Lecture 7 — Chapter 3
TCP flow and congestion control

CIS 5617, Spring 2020
Anduo Wang
Based on Slides created by JFK/IKWR

7th edition
Jim Kurose, Keith Ross

Pearson/Addison Wesley
April 2016

1-1

TCP flow / congestion control

3.5 connection-oriented
transport: TCP

* flow control
3.7 TCP congestion control

Transport Layer 3-2

TCP flow control —_—

application
application may process
remove data from S
TCP socket buffers FV | E_]Ep_“f‘—it'_o_n
TCP socket OS
receiver buffers
... slower than TCP N\
receiver is delivering —|—— ‘
(sender is sending) TCP
code
[l _ |
- IP
ﬂOW control code \
receiver controls sender, so T
sender won’ t overflow , R | =
receiver s buffer by transmitting from sender:
too much, too fast _
receiver protocol stack

Transport Layer 3-3

TCP flow control

. 11 . a4
= receiver advertises free

buffer space by including to application process
rwnd value in TCP header rlj
(S)efgrne,:;enlzser to-sender RchuffeJI buffered data
* RevBuffer size set via _T— ///// /
socket options (typical default rwnd
is 4096 bytes)) /

° many operating systems

autoadjust RcvBuffer

= sender I|m|ts amount of
unacked (in-flight”) data to

receiver s rwnd value

TCP segment payloads

receiver-side buftfering

" guarantees receive buffer
will not overflow

Transport Layer 3-4

TCP flow / congestion control

3.5 connection-oriented
transport: TCP

* flow control
3.7 TCP congestion control

Transport Layer 3-5

TCP congestion control: additive increase

multiplicative decrease

" approach: sender increases transmission rate (window
size), probing for usable bandwidth, until loss occurs

* additive increase: increase cwnd by | MSS
(maximum segment size) every RTT until loss
detected

* multiplicative decrease: cut cwnd in half after loss
additively increase window size ...

... until loss occurs (then cut window in half)

J

AIMD saw tooth
behavior: probing
for bandwidth

cwnd: TCP sender
congestion window size
L

time
Transport Layer 3-6

TCP Congestion Control: details

sender sequence number space

— cwnd ——sf TCP sending rate:
IIIIIIIII IIIIII * roughly: send cwne
bytes, wait RTT for
Jast byte t\ L lastbyte ACKS, then send
Ao SeAked %™ more bytes
ot/
1(=|iéht”)
= sender limits transmission: rate =~ bytes/sec
LastByteSent- < cwnd
LastByteAcked

* cwnd is dynamic, function
of perceived network
congestion

Transport Layer 3-7

TCP Slow Start

= when connection begins,
increase rate
exponentially until first
loss event:
* initially cwnd = | MSS
* double cwnd every RTT

* done by incrementing
cwnd for every ACK

received

" summary: initial rate is
slow but ramps up
exponentially fast

time

Transport Layer 3-8

TCP: detecting, reacting to loss

" |oss indicated by timeout:
* cwnd set to | MSS;

* window then grows exponentially (as in slow start)
to threshold, then grows linearly

" |oss indicated by 3 duplicate ACKs: TCP RENO

* dup ACKs indicate network capable of delivering
some segments

* cwnd is cut in half window then grows linearly

= TCP Tahoe always sets cwnd to | (timeout or 3
duplicate acks)

Transport Layer 3-9

TCP: switching from slow start to CA

Q: when should the

exponential
increase switch to 145 TCP Reno
linear? s 4
8 . 10
A: When Cwnd gets % ‘é 8__ss_tklrgsb ____________
to 1/2 of its value g5
before timeout. - ssthresh
S TCP Tahoe
2_
. . O
|mP|ementat|0n. 01 2 34 56 7 8 910111213 14 15
- Variable SSthreSh Transmission round

= on loss event, ssthresh
is set to |/2 of cwnd just
before loss event

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/ Transport Layer 3-10

S

u

mmary: TCP Congestion Control

duplicate ACK

dupACKcount++

()

A
cwnd =1 MSS
ssthresh = 64 KB
dupACKcount =0 >

;Q:EQ\ </
|(i ‘,‘{')] timeout
ssthresh = cwnd/2

cwnd = 1 MSS
dupACKcount =0
retransmit missing segment

dupACKcount ==

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

new ACF

cwnd = cwnd + MSS « (MSS/cwnd)
dupACKcount =0

new ACK
transmit new segment(s), as allowed

cwnd = cwnd+MSS
dupACKcount =0

/>transmit new segment(s), as allowed
cwnd > ssthresh

A
f(P’;Q\ timeout
'\ &)] ssthresh = cwnd/2
% cwnd = 1 MSS duplicate ACK
dupACKcount =0 dupACKcount++
retransmit missing segment A
22
L} (4 nf’
imoout'§)
ssthresh = cwnd/2
cwnd = 1 New ACK
dUpACKCOUﬂt =0 m
retransmit missing segment dSp AC}ZC?)Sunte:O dupACKcount ==
ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

v
A

duplicate ACK

cwnd = cwnd + MSS
transmit new segment(s), as allowed

Transport Layer 3-11

TCP throughput

= avg. TCP thruput as function of window size, RTT?
* ignore slow start, assume always data to send

= W: window Size (measured in bytes) Where loss occurs
* avg. window size (# in-flight bytes) is ¥4 W
* avg. thruput is 3/4WV per RTT

avg TCP thruput = % % bytes/sec

N14444%4

Transport Layer 3-12

TCP Fairness

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

ENg—_—

™, bottleneck
g router
N

TCP connection 2 capacity R

Transport Layer 3-14

Why is TCP fair?

two competing sessions:
= additive increase gives slope of |, as throughout increases
* multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput o

Connection 1 throughput R

Transport Layer 3-15

Fairness gmorez

Fairness and UDP

* multimedia apps often
do not use TCP

e do not want rate
throttled by congestion
control

= instead use UDP:

e send audio/video at
constant rate, tolerate
packet loss

Fairness, parallel TCP
connections

= application can open
multiple parallel
connections between
two hosts

= web browsers do this

" e.g., link of rate R with 9

existing connections:

* new app asks for | TCP, gets
rate R/10

* new app asks for || TCPs,
gets R/2

Transport Layer 3-16

