
1-1

CIS 5617, Spring 2020
Anduo Wang

Based on Slides created by JFK/KWR

7th edition
Jim Kurose, Keith Ross

Pearson/Addison Wesley
April 2016

Lecture 5 – Chapter 3

Transport Layer 3-2

Pipelined protocols

pipelining: sender allows multiple, “in-flight”, yet-
to-be-acknowledged pkts

•  range of sequence numbers must be increased
•  buffering at sender and/or receiver

§  two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-3

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases
 utilization by a factor of 3!

U
sender =

.0024
30.008

= 0.00081
3L / R

RTT + L / R
=

Transport Layer 3-4

Pipelined protocols: overview

Go-back-N:
§  sender can have up to

N unacked packets in
pipeline

§  receiver only sends
cumulative ack

•  doesn’t ack packet if
there’s a gap

§  sender has timer for
oldest unacked packet

•  when timer expires,
retransmit all unacked
packets

Selective Repeat:
§  sender can have up to N

unack’ed packets in
pipeline

§  rcvr sends individual ack
for each packet

§  sender maintains timer for

each unacked packet
•  when timer expires,

retransmit only that
unacked packet

Transport Layer 3-5

Go-Back-N: sender
§  k-bit seq # in pkt header
§  “window” of up to N, consecutive unack’ed pkts allowed

§  ACK(n): ACKs all pkts up to, including seq # n - “cumulative
ACK”
•  may receive duplicate ACKs (see receiver)

§  timer for oldest in-flight pkt
§  timeout(n): retransmit packet n and all higher seq # pkts in

window

Transport Layer 3-6

GBN: sender extended FSM

Wait start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-1]
)

timeout

rdt_send(data)
if (nextseqnum < base+N) {
 sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
 udt_send(sndpkt[nextseqnum])
 if (base == nextseqnum)
 start_timer
 nextseqnum++
 }
else
 refuse_data(data)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)
 stop_timer
 else
 start_timer

rdt_rcv(rcvpkt) &&
 notcorrupt(rcvpkt)

base=1
nextseqnum=1

rdt_rcv(rcvpkt)
 && corrupt(rcvpkt)

Λ

Transport Layer 3-7

ACK-only: always send ACK for correctly-received
pkt with highest in-order seq #

•  may generate duplicate ACKs
•  need only remember expectedseqnum

§  out-of-order pkt:
•  discard (don’t buffer): no receiver buffering!
•  re-ACK pkt with highest in-order seq #

Wait

udt_send(sndpkt)
default

 rdt_rcv(rcvpkt)
 && notcurrupt(rcvpkt)
 && hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

expectedseqnum=1
sndpkt =
 make_pkt(expectedseqnum,ACK,chksum)

Λ

GBN: receiver extended FSM

Transport Layer 3-8

GBN in action

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, discard,
 (re)send ack1 rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send pkt2
send pkt3
send pkt4
send pkt5

X loss

receive pkt4, discard,
 (re)send ack1
receive pkt5, discard,
 (re)send ack1

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

ignore duplicate ACK

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

Transport Layer 3-9

Selective repeat
§  receiver individually acknowledges all correctly

received pkts
•  buffers pkts, as needed, for eventual in-order delivery

to upper layer
§  sender only resends pkts for which ACK not

received
•  sender timer for each unACKed pkt

§  sender window
•  N consecutive seq #’s
•  limits seq #s of sent, unACKed pkts

Transport Layer 3-10

Selective repeat: sender, receiver windows

Transport Layer 3-11

Selective repeat

data from above:
§  if next available seq # in

window, send pkt
timeout(n):
§  resend pkt n, restart timer
ACK(n) in [sendbase,sendbase+N]:
§  mark pkt n as received
§  if n smallest unACKed pkt,

advance window base to
next unACKed seq #

sender
pkt n in [rcvbase, rcvbase+N-1]
§  send ACK(n)
§  out-of-order: buffer
§  in-order: deliver (also

deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]
§  ACK(n)
otherwise:
§  ignore

receiver

Transport Layer 3-12

Selective repeat in action

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, buffer,
 send ack3 rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send pkt2

X loss

receive pkt4, buffer,
 send ack4
receive pkt5, buffer,
 send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

record ack3 arrived

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

record ack4 arrived

record ack5 arrived

Q: what happens when ack2 arrives?

Transport Layer 3-13

Selective repeat:
dilemma
example:
§  seq #’s: 0, 1, 2, 3
§  window size=3

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2 X
X
X

will accept packet
with seq number 0

(b) oops!

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2
pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X

will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

receiver can’t see sender side.
receiver behavior identical in both cases!

something’s (very) wrong!

§  receiver sees no
difference in two
scenarios!

§  duplicate data
accepted as new in (b)

Q: what relationship

between seq # size
and window size to
avoid problem in (b)?

Transport Layer 3-14

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
•  segment structure
•  reliable data transfer
•  flow control
•  connection management

Transport Layer 3-15

TCP: Overview RFCs: 793,1122,1323, 2018, 2581

§  full duplex data:
•  bi-directional data flow

in same connection
•  MSS: maximum segment

size
§  connection-oriented:

•  handshaking (exchange
of control msgs) inits
sender, receiver state
before data exchange

§  flow controlled:
•  sender will not

overwhelm receiver

§  point-to-point:
•  one sender, one receiver

§  reliable, in-order byte
steam:

•  no “message
boundaries”

§  pipelined:
•  TCP congestion and flow

control set window size

Transport Layer 3-16

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

receive window

Urg data pointer checksum
F S R P A U head

len
not

used

options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

Transport Layer 3-17

TCP seq. numbers, ACKs
sequence numbers:

• byte stream “number” of
first byte in segment’s
data

acknowledgements:
• seq # of next byte
expected from other side

• cumulative ACK
Q: how receiver handles
out-of-order segments
• A: TCP spec doesn’t say,
- up to implementor source port # dest port #

sequence number
acknowledgement number

checksum

rwnd
urg pointer

incoming segment to sender

A

sent
ACKed

sent, not-
yet ACKed
(“in-
flight”)

usable
but not
yet sent

not
usable

window size
 N

sender sequence number space

source port # dest port #

sequence number
acknowledgement number

checksum

rwnd
urg pointer

outgoing segment from sender

Transport Layer 3-18

TCP seq. numbers, ACKs

User
types
‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

simple telnet scenario

Host B Host A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

Transport Layer 3-19

TCP round trip time, timeout
Q: how to set TCP

timeout value?
§  longer than RTT

•  but RTT varies
§  too short: premature

timeout, unnecessary
retransmissions

§  too long: slow reaction
to segment loss

Q: how to estimate RTT?
§  SampleRTT: measured

time from segment
transmission until ACK
receipt

•  ignore retransmissions
§  SampleRTT will vary, want

estimated RTT “smoother”
•  average several recent

measurements, not just
current SampleRTT

Transport Layer 3-20

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

RT
T

(m
illi

se
co

nd
s)

SampleRTT Estimated RTT

EstimatedRTT = (1- α)*EstimatedRTT + α*SampleRTT

§  exponential weighted moving average
§  influence of past sample decreases exponentially fast
§  typical value: α = 0.125

TCP round trip time, timeout

RT
T

(m
ill

is
ec

on
ds

)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT
EstimatedRTT

time (seconds)

Transport Layer 3-21

§  timeout interval: EstimatedRTT plus “safety margin”
•  large variation in EstimatedRTT -> larger safety margin

§  estimate SampleRTT deviation from EstimatedRTT:
DevRTT = (1-β)*DevRTT +
 β*|SampleRTT-EstimatedRTT|

TCP round trip time, timeout

(typically, β = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Transport Layer 3-22

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
•  segment structure
•  reliable data transfer
•  flow control
•  connection management

Transport Layer 3-23

TCP reliable data transfer

§  TCP creates rdt service
on top of IP’s unreliable
service

•  pipelined segments
•  cumulative acks
•  single retransmission

timer
§  retransmissions

triggered by:
•  timeout events
•  duplicate acks

let’s initially consider
simplified TCP sender:

•  ignore duplicate acks
•  ignore flow control,

congestion control

Transport Layer 3-24

TCP sender events:
data rcvd from app:
§  create segment with

seq #
§  seq # is byte-stream

number of first data
byte in segment

§  start timer if not
already running

•  think of timer as for
oldest unacked
segment

•  expiration interval:
TimeOutInterval

timeout:
§  retransmit segment

that caused timeout
§  restart timer
 ack rcvd:
§  if ack acknowledges

previously unacked
segments

•  update what is known
to be ACKed

•  start timer if there are
still unacked segments

Transport Layer 3-25

TCP sender (simplified)

wait
for

event

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

Λ

create segment, seq. #: NextSeqNum
pass segment to IP (i.e., “send”)
NextSeqNum = NextSeqNum + length(data)
if (timer currently not running)
 start timer

data received from application above

retransmit not-yet-acked segment
 with smallest seq. #

start timer

timeout

if (y > SendBase) {
 SendBase = y
 /* SendBase–1: last cumulatively ACKed byte */
 if (there are currently not-yet-acked segments)
 start timer
 else stop timer
 }

ACK received, with ACK field value y

Transport Layer 3-26

TCP: retransmission scenarios

lost ACK scenario

Host B Host A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

X tim
eo

ut

ACK=100

premature timeout

Host B Host A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8
bytes of data

tim
eo

ut

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92

Transport Layer 3-27

TCP: retransmission scenarios

X

cumulative ACK

Host B Host A

Seq=92, 8 bytes of data

ACK=100

Seq=120, 15 bytes of data

tim
eo

ut

Seq=100, 20 bytes of data

ACK=120

Transport Layer 3-28

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

arrival of segment that
partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single cumulative
ACK, ACKing both in-order segments

immediately send duplicate ACK,
indicating seq. # of next expected byte

immediate send ACK, provided that
segment starts at lower end of gap

Transport Layer 3-29

TCP fast retransmit

§  time-out period often
relatively long:

•  long delay before
resending lost packet

§  detect lost segments
via duplicate ACKs.

•  sender often sends
many segments back-
to-back

•  if segment is lost, there
will likely be many
duplicate ACKs.

if sender receives 3
ACKs for same data
(“triple duplicate ACKs”),
resend unacked
segment with smallest
seq #
§  likely that unacked

segment lost, so don’t
wait for timeout

TCP fast retransmit

(“triple duplicate ACKs”),

Transport Layer 3-30

X

fast retransmit after sender
receipt of triple duplicate ACK

Host B Host A

Seq=92, 8 bytes of data

ACK=100

tim
eo

ut

ACK=100

ACK=100

ACK=100

TCP fast retransmit

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data

Transport Layer 3-31

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
•  segment structure
•  reliable data transfer
•  flow control
•  connection management

