
1-1

CIS 5617, Spring 2020
Anduo Wang

Based on Slides created by JFK/KWR

7th edition
Jim Kurose, Keith Ross

Pearson/Addison Wesley
April 2016

Lecture 8 – Chapter 5
Network Control Plane

Chapter 5: network layer control plane

chapter goals: understand principles behind network
control plane

§  traditional routing algorithms
§  SDN controllers

and their instantiation, implementation in the Internet:
§  OSPF, BGP, OpenFlow, ODL and ONOS

controllers, Ravel

5-2 Network Layer: Control Plane

5.1 introduction
5.2 routing protocols
§  link state
§  distance vector
5.3 intra-AS routing in the

Internet: OSPF
5.4 routing among the ISPs:

BGP

5.5 The SDN control plane

Chapter 5: outline

5-3 Network Layer: Control Plane

Network-layer functions

§  forwarding: move packets
from router’s input to
appropriate router output

data plane

control plane

 Two approaches to structuring network control plane:
§  per-router control (traditional)
§  logically centralized control (software defined networking)

Recall: two network-layer functions:

5-4 Network Layer: Control Plane

§  routing: determine route
taken by packets from source
to destination

Per-router control plane

Routing
Algorithm

Individual routing algorithm components in each and every
router interact with each other in control plane to compute
forwarding tables

data
plane

control
plane

4.1 • OVERVIEW OF NETWORK LAYER 309

tables. In this example, a routing algorithm runs in each and every router and both
forwarding and routing functions are contained within a router. As we’ll see in Sec-
tions 5.3 and 5.4, the routing algorithm function in one router communicates with
the routing algorithm function in other routers to compute the values for its forward-
ing table. How is this communication performed? By exchanging routing messages
containing routing information according to a routing protocol! We’ll cover routing
algorithms and protocols in Sections 5.2 through 5.4.

The distinct and different purposes of the forwarding and routing functions can
be further illustrated by considering the hypothetical (and unrealistic, but technically
feasible) case of a network in which all forwarding tables are configured directly by
human network operators physically present at the routers. In this case, no routing
protocols would be required! Of course, the human operators would need to interact
with each other to ensure that the forwarding tables were configured in such a way
that packets reached their intended destinations. It’s also likely that human configu-
ration would be more error-prone and much slower to respond to changes in the net-
work topology than a routing protocol. We’re thus fortunate that all networks have
both a forwarding and a routing function!

Values in arriving
packet’s header

1

2
3

Local forwarding
table

header

0100
0110
0111
1001

1101

3
2
2
1

output

Control plane

Data plane

Routing algorithm

Figure 4.2 ♦ Routing algorithms determine values in forward tables

M04_KURO4140_07_SE_C04.indd 309 11/02/16 3:14 PM

5-5 Network Layer: Control Plane

data
plane

control
plane

Logically centralized control plane
A distinct (typically remote) controller interacts with local
control agents (CAs) in routers to compute forwarding tables

Remote Controller

CA

CA CA CA CA

5-6 Network Layer: Control Plane

5.1 introduction
5.2 routing protocols
§  link state
§  distance vector
5.3 intra-AS routing in the

Internet: OSPF
5.4 routing among the ISPs:

BGP

5.5 The SDN control plane

Chapter 5: outline

5-7 Network Layer: Control Plane

Routing protocols

Routing protocol goal: determine “good” paths
(equivalently, routes), from sending hosts to
receiving host, through network of routers
§  path: sequence of routers packets will traverse

in going from given initial source host to given
final destination host

§  “good”: least “cost”, “fastest”, “least
congested”

§  routing: a “top-10” networking challenge!

5-8 Network Layer: Control Plane

u

y x

w v

z
2

2
1 3

1

1
2

5
3

5

graph: G = (N,E)

N = set of routers = { u, v, w, x, y, z }

E = set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

Graph abstraction of the network

aside: graph abstraction is useful in other network contexts, e.g.,
P2P, where N is set of peers and E is set of TCP connections

5-9 Network Layer: Control Plane

Graph abstraction: costs

u

y x

w v

z
2

2
1 3

1

1
2

5
3

5 c(x,x’) = cost of link (x,x’)
 e.g., c(w,z) = 5

cost could always be 1, or
inversely related to bandwidth,
or inversely related to
congestion

cost of path (x1, x2, x3,…, xp) = c(x1,x2) + c(x2,x3) + … + c(xp-1,xp)

key question: what is the least-cost path between u and z ?
routing algorithm: algorithm that finds that least cost path

5-10 Network Layer: Control Plane

Routing algorithm classification

Q: global or decentralized
information?

global:
§  all routers have complete

topology, link cost info
§  “link state” algorithms
decentralized:
§  router knows physically-

connected neighbors, link
costs to neighbors

§  iterative process of
computation, exchange of
info with neighbors

§  “distance vector” algorithms

Q: static or dynamic?

static:
§  routes change slowly over

time
dynamic:
§  routes change more

quickly
•  periodic update
•  in response to link

cost changes

5-11 Network Layer: Control Plane

5.1 introduction
5.2 routing protocols
§  link state
§  distance vector
5.3 intra-AS routing in the

Internet: OSPF
5.4 routing among the ISPs:

BGP

5.5 The SDN control plane

Chapter 5: outline

5-12 Network Layer: Control Plane

A link-state routing algorithm

Dijkstra’s algorithm
§  net topology, link costs

known to all nodes
•  accomplished via “link state

broadcast”
•  all nodes have same info

§  computes least cost paths
from one node (‘source”)
to all other nodes
•  gives forwarding table for

that node
§  iterative: after k

iterations, know least cost
path to k dest.’s

notation:
§  c(x,y): link cost from

node x to y; = ∞ if not
direct neighbors

§  D(v): current value of
cost of path from source
to dest. v

§  p(v): predecessor node
along path from source to
v

§  N': set of nodes whose
least cost path definitively
known

5-13 Network Layer: Control Plane

Dijsktra’s algorithm
1 Initialization:
2 N' = {u}
3 for all nodes v
4 if v adjacent to u
5 then D(v) = c(u,v)
6 else D(v) = ∞
7
8 Loop
9 find w not in N' such that D(w) is a minimum
10 add w to N'
11 update D(v) for all v adjacent to w and not in N' :
12 D(v) = min(D(v), D(w) + c(w,v))
13 /* new cost to v is either old cost to v or known
14 shortest path cost to w plus cost from w to v */
15 until all nodes in N'

5-14 Network Layer: Control Plane

w 3

4

v

x

u

5

3
7 4

y
8

z
2

7
9

Dijkstra’s algorithm: example
Step

N'

D(v)
p(v)

0
1
2
3
4
5

D(w)
p(w)

D(x)
p(x)

D(y)
p(y)

D(z)
p(z)

u ∞ ∞ 7,u 3,u 5,u
uw ∞ 11,w 6,w 5,u

14,x 11,w 6,w uwx
uwxv 14,x 10,v

uwxvy 12,y

notes:
v  construct shortest path tree by

tracing predecessor nodes
v  ties can exist (can be broken

arbitrarily)

uwxvyz

5-15 Network Layer: Control Plane

Dijkstra’s algorithm: another example

Step
0
1
2
3
4
5

N'
u

ux
uxy

uxyv
uxyvw

uxyvwz

D(v),p(v)
2,u
2,u
2,u

D(w),p(w)
5,u
4,x
3,y
3,y

D(x),p(x)
1,u

D(y),p(y)
∞

2,x

D(z),p(z)
∞
∞

4,y
4,y
4,y

u

y x

w v

z
2

2
1 3

1

1
2

5
3

5

5-16 Network Layer: Control Plane

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Dijkstra’s algorithm: example (2)

u

y x

w v

z

resulting shortest-path tree from u:

v
x
y
w
z

(u,v)
(u,x)

(u,x)
(u,x)
(u,x)

destination link

resulting forwarding table in u:

5-17 Network Layer: Control Plane

Dijkstra’s algorithm, discussion
algorithm complexity: n nodes
§  each iteration: need to check all nodes, w, not in N
§  n(n+1)/2 comparisons: O(n2)
§  more efficient implementations possible: O(nlogn)

oscillations possible:
§  e.g., support link cost equals amount of carried traffic:

A
D

C
B

1 1+e

e 0

e
1 1

0 0

initially

A
D

C
B

given these costs,
find new routing….

resulting in new costs

2+e 0

0 0
1+e 1

A
D

C
B

given these costs,
find new routing….

resulting in new costs

0 2+e

1+e 1
0 0

A
D

C
B

given these costs,
find new routing….

resulting in new costs

2+e 0

0 0
1+e 1

5-18 Network Layer: Control Plane

5.1 introduction
5.2 routing protocols
§  link state
§  distance vector
5.3 intra-AS routing in the

Internet: OSPF
5.4 routing among the ISPs:

BGP

5.5 The SDN control plane

Chapter 5: outline

5-19 Network Layer: Control Plane

Distance vector algorithm

Bellman-Ford equation (dynamic programming)

let
 dx(y) := cost of least-cost path from x to y
then
 dx(y) = min {c(x,v) + dv(y) }

v

cost to neighbor v

min taken over all neighbors v of x

cost from neighbor v to destination y

5-20 Network Layer: Control Plane

Bellman-Ford example

u

y x

w v

z
2

2
1 3

1

1
2

5
3

5
clearly, dv(z) = 5, dx(z) = 3, dw(z) = 3

du(z) = min { c(u,v) + dv(z),
 c(u,x) + dx(z),
 c(u,w) + dw(z) }
 = min {2 + 5,
 1 + 3,
 5 + 3} = 4

node achieving minimum is next
hop in shortest path, used in forwarding table

B-F equation says:

5-21 Network Layer: Control Plane

Distance vector algorithm

§  Dx(y) = estimate of least cost from x to y
•  x maintains distance vector Dx = [Dx(y): y є N]

§  node x:
•  knows cost to each neighbor v: c(x,v)
•  maintains its neighbors’ distance vectors. For

each neighbor v, x maintains
Dv = [Dv(y): y є N]

5-22 Network Layer: Control Plane

key idea:
§  from time-to-time, each node sends its own

distance vector estimate to neighbors
§  when x receives new DV estimate from neighbor,

it updates its own DV using B-F equation:

Dx(y) ← minv{c(x,v) + Dv(y)} for each node y ∊ N

v  under minor, natural conditions, the estimate Dx(y)
converge to the actual least cost dx(y)

Distance vector algorithm

5-23 Network Layer: Control Plane

iterative, asynchronous:
each local iteration
caused by:

§  local link cost change
§  DV update message from

neighbor
distributed:
§  each node notifies

neighbors only when its
DV changes
•  neighbors then notify their

neighbors if necessary

wait for (change in local link
cost or msg from neighbor)

recompute estimates

if DV to any dest has
changed, notify neighbors

each node:

Distance vector algorithm

5-24 Network Layer: Control Plane

x y z

x
y
z

0 2 7

∞ ∞ ∞
∞ ∞ ∞

fro
m

cost to

fro
m

fro

m

x y z

x
y
z

0

x y z

x
y
z

∞ ∞

∞ ∞ ∞

cost to

x y z

x
y
z
∞ ∞ ∞
7 1 0

cost to

∞
2 0 1

∞ ∞ ∞

2 0 1
7 1 0

time

x z
1 2

7

y

node x
table

Dx(y) = min{c(x,y) + Dy(y), c(x,z) + Dz(y)}
 = min{2+0 , 7+1} = 2

Dx(z) = min{c(x,y) +
 Dy(z), c(x,z) + Dz(z)}
= min{2+1 , 7+0} = 3

3 2

node y
table

node z
table

cost to

fro
m

5-25 Network Layer: Control Plane

x y z

x
y
z

0 2 3

fro
m

cost to

x y z

x
y
z

0 2 7

fro
m

cost to

x y z

x
y
z

0 2 3

fro
m

cost to

x y z

x
y
z

0 2 3
fro

m

cost to
x y z

x
y
z

0 2 7

fro
m

cost to

2 0 1
7 1 0

2 0 1
3 1 0

2 0 1
3 1 0

2 0 1

3 1 0

2 0 1

3 1 0

time

x y z

x
y
z

0 2 7

∞ ∞ ∞
∞ ∞ ∞

fro
m

cost to

fro
m

fro

m

x y z

x
y
z

0

x y z

x
y
z

∞ ∞

∞ ∞ ∞

cost to

x y z

x
y
z
∞ ∞ ∞
7 1 0

cost to

∞
2 0 1

∞ ∞ ∞

2 0 1
7 1 0

time

x z
1 2

7

y

node x
table

Dx(y) = min{c(x,y) + Dy(y), c(x,z) + Dz(y)}
 = min{2+0 , 7+1} = 2

Dx(z) = min{c(x,y) +
 Dy(z), c(x,z) + Dz(z)}
= min{2+1 , 7+0} = 3

3 2

node y
table

node z
table

cost to

fro
m

5-26 Network Layer: Control Plane

Distance vector: link cost changes

link cost changes:
v  node detects local link cost change
v  updates routing info, recalculates

distance vector
v  if DV changes, notify neighbors

“good
news
travels
fast”

x z
1 4

50

y
1

t0 : y detects link-cost change, updates its DV, informs its
neighbors.
 t1 : z receives update from y, updates its table, computes new
least cost to x , sends its neighbors its DV.

t2 : y receives z’s update, updates its distance table. y’s least costs
do not change, so y does not send a message to z.

5-27 Network Layer: Control Plane

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Distance vector: link cost changes

link cost changes:
v  node detects local link cost change
v  bad news travels slow - “count to

infinity” problem!
v  44 iterations before algorithm

stabilizes: see text

x z
1 4

50

y
60

poisoned reverse:
v  If Z routes through Y to get to X :

§  Z tells Y its (Z’s) distance to X is infinite (so Y won’t route
to X via Z)

v  will this completely solve count to infinity problem?

5-28 Network Layer: Control Plane

Comparison of LS and DV algorithms

message complexity
§  LS: with n nodes, E links, O(nE)

msgs sent
§  DV: exchange between neighbors

only
•  convergence time varies

speed of convergence
§  LS: O(n2) algorithm requires

O(nE) msgs
•  may have oscillations

§  DV: convergence time varies
•  may be routing loops
•  count-to-infinity problem

robustness: what happens if
router malfunctions?

LS:
•  node can advertise incorrect

link cost
•  each node computes only its

own table
DV:

•  DV node can advertise
incorrect path cost

•  each node’s table used by
others

•  error propagate thru
network

5-29 Network Layer: Control Plane

5.1 introduction
5.2 routing protocols
§  link state
§  distance vector
5.3 intra-AS routing in the

Internet: OSPF
5.4 routing among the ISPs:

BGP

5.5 The SDN control plane

Chapter 5: outline

5-30 Network Layer: Control Plane

