messages
(application-layer protocol
messages) exchanged
between browser (HTTP
client) and Web server
(HTTP server)

§ TCP connection closed

HTTP is “stateless”
§ server maintains no

information about
past client requests

protocols that maintain
“state” are complex!

§ past history (state) must be
maintained

§ if server/client crashes, their
views of “state” may be
inconsistent, must be
reconciled

aside

Application Layer 2-6

HTTP connections

non-persistent HTTP
§ at most one object

sent over TCP
connection
• connection then

closed
§ downloading multiple

objects required
multiple connections

persistent HTTP
§ multiple objects can

be sent over single
TCP connection
between client, server

Application Layer 2-7

Non-persistent HTTP
suppose user enters URL:

1a. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on port
80

2. HTTP client sends HTTP request
message (containing URL) into
TCP connection socket.
Message indicates that client
wants object
someDepartment/home.index

1b. HTTP server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection, notifying
client

3. HTTP server receives request
message, forms response
message containing requested
object, and sends message into
its socket

time

(contains text,
references to 10

jpeg images)
www.someSchool.edu/someDepartment/home.index

Application Layer 2-8

Non-persistent HTTP (cont.)

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

6. Steps 1-5 repeated for each of
10 jpeg objects

4. HTTP server closes TCP
connection.

time

Application Layer 2-9

Non-persistent HTTP: response time

RTT (definition): time for a
small packet to travel from
client to server and back

HTTP response time:
§ one RTT to initiate TCP

connection
§ one RTT for HTTP request

and first few bytes of HTTP
response to return

§ file transmission time
§ non-persistent HTTP

response time =
2RTT+ file transmission
time

time to
transmit
file

initiate TCP
connection

RTT
request
file

RTT

file
received

time time

Application Layer 2-10

Persistent HTTP

non-persistent HTTP issues:
§ requires 2 RTTs per object
§ OS overhead for each TCP

connection
§ browsers often open

parallel TCP connections to
fetch referenced objects

persistent HTTP:
§ server leaves connection

open after sending
response

§ subsequent HTTP
messages between same
client/server sent over
open connection

§ client sends requests as
soon as it encounters a
referenced object

§ as little as one RTT for all
the referenced objects

Application Layer 2-11

HTTP request message

§ two types of HTTP messages: request, response
§ HTTP request message:

• ASCII (human-readable format)

request line
(GET, POST,
HEAD commands)

header
lines

carriage return,
line feed at start
of line indicates
end of header lines

GET /index.html HTTP/1.1\r\n
Host: www-net.cs.umass.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

carriage return character
line-feed character

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Application Layer 2-12

HTTP request message: general format

request
line

header
lines

body

method sp sp cr lfversionURL

cr lfvalueheader field name

cr lfvalueheader field name

~~ ~~

cr lf

entity body~~ ~~

Application Layer 2-13

Uploading form input

POST method:
§ web page often includes

form input
§ input is uploaded to server

in entity body

URL method:
§ uses GET method
§ input is uploaded in URL

field of request line:

www.somesite.com/animalsearch?monkeys&banana

Application Layer 2-14

Method types

HTTP/1.0:
§ GET
§ POST
§ HEAD

• asks server to leave
requested object out
of response

HTTP/1.1:
§ GET, POST, HEAD
§ PUT

• uploads file in entity
body to path specified
in URL field

§ DELETE
• deletes file specified in

the URL field

Application Layer 2-15

HTTP response message

status line
(protocol
status code
status phrase)

header
lines

data, e.g.,
requested
HTML file

HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02

GMT\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=ISO-8859-

1\r\n
\r\n
data data data data data ...

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Application Layer 2-16

HTTP response status codes

200 OK
• request succeeded, requested object later in this msg

301 Moved Permanently
• requested object moved, new location specified later in this msg

(Location:)
400 Bad Request

• request msg not understood by server
404 Not Found

• requested document not found on this server
505 HTTP Version Not Supported

§ status code appears in 1st line in server-to-
client response message.

§ some sample codes:

Application Layer 2-17

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:

opens TCP connection to port 80
(default HTTP server port)
at gaia.cs.umass. edu.

anything typed in will be sent
to port 80 at gaia.cs.umass.edu

telnet gaia.cs.umass.edu 80

2. type in a GET HTTP request:
GET /kurose_ross/interactive/index.php HTTP/1.1
Host: gaia.cs.umass.edu by typing this in (hit carriage

return twice), you send
this minimal (but complete)
GET request to HTTP server

3. look at response message sent by HTTP server!
(or use Wireshark to look at captured HTTP request/response)

Application Layer 2-18

User-server state: cookies

many Web sites use cookies
four components:

1) cookie header line of
HTTP response
message

2) cookie header line in
next HTTP request
message

3) cookie file kept on
user’s host, managed
by user’s browser

4) back-end database at
Web site

example:
§ Susan always access Internet

from PC
§ visits specific e-commerce

site for first time
§ when initial HTTP requests

arrives at site, site creates:
• unique ID
• entry in backend

database for ID

Application Layer 2-19

Cookies: keeping “state” (cont.)

client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734 usual http request msg Amazon server
creates ID

1678 for user create
entry

usual http response
set-cookie: 1678ebay 8734

amazon 1678

usual http request msg
cookie: 1678 cookie-

specific
action

access
ebay 8734
amazon 1678

backend
database

Application Layer 2-20

Cookies (continued)
what cookies can be used

for:
§ authorization
§ shopping carts
§ recommendations
§ user session state (Web

e-mail)

cookies and privacy:
§ cookies permit sites to

learn a lot about you
§ you may supply name and

e-mail to sites

aside

how to keep “state”:
§ protocol endpoints: maintain state at

sender/receiver over multiple
transactions

§ cookies: http messages carry state

Application Layer 2-21

Web caches (proxy server)

§ user sets browser: Web
accesses via cache

§ browser sends all HTTP
requests to cache

• object in cache: cache
returns object

• else cache requests
object from origin
server, then returns
object to client

goal: satisfy client request without involving origin server

client

proxy
server

client

HTTP request

HTTP response

HTTP request HTTP request

origin
server

origin
server

HTTP response HTTP response

Application Layer 2-22

More about Web caching

§ cache acts as both
client and server
• server for original

requesting client
• client to origin server

§ typically cache is
installed by ISP
(university, company,
residential ISP)

why Web caching?
§ reduce response time

for client request
§ reduce traffic on an

institution’s access link
§ Internet dense with

caches: enables “poor”
content providers to
effectively deliver
content (so too does
P2P file sharing)

Application Layer 2-23

Caching example:

origin
servers

public
Internet

institutional
network

1 Gbps LAN

1.54 Mbps
access link

assumptions:
§ avg object size: 100K bits
§ avg request rate from browsers to

origin servers:15/sec
§ avg data rate to browsers: 1.50 Mbps
§ RTT from institutional router to any

origin server: 2 sec
§ access link rate: 1.54 Mbps

consequences:
§ LAN utilization: 15%
§ access link utilization = 99%
§ total delay = Internet delay + access

delay + LAN delay
= 2 sec + minutes + usecs

problem!

Application Layer 2-24

assumptions:
§ avg object size: 100K bits
§ avg request rate from browsers to

origin servers:15/sec
§ avg data rate to browsers: 1.50 Mbps
§ RTT from institutional router to any

origin server: 2 sec
§ access link rate: 1.54 Mbps

consequences:
§ LAN utilization: 15%
§ access link utilization = 99%
§ total delay = Internet delay + access

delay + LAN delay
= 2 sec + minutes + usecs

Caching example: fatter access link

origin
servers

1.54 Mbps
access link

154 Mbps 154 Mbps

msecs

Cost: increased access link speed (not cheap!)

9.9%

public
Internet

institutional
network

1 Gbps LAN

institutional
network

1 Gbps LAN

Application Layer 2-25

Caching example: install local cache

origin
servers

1.54 Mbps
access link

local web
cache

assumptions:
§ avg object size: 100K bits
§ avg request rate from browsers to

origin servers:15/sec
§ avg data rate to browsers: 1.50 Mbps
§ RTT from institutional router to any

origin server: 2 sec
§ access link rate: 1.54 Mbps

consequences:
§ LAN utilization: 15%
§ access link utilization = 100%
§ total delay = Internet delay + access

delay + LAN delay
= 2 sec + minutes + usecs

?
?

How to compute link
utilization, delay?

Cost: web cache (cheap!)

public
Internet

Application Layer 2-26

Caching example: install local cache

Calculating access link
utilization, delay with cache:

§ suppose cache hit rate is 0.4
• 40% requests satisfied at cache,

60% requests satisfied at origin

origin
servers

1.54 Mbps
access link

§ access link utilization:
§ 60% of requests use access link

§ data rate to browsers over access link
= 0.6*1.50 Mbps = .9 Mbps
§ utilization = 0.9/1.54 = .58

§ total delay
§ = 0.6 * (delay from origin servers) +0.4

* (delay when satisfied at cache)
§ = 0.6 (2.01) + 0.4 (~msecs) = ~ 1.2 secs
§ less than with 154 Mbps link (and

cheaper too!)

public
Internet

institutional
network

1 Gbps LAN

local web
cache

Application Layer 2-27

Conditional GET

§ Goal: don’t send object if
cache has up-to-date
cached version
• no object transmission

delay
• lower link utilization

§ cache: specify date of
cached copy in HTTP
request
If-modified-since:
<date>

§ server: response contains
no object if cached copy
is up-to-date:
HTTP/1.0 304 Not
Modified

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified
before
<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

after
<date>

client server

Application Layer 2-28

Chapter 2: outline

2.1 principles of network
applications

2.2 Web and HTTP
2.3 electronic mail

• SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications
2.6 video streaming and

content distribution
networks

2.7 socket programming
with UDP and TCP

