
1-1

CIS 5617, Spring 2020
Anduo Wang

Based on Slides created by JFK/KWR

7th edition
Jim Kurose, Keith Ross

Pearson/Addison Wesley
April 2016

Lecture 7 – Chapter 3
TCP flow and congestion control

Transport Layer 3-2

TCP flow / congestion control

3.5 connection-oriented
transport: TCP
• flow control

3.7 TCP congestion control

Transport Layer 3-3

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

application
OS

receiver protocol stack

application may
remove data from

TCP socket buffers ….

… slower than TCP
receiver is delivering
(sender is sending)

from sender

receiver controls sender, so
sender won’t overflow
receiver’s buffer by transmitting
too much, too fast

flow control

Transport Layer 3-4

TCP flow control

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process
§ receiver “advertises” free

buffer space by including
rwnd value in TCP header
of receiver-to-sender
segments

• RcvBuffer size set via
socket options (typical default
is 4096 bytes)

• many operating systems
autoadjust RcvBuffer

§ sender limits amount of
unacked (“in-flight”) data to
receiver’s rwnd value

§ guarantees receive buffer
will not overflow

receiver-side buffering

Transport Layer 3-5

TCP flow / congestion control

3.5 connection-oriented
transport: TCP
• flow control

3.7 TCP congestion control

Transport Layer 3-6

TCP congestion control: additive increase
multiplicative decrease

§ approach: sender increases transmission rate (window
size), probing for usable bandwidth, until loss occurs
• additive increase: increase cwnd by 1 MSS

(maximum segment size) every RTT until loss
detected
• multiplicative decrease: cut cwnd in half after loss

c
w
n
d
:

TC
P

se
nd

er

co
ng

es
tio

n
w

in
do

w
 s

iz
e

AIMD saw tooth
behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time

Transport Layer 3-7

TCP Congestion Control: details

§ sender limits transmission:

§ cwnd is dynamic, function
of perceived network
congestion

TCP sending rate:
§ roughly: send cwnd

bytes, wait RTT for
ACKS, then send
more bytes

last byte
ACKed sent, not-

yet ACKed
(“in-
flight”)

last byte
sent

cwnd

LastByteSent-
LastByteAcked

< cwnd

sender sequence number space

rate ~~
cwnd
RTT

bytes/sec

Transport Layer 3-8

TCP Slow Start

§ when connection begins,
increase rate
exponentially until first
loss event:
• initially cwnd = 1 MSS
• double cwnd every RTT
• done by incrementing
cwnd for every ACK
received

§ summary: initial rate is
slow but ramps up
exponentially fast

Host A

one segment

R
TT

Host B

time

two segments

four segments

Transport Layer 3-9

TCP: detecting, reacting to loss

§ loss indicated by timeout:
• cwnd set to 1 MSS;
• window then grows exponentially (as in slow start)

to threshold, then grows linearly
§ loss indicated by 3 duplicate ACKs: TCP RENO
• dup ACKs indicate network capable of delivering

some segments
• cwnd is cut in half window then grows linearly

§ TCP Tahoe always sets cwnd to 1 (timeout or 3
duplicate acks)

Transport Layer 3-10

Q: when should the
exponential
increase switch to
linear?

A: when cwnd gets
to 1/2 of its value
before timeout.

Implementation:
§ variable ssthresh
§ on loss event, ssthresh

is set to 1/2 of cwnd just
before loss event

TCP: switching from slow start to CA

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Transport Layer 3-11

Summary: TCP Congestion Control

timeout
ssthresh = cwnd/2

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

L
cwnd > ssthresh

congestion
avoidance

cwnd = cwnd + MSS (MSS/cwnd)
dupACKcount = 0

transmit new segment(s), as allowed

new ACK.

dupACKcount++
duplicate ACK

fast
recovery

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout
ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0
retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow
start

timeout
ssthresh = cwnd/2

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++
duplicate ACK

L
cwnd = 1 MSS

ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!

Transport Layer 3-12

TCP throughput
§ avg. TCP thruput as function of window size, RTT?
• ignore slow start, assume always data to send

§ W: window size (measured in bytes) where loss occurs
• avg. window size (# in-flight bytes) is ¾ W
• avg. thruput is 3/4W per RTT

W

W/2

avg TCP thruput = 3
4

W
RTT bytes/sec

Transport Layer 3-14

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck
router

capacity R

TCP Fairness

TCP connection 2

Transport Layer 3-15

Why is TCP fair?
two competing sessions:
§ additive increase gives slope of 1, as throughout increases
§ multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

C
on

ne
ct

io
n

2
th

ro
ug

hp
ut

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

Transport Layer 3-16

Fairness (more)
Fairness and UDP
§ multimedia apps often

do not use TCP
• do not want rate

throttled by congestion
control

§ instead use UDP:
• send audio/video at

constant rate, tolerate
packet loss

Fairness, parallel TCP
connections

§ application can open
multiple parallel
connections between
two hosts

§ web browsers do this
§ e.g., link of rate R with 9

existing connections:
• new app asks for 1 TCP, gets

rate R/10
• new app asks for 11 TCPs,

gets R/2

