Lecture 5 — Chapter 3

CIS 5617, Spring 2020
Anduo Wang
Based on Slides created by JFK/IKWR

7t edition
Jim Kurose, Keith Ross

Pearson/Addison Wesley
April 2016

1-1

Pipelined protocols

pipelining: sender allows multiple, “in-flight”, yet-
to-be-acknowledged pkts
* range of sequence numbers must be increased
* buffering at sender and/or receiver

data pqcke’r—»

data packets—» ‘p

<+— ACK packets

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

= two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-2

Pipelinin

sender

first packet bit transmitted, t = 0—
last bit transmitted, t =L /R

A

RTT

ACK arrives, send next]
packet, t=RTT+L/R |

: increased utilization

receiver

— first packet bit arrives
—last packet bit arrives, send ACK

—last bit of 2"d packet arrives, send ACK
—last bit of 3" packet arrives, send ACK

3-packet pipelining increases
utilization by a factor of 3!

/

0.00081

Transport Layer 3-3

Pipelined protocols: overview

Go-back-N: Selective Repeat:

= sender can have up to = sender can have up to N
N unacked packets in unack ed packets in
pipeline pipeline

= receiver only sends " rcvr sends individual ack
cumulative ack for each packet

* doesn’ t ack packet if
there’ s a gap

= sender has timer for = sender maintains timer for
oldest unacked packet each unacked packet
* when timer expires, * when timer expires,
retransmit all unacked retransmit only that

packets unacked packet

Transport Layer 3-4

Go-Back-N: sender

= k-bit seq # in pkt header
= “window” of up to N, consecutive unack’ ed pkts allowed

send _base hexfsegnum dlready Usable. hof
\L i ack’ed yet sent
{11 AR TITETTINGG = EESS
t _ window size —2
N

= ACK(n):ACKs all pkts up to, including seq # n - “cumulative
ACK”

* may receive duplicate ACKs (see receiver)
= timer for oldest in-flight pkt

" timeout(n): retransmit packet n and all higher seq # pkts in
window

Transport Layer 3-5

GBN: sender extended FSM

rdt_send(data)

if (nextseqnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextsegnum)
start_timer
nextseqgnum-++
A else

base=1 refuse_data(data)

nextseqnum=1 ™

* timeout
start_timer
Q udt_send(sndpkt[base])
O Q udt_send(sndpkt[base+1])

-

rdt_rcv(rcvpkt)

&& corrupt(rcvpkt)
udt_send(sndpkt[nextseqnum-1]

rdt_rcv(rcvpkt) &&)
notcorrupt(rcvpkt)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)
stop _timer
else

start timer
- Transport Layer 3-6

GBN: receiver extended FSM

default
udt_send(sndpkt) rdt_rcv(rcvpkt)
- () && notcurrupt(rcvpkt)

A T~ - o && hasseqnum(rcvpkt,expectedseqnum)
= -

expectedsegnum=1 A:-Dextract(rcvpkt,data)

sndpkt = deliver_data(data)

make_pkt(expectedseqnum,ACK,chksum) sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)

expectedsegnum++

ACK-only: always send ACK for correctly-received
pkt with highest in-order seq #

* may generate duplicate ACKs
* need only remember expectedsegnum

" out-of-order pkt:
* discard (don’ t buffer): no receiver buffering!
* re-ACK pkt with highest in-order seq #

Transport Layer 3-7

GBN in action

sender window (N=4) sender receiver

EPE 25678 send pkt0

EPEls5678 send pktl \ _

415678 send pktz-\ receive pkt0, send ackO

15678 send pkt3 X/0ss receive pktl, send ackl
(wait)

receive pkt3, discard,

ofEE¥5678 rcv ack0, send pkt4 (re)send ackl

0 1EEE]6 78 rcv ackl, send pkt5 receive pkt4, discard,

(re)send ackl
ignore duplicate ACK

receive pkt5, discard,
. E okt 2 timeout / (re)send ackl
R 2 3 4 5[RA: send pkt2
W1 2 3 4 5[4 send pkt3 \ .
Rl 2 3 4 5[R send pkt4 rcv pkt2, deliver, send ack2
0 1EEYI6 7 8 send pkt5 rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
/ rcv pkt5, deliver, send ack5

Transport Layer 3-8

Selective repeat

" receiver individually acknowledges all correctly
received pkts

* buffers pkts, as needed, for eventual in-order delivery
to upper layer

= sender only resends pkts for which ACK not
received

* sender timer for each unACKed pkt

=" sender window

N consecutive seq # s
* limits seq #s of sent, unACKed pkts

Transport Layer 3-9

Selective repeat: sender, receiver windows

send_base nexfsegnum dlready Usable. not
, ack’ed yet sent
(U0 TOTAEECTT =t e
t __ window size —24
N

(a) sender view of sequence numbers

acceptable
(buffered) but ¥ (within window)
already ack’ed

ﬂﬂﬂﬂﬂﬂﬂﬂﬂllllllllllllﬂﬂﬂ |ogectedaer o

t _ window size—4

1 N

rcv_base

I out of order

(b) receiver view of sequence numbers

Transport Layer 3-10

Selective repeat

— sender
data from above:

" if next available seq # in
window, send pkt

timeout(n):
= resend pkt n, restart timer

" mark pkt n as received

= if n smallest unACKed pkt,
advance window base to

next unACKed seq #

AC K(n) iN [sendbase,sendbase+N]:

— receiver
Pkt nin [rcvbase, rcvbase+N-1]
= send ACK(n)
= out-of-order: buffer

" in-order: deliver (also
deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

Pkt nin [rcvbase-N,rcvbase-1]
= ACK(n)

otherwise:

" ighore

Transport Layer 3-11

Selective repeat in action

sender window (N=4) sender receiver
EPEl256738 send pktO
PR+ 5675 send pktl \ receive pkt0, send ack0
0 12 3PNLRA: send pkt2- . !
EPE 45678 send pkt3 T~Xloss receive pktl, send ackl
wait
- () receive pkt3, buffer,
ofEEX5678 rcv ack0, send pkt4 send ack3

0 1EE¥Is 78 rcv ackl, send pkt5 receive pktd, buffer,

send ack4

ﬁrecord ack3 arrived recejve pkt5, buffer,

. : k

pkt 2 timeout _ send ack>
WKl 2 3 4 5[&} send pkt2
0 16 7 8 record ack4 arrived .
R 2 3 4 5[RA:] . rcv pkt2; deliver pkt2,
VRl 2 3 4 5[record ackS arrived / pkt3, pktd, pkt5; send ack2

Q: what happens when ack2 arrives?

Transport Layer 3-12

Selective repeat:
dilemma

example:

= seq# s:0,1,2,3
= window size=3

" receiver sees no

difference in two
scenarios!

= duplicate data
accepted as new in (b)

Q: what relationship
between seq # size
and window size to
avoid problem in (b)?

sender window receiver window
(after receipt) (after receipt)

BBz o012 X

3012& — OofEE0 12

3012A§2< — 0 1B 2
— 012k K2

ofIEEI0 12 T

#zi/
0 1EEI]1 2

pktO
(@) no problem

—— Wwill accept packet
with seq number 0

receiver can’t see sender side.
receiver behavior identical in both cases!
something’s (very) wrong!

Bz 012 —XY

0 12 XEW \K oflEE]o 12

0 12 KNEW: _9%4 0 1EEN]1 2
o — 012FNKl2

timeout

retransmit pktO)@/ [

13012
012] \D\ —, will accept packet
With seq number 0

(b) oops!

Transport Layer 3-13

Chapter 3 outline

3.1 transport-layer 3.5 connection-oriented
services transport: TCP

3.2 multiplexing and ° segment structure
demultiplexing * reliable data transfer

3.3 connectionless * flow control
transport: UDP * connection management

3.4 principles of reliable
data transfer

Transport Layer 3-14

TCP: Overview Recs: 793.1122,1323, 2018, 2581

" point-to-point: " full duplex data:

* one sender, one receiver e bi-directional data flow
" reliable, in-order byte N same connection

steam: . MSS: maximum segment
i SlZe
* No “message . .
boundaries” " connection-oriented:

= pipelined: * handshaking (exchange

of control msgs) inits
sender, receiver state
before data exchange

» flow controlled:

* sender will not
overwhelm receiver

* TCP congestion and flow
control set window size

Transport Layer 3-15

TCP sesment structure

< 32 bits

URG: urgent data

(generally not used)™_ source port# | dest port #

ACK: ACK #
valid

v

counting

by bytes

of data

(not segments!)

"\ sequence number
\Knowledgement number

PSH: push data now
(generally not used) —|

head
len _@d_EAIEESF receive window

7

bytes

Urg data pointer revr willing

RST, SYN, AN |
connection estab

to accept

op/{ s (variable length)

(setup, teardown
commands)

Internet/

checksum
(as in UDP)

/ application

data
(variable length)

Transport Layer 3-16

TCP seq. numbers, ACKs

outgoing segment from sender

sequence number5°

* byte stream number of
first byte in segment’ s
data

acknowledgements:

* seq # of next byte
expected from other side

e cumulative ACK

Q: how receiver handles
out-of-order segments

 A: TCP spec doesn’ t say,
- up to implementor

source port #

sequence number

acknowledgement number

dest port #

rwnd

checksum

urg pointer

window size

[« N

sender sequence number space

sent
ACKed

sent, not- usable not
yet ACKed but not usable
(“in- yet sent
flight”)

incoming segment to sender
dest port #
sequence number

lll acknowledgement number

A rwnd

checksum

source port #

urg pointer

Transport Layer 3-17

TCP seq. numbers, ACKs

host ACKs
receipt

of echoed
‘C,

Seq=42, ACK=79, data = ‘C

/

Seq=79, ACK=43, data = ‘C’

\

Seq=43, ACK=K

simple telnet scenario

Host B

host ACKs
receipt of

‘C’, echoes
back ‘C’

Transport Layer 3-18

TCP round trip time, timeout

Q: how to set TCP
timeout value?

" longer than RTT
* but RTT varies

" too short: premature
timeout, unnecessary
retransmissions

" too long: slow reaction
to segment loss

Q: how to estimate RTT?

* SampleRTT: measured
time from segment

transmission until ACK
receipt
* ignore retransmissions

* SampleRTT will vary, want
estimated RTT “smoother”

* average several recent
measurements, not just
current SampleRTT

Transport Layer 3-19

TCP round trip time, timeout

EstimatedRTT = (1- o) *EstimatedRTT + o*SampleRTT

= exponential weighted moving average
" influence of past sample decreases exponentially fast
= typical value:a =0.125

RTT (milliseconds)

350 ~

300

250

200 -

150

100

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr,

¢ sampleRTT

EstimatedRTT

8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconds) Transport Layer 3-20

TCP round trip time, timeout

" timeout interval: EstimatedRTT plus “safety margin~
* large variation in EstimatedRTT -> larger safety margin

= estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-fB)*DevRTT +
B* | SampleRTT-EstimatedRTT |

(typically, B = 0.25)
TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/ Transport Layer 3-21

Chapter 3 outline

3.1 transport-layer 3.5 connection-oriented
services transport: TCP

3.2 multiplexing and ° segment structure
demultiplexing * reliable data transfer

3.3 connectionless * flow control
transport: UDP * connection management

3.4 principles of reliable
data transfer

Transport Layer 3-22

TCP reliable data transfer

= TCP creates rdt service
on top of IP" s unreliable

service
* pipelined segments
’ o« o, .
e cumulative acks let” s initially consider
+ single retransmission simplified TCP sender:
timer * ignore duplicate acks
] retransmissions ¢ ignore flow control,

congestion control

triggered by:
* timeout events
* duplicate acks

Transport Layer 3-23

TCP sender events:

data rcvd from app:

" create segment with
seq #

" seq # is byte-stream
number of first data
byte in segment

" start timer if not
already running

* think of timer as for
oldest unacked
segment

* expiration interval:
TimeOutInterval

timeout;

" retransmit segment
that caused timeout

" restart timer
ack revd:

" if ack acknowledges
previously unacked
segments

* update what is known
to be ACKed

* start timer if there are
still unacked segments

Transport Layer 3-24

TCP sender (simplified)

data received from application above

create segment, seq. #: NextSegNum
pass segment to IP (i.e., “send”)

NextSegNum = NextSegNum + length(data)
if (timer currently not running)
A start timer
NextSegNum = InitialSegNum
SendBase = InitialSeqgNum

timeout

retransmit not-yet-acked segment

with smallest seq. #
start timer
ACK received, with ACK field value y

if (y > SendBase) {
SendBase =y

[* SendBase—1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)
start timer

else stop timer

}

Transport Layer 3-25

TCP: retransmission scenarios

I
(®)
n
~t
>

i

—— timeout ——

\
Seq=92, 8 bytes of data

y

Seq=92, 8 bytes of data

/

ACK=100

—

lost ACK scenario

Ho

e

S

/
ACK=100

Host A

g

<4

SendBase=92 ~—

/
/

——timeout ——

SendBase=100
SendBase=120

SendBase=120

Seq=92, 8 bytes of data
Seq=100, 20 bytes of dat

\

Host B

B

ACK=100
ACK=120

\

Seq=92, 8

bytes of data\

\

ACK=120

premature timeout

Transport Layer 3-26

TCP: retransmission scenarios

Host A Hos

g

—— timeout —

\)

\

Seq=92, 8 bytes of data
\

Seq=100, 20 bytes of da

ACK=100
X<

ACK=120

/

it

\

Seq=120, 15 bytes of data

/

cumulative ACK

Transport Layer 3-27

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver T'CP receiver action

arrival of in-order segment with delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

arrival of in-order segment with immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

arrival of out-of-order segment immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte
Gap detected

arrival of segment that immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

Transport Layer 3-28

TCP fast retransmit

" time-out period often
relatively long:

* long delay before
resending lost packet

" detect lost segments
via duplicate ACKs.

* sender often sends
many segments back-

to-back

* if segment is lost, there

will likely be many
duplicate ACKs.

— TCP fast retransmit ——

if sender receives 3
ACKs for same data
(“triple duplicate ACKs"),

resend unacked
segment with smallest

seq #
" |ikely that unacked
segment lost, so don t

wait for timeout

Transport Layer 3-29

TCP fast retransmit

Host A Host B
< e

— Seq=92, 8 bytes of data

T Seq= 100,72]‘thes.@fd'a\ta.
\X

|_ACK=100
ACK=100
ACK=100
“ACK=100
ACK=
Seq=100, 20 bytes of data

timeout

A 4

v v

fast retransmit after sender

receipt of triple duplicate ACK
Transport Layer 3-30

Chapter 3 outline

3.1 transport-layer 3.5 connection-oriented
services transport: TCP

3.2 multiplexing and ° segment structure
demultiplexing * reliable data transfer

3.3 connectionless * flow control
transport: UDP * connection management

3.4 principles of reliable
data transfer

Transport Layer 3-31

