
lecture 13 5617, Spring 2020
computer networking and

communication

anduo wang, Temple University

MPLS, the 2.5 layer

Tag Switching Architecture
Overview

https://ieeexplore.ieee.org/document/650179/

https://ieeexplore.ieee.org/document/650179/

-tags
- enabling diverse routing

functionalities
- multicast
- more flexible routing
- scale routing with hierachy

-tags
- are simple, well suited- to

high-performance forwarding
- simplify integration of routers

and anachronous transfer
mode switches

tag switching =

 4

a label swapping
forwarding paradigm

network layer routing

tag switching supports a high-quality, scalable routing system

+

control component
-various routing modules
- each provides a particular set

of control functionalities
-maintain correct TFIBs

among a group of
interconnected tag
switches

forwarding component
-uses tag information (tags)

carried by the packets and
the tag forwarding
information base (TFIB)
maintained by a tag switch
to perform packet
forwarding

tag switching =

 5

forwarding component

a tag switch uses the tag as an index in its TFIB
-<incoming tag, outgoing tag, outgoing interface …>

forwarding — label swapping

 7

R4

R1

R5 R3

R2
incoming=100
outgoing=6

incoming=17
outgoing=5

incoming=6
outgoing=10

incoming=5
outgoing=10

incoming=10
outgoing=6

a tag switch uses the tag as an index in its TFIB
-<incoming tag, outgoing tag, outgoing interface …>

forwarding — label swapping

 8

R4

R1

R5 R3

R2
incoming=100
outgoing=6

incoming=17
outgoing=5

incoming=6
outgoing=10

incoming=5
outgoing=10

incoming=10
outgoing=6

100

replaces the tag with the outgoing tag
-<incoming tag, outgoing tag, outgoing interface …>

forwarding — label swapping

 9

R4

R1

R5 R3

R2
incoming=100
outgoing=6

incoming=17
outgoing=5

incoming=6
outgoing=10

incoming=5
outgoing=10

incoming=10
outgoing=6

100 6

replaces the tag with the outgoing tag
-<incoming tag, outgoing tag, outgoing interface …>

forwarding — label swapping

 10

R4

R1

R5 R3

R2
incoming=100
outgoing=6

incoming=17
outgoing=5

incoming=6
outgoing=10

incoming=5
outgoing=10

incoming=10
outgoing=6

100 6 10

6

high forwarding performance

 11

label swapping enables high
performance
-exact match algorithm using fixed

length (20 bit)
- fairly short tag as an index

high forwarding performance

 12

label swapping enables high
performance
-exact match algorithm using fixed

length (20 bit)
- fairly short tag as an index }compare:

longest
prefix
match

high forwarding performance

 13

label swapping enables high
performance
-exact match algorithm using fixed

length (20 bit)
- fairly short tag as an index }compare:

longest
prefix
match

simple enough to allow straightforward hardware implementation

decoupled from the control component

label swapping is independent of tag’s forwarding
behavior
-same forwarding paradigm for unicast/multicast
- unicast: a unicast entry has a single <outgoing tag …> subentry
- multicast: … one or more sub-entries

label swapping is independent of network-layer
-same forwarding paradigm that supports a variety of

network-layer protocols

 14

decoupled from the control component

label swapping is independent of tag’s forwarding
behavior
-same forwarding paradigm for unicast/multicast
- unicast: a unicast entry has a single <outgoing tag …> subentry
- multicast: … one or more sub-entries

label swapping is independent of network-layer
-same forwarding paradigm that supports a variety of

network-layer protocols

 15

new routing (control) functions can be added without disturbing the
forwarding paradigm (or re-optimization)

control component

tag binding
binding between a tag and network-layer route
-create a tag binding
- allocating a tag, binding it to a route
-distribute the tag binding information among tag switches

 17

tag binding
binding between a tag and network-layer route
-create a tag binding
- allocating a tag, binding it to a route
-distribute the tag binding information among tag switches

distribution and maintenance of tag binding
information is consistent with that of the
associated routing information
-unicast: like OSPF
-multicast: periodic refresh

 18

tag binding examples
different tag binding scheme realizes different
control functionalities
-destination-based routing
-flexible route (explicit routes)
-hierarchy of routing knowledge (BGP)

 19

destination-based routing
a switch allocates tags and binds them to address
prefixes in its FIB
-downstream allocation
- the tag carried in a packet is generated and bound to a prefix by the

switch at the downstream end of a link

 20

destination-based routing
downstream allocation
-the tag carried in a packet is generated and bound to a prefix

by the switch at the downstream end of a link
-for each route in the (downstream) switch’s FIB
- allocates a (incoming) tag
- creates an entry in its TFIB
- advertises the binding between the (incoming) tag and the route to the

(upstream) other adjacent switches

 21

destination-based routing
downstream allocation
-R1 receives 192.6/16 bound to tag <6>

 22

R4

R1

R5 R3

R2
192.6/16 <6>

destination-based routing
R1 receives 192.6/16 with tag <6>
-creates an entry in TFIB, set outgoing tag to <6>
-generates a local tag <10>, set incoming tag to <10>

 23

R4

R1

R5 R3

R2

incoming=10
outgoing=6

192.6/16 <6>

destination-based routing
R1 receives 192.6/16 with tag <6>
-set outgoing tag to <6>, set incoming tag to <10>
-advertises 192.6/16 with <10> to others

 24

R4

R1

R5 R3

R2

incoming=10
outgoing=6

192.6/16 <6>

192.6/16

<10>

192.6/16 <10>

destination-based routing
similarly, R2, R3, R4
-receive tag binding, create TFIB entries, re-advertise

 25

R4

R1

R5 R3

R2
incoming=100
outgoing=6

incoming=6
outgoing=10

incoming=5
outgoing=10

incoming=10
outgoing=6

192.6/16 <6>

192.6/16 <10>

192.6/16

<10>

192.6/16 <6>

192.6/16 <5>

destination-based routing
R5, router left to which is not a tag switch
-R5 also augments its FIB with outgoing tag <5>

 26

R4

R1

R5 R3

R2
incoming=100
outgoing=6

incoming=17
outgoing=5

incoming=6
outgoing=10

incoming=5
outgoing=10

incoming=10
outgoing=6

? 5

192.6/16 <6>

192.6/16 <10>

192.6/16

<10>

192.6/16 <6>

192.6/16 <5>

destination-based routing
a switch allocates tags and binds them to address
prefixes in its FIB

 27

R4

R1

R5 R3

R2
incoming=100
outgoing=6

incoming=17
outgoing=5

incoming=6
outgoing=10

incoming=5
outgoing=10

incoming=10
outgoing=6

100 6 10

?

6

6

5 10

observation — routes aggregation

tag allocation is topology-driven
-if a tag switch forwards multiple packets to the same next-

hop neighbor
- only a single (incoming) tag is needed
-if a tag switch receives a set of routes associated with a single

tag
- only a single (incoming) tag is needed

 28

scaling properties
tag switching used for destination-based routing

 29

of tags a switch maintains # of routes in the FIB

scaling properties
tag switching used for destination-based routing

 30

of tags a switch maintains # of routes in the FIB<<

scaling properties
tag switching used for destination-based routing

tag associated with routes, rather than flows
-much less state required
-no need to perform flow classicification

 31

of tags a switch maintains # of routes in the FIB<<

scaling properties
tag switching used for destination-based routing

tag associated with routes, rather than flows
-much less state required
-no need to perform flow classicification

 32

of tags a switch maintains # of routes in the FIB<<

more robust & stable destination-based routing in the presence of traffic
pattern change

observation — normal destination-based
forwarding still needed

when a tag is added to a previously untagged
packet
-first hop router requires normal FIB forwarding

when a tag switch aggregates a set of routes into a
single tag, but the routes do not share a common
next hop
-again, look up the normal FIB

 33

flexible routing (explicit routes)
provides forwarding along the paths different from
the path determined by destination-based routing
-install tag binding in tag switches that do not correspond to

the destination based routing paths

 34

hierarchical routing (BGP)
Internet routing (BGP)
-2-tier routing scheme, collection of routing domains

tag switching
-decouples interior (intra-) and exterior (inter-) routing
-significantly reduces load on non-border switches
-only border maintains routing information for both interior/

exterior routing

 35

hierarchical routing (BGP)
tag stack
-a set of tags carried by a packet organized as a stack

operations
-label swapping as before: swap tag at the top

 36

hierarchical routing (BGP)
tag stack
-a set of tags carried by a packet organized as a stack

operations
-label swapping as before: swap tag at the top
-pop the stack
-push one more tag into the stack

 37

hierarchical routing (BGP)
when a packet is forwarded between two border
tag switches in different domains
-the tag stack only has one tag, associated with the AS-level

route

 38

hierarchical routing (BGP)
when a packet is forwarded between two border
tag switches in different domains
-the tag stack only has one tag, associated with the AS-level

route

when a packet is forwarded within a domain
-ingress router: 2nd tag associated with an interior route to

the egress border is pushed
-internal switches: only operate on the 2nd top tag
-egress border: pop the top (2nd) tag, uses the original tag for

tag switching to routers in another domain

 39

tag switching and forwarding equivalence
classes (FEC)

forwarding table in a conventional router

forwarding equivalence classes (FEC)

 41

packets
classification
algorithm

an entry in the
forwarding table
(determine the
next hop for)

forwarding table in a conventional router

forwarding equivalence classes (FEC)

 42

packets
classification
algorithm

an entry in the
forwarding table
(determine the
next hop for)

partitioning the universe of possible
packets into a finite set of FECs

tag switching and FEC
if a pair of tag switches are adjacent, they must
agree on assignments of tags to FEC
-only the first tag switch on a tag switched path needs to

perform the classification algorithm

 43

tag switching and FEC

 44

control functionalities
revisited
-2 packets in the same FEC if

they have the same prefix in the
routing table that is the longest
match

-2 packets in the same FEC if
they are alike in some arbitrary
manner by a policy

-2 packets in the same FEC if
they have to traverse through a
common tag switch

destination based
routing

flexible routing
(explicit routes)

BGP

the power of tag switching, revisited

any number of different kind of FEC’s (control
schemes) can co-exist in a single switch
-as long as the result partitions the packet space seen by the

tag switch

different procedures can be used by different tag
switches to classify packets
a hierarchy of tags can be used
-hierarchical routing

 45

migration strategies
inherently incrementally deployable
-tag switching performed between a pair of adjacent switches
-tag binding information distributed on a pairwise basis

transparent to legacy routers
-tag switch runs the same routing protocol, no impact on

existing routers

incentive
-as more tag switches introduced — routers upgraded to

enable tag switching, the scope of tag switching functionalities
widens
- e.g., internal BGP routers -> hierarchical tag switching

 46

a tag switch uses the tag as an index in its TFIB
-<incoming tag, outgoing tag, outgoing interface …>

forwarding — label swapping

 47

R4

R1

R5 R3

R2

100 6 10

17

6

6

5 10

Fabric: A Retrospective on
Evolving SDN

http://yuba.stanford.edu/~casado/fabric.pdf

http://yuba.stanford.edu/~casado/fabric.pdf

many proposals towards a better network

MPLS
-simplifies hardware + improves control flexibility

SDN attempts to make further progress but
suffers certain shortcomings
-can we overcome those shortcomings by adopting the

insights underlying MPLS?

 49

an ideal network
hardware
-simple (inexpensive)
-vendor-neutral
- future proof: accommodate future innovation as much as

possible

control
-flexible: meet future requirements as they arise

 50

review
original Internet, MPLS, SDN along two dimensions
-requirements
- interfaces

 51

requirements
two sources
-hosts
-operators

hosts
-want their packets to travel to a particular destination with

some QoS requirement about the nature of the services
these packets receive en-route to the destination

operators
-TE, tunneling, virtualization, isolation, …

 52

interfaces
places where control information pass between
network entities
-host-network
- how hosts inform the network of their requirements
- e.g., packet header (destination address), …

 53

interfaces
places where control information pass between
network entities
-host-network
- how hosts inform the network of their requirements
- e.g., packet header (destination address), …
-operator-network
- how operator informs the network of their requirements
- e.g., per-box configuration command
-packet-switch
- how a packet identifies itself to a switch
- e.g., packet header as an index into the forwarding table

 54

Original Internet VS. MPLS VS. SDN

 55

original
Internet
MPLS

SDN

host-network
interface

destination
address
packet header
(inspected by
edge tag switch)
packet
header
(Openflow)

operator-
network
interface
none

none

fully
programmatic
interface
(network
abstractions)

packet-switch
interface

destination
address
label (used
by internal
tag switch)
packet
header
(Openflow)

shortcomings of SDN
not fulfill the promise of simple hardware
-Openflow far complex than the tens of bits MPLS

host generality expected to increas
-in turn means the generality of the host-network interface

will increase, but the increased generality must also be
present to every switch

unnecessary coupling the host requirements to the
network core behavior

 56

extending SDN with MPLS inspiration

SDN architecture should incorporate “fabric”
-fabric is a transport element

 57

between practicality (support matching on standard headers)
and generality (match on all headers). However, this requires
switch hardware to support lookups over hundreds of bits;
in contrast, core forwarding with MPLS need only match
over some tens of bits. Thus, with respect to the forwarding
hardware alone, an OpenFlow switch is clearly far from the
simplest design achievable.

• Second, it does not provide sufficient flexibility. We expect
host requirements to continue to evolve, leading to increasing
generality in the Host-Network interface, which in turn means
increasing the generality in the matching allowed and the
actions supported. In the current OpenFlow design paradigm,
this additional generality must be present on every switch. It
is inevitable that, in OpenFlow’s attempt to find a sweet spot
in the practicality vs generality tradeoff, needing functionality
to be present on every switch will bias the decision towards a
more limited feature set, reducing OpenFlow’s generality.

• Third, it unnecessarily couples the host requirements to the
network core behavior. This point is similar to but more
general than the point above. If there is a change in the
external network protocols (e.g., switching from IPv4 to IPv6)
which necessitates a change in the matching behavior (because
the matching must be done over different fields), this requires
a change in the packet matching even in the network core.

Thus, our goal is to extend the SDN model in a way that avoids
these limitations yet still retains SDN’s great control plane flexibility.
To this end, it must retain its programmatic control plane interface
(so that it provides a general Operator-Network interface), while
cleanly distinguishing between the Host-Network and Packet-Switch
interfaces (as is done in MPLS). We now describe such a design.

3 Extending SDN

3.1 Overview

In this section we explore how the SDN architectural framework
might be extended to better meet the goals listed in the introduction.
Our proposal is centered on the introduction of a new conceptual
component which we call the “network fabric”. While a common
term, for our purposes we limit the definition to refer to a collection
of forwarding elements whose primary purpose is packet transport.
Under this definition, a network fabric does not provide more
complex network services such as filtering or isolation.

The network then has three kinds of components (see Figure
1): hosts, which act as sources and destinations of packets; edge
switches, which serve as both ingress and egress elements; and the
core fabric. The fabric and the edge are controlled by (logically)
separate controllers, with the edge responsible for complex network
services while the fabric only provides basic packet transport. The
edge controller handles the Operator-Network interface; the ingress
edge switch, along with its controller, handle the Host-Network
interface; and the switches in the fabric are where the Packet-Switch
interface is exercised.

The idea of designing a network around a fabric is well understood
within the community. In particular, there are many examples of
limiting the intelligence to the network edge and keeping the core
simple.4 Thus, our goal is not to claim that a network fabric is
4This is commonly done for example in datacenters where
connectivity is provided by a CLOS topology running an IGP and
ECMP. It is also reflected in WANs where interdomain policies are
implemented at the provider edge feeding packets into a simpler
MPLS core providing connectivity across the operator network.

Fabric
Elements

Fabric Controller

Src
Host

Dst
Host

Edge Controller

Ingress
Edge Switch

Egress
Edge Switch

Figure 1: The source host sends a packet to an edge switch, which
after providing network services, sends it across the fabric for the
egress switch to deliver it to the destination host. Neither host sees
any internals of the fabric. The control planes of the edge and fabric
are similarly decoupled.

a new concept but rather we believe it should be included as an
architectural building block within SDN. We now identify the key
properties for these fabrics.

Separation of Forwarding. In order for a fabric to remain decou-
pled from the edge it should provide a minimal set of forwarding
primitives without exposing any internal forwarding mechanisms
that would be visible from the end system if the fabric were
replaced. We describe this in more detail below but we believe
it is particularly important that external addresses are not used in
forwarding decisions within the fabric both to simplify the fabric
forwarding elements, but also to allow for independent evolution of
fabric and edge.

Separation of Control. While there are multiple reasons to keep
the fabric and the edge’s control planes separate, the one we would
like to focus on is that they are solving two different problems. The
fabric is responsible for packet transport across the network, while
the edge is responsible for providing more semantically rich services
such as network security, isolation, and mobility. Separating the
control planes allows them each to evolve separately, focusing on
the specifics of the problem. Indeed, a good fabric should be able
to support any number of intelligent edges (even concurrently) and
vice versa.

Note that fabrics offer some of the same benefits as SDN.
In particular, if the fabric interfaces are clearly defined and
standardized, then fabrics offer vendor independence, and (as we
describe in more detail later) limiting the function of the fabric to
forwarding enables simpler switch implementations.

3.2 Fabric Service Model

Under our proposed model, a fabric is a system component which
roughly represents raw forwarding capacity. In theory, a fabric
should be able to support any number of edge designs including
different addressing schemes and policy models. The reverse should
also be true; that is, a given edge design should be able to take
advantage of any fabric regardless of how it was implemented
internally.

The design of a modern router/switch chassis is a reasonably
good analogy for an SDN architecture that includes a fabric. In
a chassis, the line cards contain most of the intelligence and they
are interconnected by a relatively dumb, but very high bandwidth,
backplane. Likewise, in an SDN architecture with a fabric, the edge
will implement the network policy and manage end-host addressing,
while the fabric will effectively interconnect the edge as fast and
cheaply as possible.

The chassis backplane therefore provides a reasonable starting

extending SDN with MPLS inspiration

three components: hosts, edge (ingress, egress),
fabric (core)

 58

between practicality (support matching on standard headers)
and generality (match on all headers). However, this requires
switch hardware to support lookups over hundreds of bits;
in contrast, core forwarding with MPLS need only match
over some tens of bits. Thus, with respect to the forwarding
hardware alone, an OpenFlow switch is clearly far from the
simplest design achievable.

• Second, it does not provide sufficient flexibility. We expect
host requirements to continue to evolve, leading to increasing
generality in the Host-Network interface, which in turn means
increasing the generality in the matching allowed and the
actions supported. In the current OpenFlow design paradigm,
this additional generality must be present on every switch. It
is inevitable that, in OpenFlow’s attempt to find a sweet spot
in the practicality vs generality tradeoff, needing functionality
to be present on every switch will bias the decision towards a
more limited feature set, reducing OpenFlow’s generality.

• Third, it unnecessarily couples the host requirements to the
network core behavior. This point is similar to but more
general than the point above. If there is a change in the
external network protocols (e.g., switching from IPv4 to IPv6)
which necessitates a change in the matching behavior (because
the matching must be done over different fields), this requires
a change in the packet matching even in the network core.

Thus, our goal is to extend the SDN model in a way that avoids
these limitations yet still retains SDN’s great control plane flexibility.
To this end, it must retain its programmatic control plane interface
(so that it provides a general Operator-Network interface), while
cleanly distinguishing between the Host-Network and Packet-Switch
interfaces (as is done in MPLS). We now describe such a design.

3 Extending SDN

3.1 Overview

In this section we explore how the SDN architectural framework
might be extended to better meet the goals listed in the introduction.
Our proposal is centered on the introduction of a new conceptual
component which we call the “network fabric”. While a common
term, for our purposes we limit the definition to refer to a collection
of forwarding elements whose primary purpose is packet transport.
Under this definition, a network fabric does not provide more
complex network services such as filtering or isolation.

The network then has three kinds of components (see Figure
1): hosts, which act as sources and destinations of packets; edge
switches, which serve as both ingress and egress elements; and the
core fabric. The fabric and the edge are controlled by (logically)
separate controllers, with the edge responsible for complex network
services while the fabric only provides basic packet transport. The
edge controller handles the Operator-Network interface; the ingress
edge switch, along with its controller, handle the Host-Network
interface; and the switches in the fabric are where the Packet-Switch
interface is exercised.

The idea of designing a network around a fabric is well understood
within the community. In particular, there are many examples of
limiting the intelligence to the network edge and keeping the core
simple.4 Thus, our goal is not to claim that a network fabric is
4This is commonly done for example in datacenters where
connectivity is provided by a CLOS topology running an IGP and
ECMP. It is also reflected in WANs where interdomain policies are
implemented at the provider edge feeding packets into a simpler
MPLS core providing connectivity across the operator network.

Fabric
Elements

Fabric Controller

Src
Host

Dst
Host

Edge Controller

Ingress
Edge Switch

Egress
Edge Switch

Figure 1: The source host sends a packet to an edge switch, which
after providing network services, sends it across the fabric for the
egress switch to deliver it to the destination host. Neither host sees
any internals of the fabric. The control planes of the edge and fabric
are similarly decoupled.

a new concept but rather we believe it should be included as an
architectural building block within SDN. We now identify the key
properties for these fabrics.

Separation of Forwarding. In order for a fabric to remain decou-
pled from the edge it should provide a minimal set of forwarding
primitives without exposing any internal forwarding mechanisms
that would be visible from the end system if the fabric were
replaced. We describe this in more detail below but we believe
it is particularly important that external addresses are not used in
forwarding decisions within the fabric both to simplify the fabric
forwarding elements, but also to allow for independent evolution of
fabric and edge.

Separation of Control. While there are multiple reasons to keep
the fabric and the edge’s control planes separate, the one we would
like to focus on is that they are solving two different problems. The
fabric is responsible for packet transport across the network, while
the edge is responsible for providing more semantically rich services
such as network security, isolation, and mobility. Separating the
control planes allows them each to evolve separately, focusing on
the specifics of the problem. Indeed, a good fabric should be able
to support any number of intelligent edges (even concurrently) and
vice versa.

Note that fabrics offer some of the same benefits as SDN.
In particular, if the fabric interfaces are clearly defined and
standardized, then fabrics offer vendor independence, and (as we
describe in more detail later) limiting the function of the fabric to
forwarding enables simpler switch implementations.

3.2 Fabric Service Model

Under our proposed model, a fabric is a system component which
roughly represents raw forwarding capacity. In theory, a fabric
should be able to support any number of edge designs including
different addressing schemes and policy models. The reverse should
also be true; that is, a given edge design should be able to take
advantage of any fabric regardless of how it was implemented
internally.

The design of a modern router/switch chassis is a reasonably
good analogy for an SDN architecture that includes a fabric. In
a chassis, the line cards contain most of the intelligence and they
are interconnected by a relatively dumb, but very high bandwidth,
backplane. Likewise, in an SDN architecture with a fabric, the edge
will implement the network policy and manage end-host addressing,
while the fabric will effectively interconnect the edge as fast and
cheaply as possible.

The chassis backplane therefore provides a reasonable starting

extending SDN with MPLS inspiration

host
-generator and destination of traffic

 59

between practicality (support matching on standard headers)
and generality (match on all headers). However, this requires
switch hardware to support lookups over hundreds of bits;
in contrast, core forwarding with MPLS need only match
over some tens of bits. Thus, with respect to the forwarding
hardware alone, an OpenFlow switch is clearly far from the
simplest design achievable.

• Second, it does not provide sufficient flexibility. We expect
host requirements to continue to evolve, leading to increasing
generality in the Host-Network interface, which in turn means
increasing the generality in the matching allowed and the
actions supported. In the current OpenFlow design paradigm,
this additional generality must be present on every switch. It
is inevitable that, in OpenFlow’s attempt to find a sweet spot
in the practicality vs generality tradeoff, needing functionality
to be present on every switch will bias the decision towards a
more limited feature set, reducing OpenFlow’s generality.

• Third, it unnecessarily couples the host requirements to the
network core behavior. This point is similar to but more
general than the point above. If there is a change in the
external network protocols (e.g., switching from IPv4 to IPv6)
which necessitates a change in the matching behavior (because
the matching must be done over different fields), this requires
a change in the packet matching even in the network core.

Thus, our goal is to extend the SDN model in a way that avoids
these limitations yet still retains SDN’s great control plane flexibility.
To this end, it must retain its programmatic control plane interface
(so that it provides a general Operator-Network interface), while
cleanly distinguishing between the Host-Network and Packet-Switch
interfaces (as is done in MPLS). We now describe such a design.

3 Extending SDN

3.1 Overview

In this section we explore how the SDN architectural framework
might be extended to better meet the goals listed in the introduction.
Our proposal is centered on the introduction of a new conceptual
component which we call the “network fabric”. While a common
term, for our purposes we limit the definition to refer to a collection
of forwarding elements whose primary purpose is packet transport.
Under this definition, a network fabric does not provide more
complex network services such as filtering or isolation.

The network then has three kinds of components (see Figure
1): hosts, which act as sources and destinations of packets; edge
switches, which serve as both ingress and egress elements; and the
core fabric. The fabric and the edge are controlled by (logically)
separate controllers, with the edge responsible for complex network
services while the fabric only provides basic packet transport. The
edge controller handles the Operator-Network interface; the ingress
edge switch, along with its controller, handle the Host-Network
interface; and the switches in the fabric are where the Packet-Switch
interface is exercised.

The idea of designing a network around a fabric is well understood
within the community. In particular, there are many examples of
limiting the intelligence to the network edge and keeping the core
simple.4 Thus, our goal is not to claim that a network fabric is
4This is commonly done for example in datacenters where
connectivity is provided by a CLOS topology running an IGP and
ECMP. It is also reflected in WANs where interdomain policies are
implemented at the provider edge feeding packets into a simpler
MPLS core providing connectivity across the operator network.

Fabric
Elements

Fabric Controller

Src
Host

Dst
Host

Edge Controller

Ingress
Edge Switch

Egress
Edge Switch

Figure 1: The source host sends a packet to an edge switch, which
after providing network services, sends it across the fabric for the
egress switch to deliver it to the destination host. Neither host sees
any internals of the fabric. The control planes of the edge and fabric
are similarly decoupled.

a new concept but rather we believe it should be included as an
architectural building block within SDN. We now identify the key
properties for these fabrics.

Separation of Forwarding. In order for a fabric to remain decou-
pled from the edge it should provide a minimal set of forwarding
primitives without exposing any internal forwarding mechanisms
that would be visible from the end system if the fabric were
replaced. We describe this in more detail below but we believe
it is particularly important that external addresses are not used in
forwarding decisions within the fabric both to simplify the fabric
forwarding elements, but also to allow for independent evolution of
fabric and edge.

Separation of Control. While there are multiple reasons to keep
the fabric and the edge’s control planes separate, the one we would
like to focus on is that they are solving two different problems. The
fabric is responsible for packet transport across the network, while
the edge is responsible for providing more semantically rich services
such as network security, isolation, and mobility. Separating the
control planes allows them each to evolve separately, focusing on
the specifics of the problem. Indeed, a good fabric should be able
to support any number of intelligent edges (even concurrently) and
vice versa.

Note that fabrics offer some of the same benefits as SDN.
In particular, if the fabric interfaces are clearly defined and
standardized, then fabrics offer vendor independence, and (as we
describe in more detail later) limiting the function of the fabric to
forwarding enables simpler switch implementations.

3.2 Fabric Service Model

Under our proposed model, a fabric is a system component which
roughly represents raw forwarding capacity. In theory, a fabric
should be able to support any number of edge designs including
different addressing schemes and policy models. The reverse should
also be true; that is, a given edge design should be able to take
advantage of any fabric regardless of how it was implemented
internally.

The design of a modern router/switch chassis is a reasonably
good analogy for an SDN architecture that includes a fabric. In
a chassis, the line cards contain most of the intelligence and they
are interconnected by a relatively dumb, but very high bandwidth,
backplane. Likewise, in an SDN architecture with a fabric, the edge
will implement the network policy and manage end-host addressing,
while the fabric will effectively interconnect the edge as fast and
cheaply as possible.

The chassis backplane therefore provides a reasonable starting

extending SDN with MPLS inspiration

edge
-(ingress + edge controller) provide the host-network

interface
-edge controller provides operator-network interface

 60

between practicality (support matching on standard headers)
and generality (match on all headers). However, this requires
switch hardware to support lookups over hundreds of bits;
in contrast, core forwarding with MPLS need only match
over some tens of bits. Thus, with respect to the forwarding
hardware alone, an OpenFlow switch is clearly far from the
simplest design achievable.

• Second, it does not provide sufficient flexibility. We expect
host requirements to continue to evolve, leading to increasing
generality in the Host-Network interface, which in turn means
increasing the generality in the matching allowed and the
actions supported. In the current OpenFlow design paradigm,
this additional generality must be present on every switch. It
is inevitable that, in OpenFlow’s attempt to find a sweet spot
in the practicality vs generality tradeoff, needing functionality
to be present on every switch will bias the decision towards a
more limited feature set, reducing OpenFlow’s generality.

• Third, it unnecessarily couples the host requirements to the
network core behavior. This point is similar to but more
general than the point above. If there is a change in the
external network protocols (e.g., switching from IPv4 to IPv6)
which necessitates a change in the matching behavior (because
the matching must be done over different fields), this requires
a change in the packet matching even in the network core.

Thus, our goal is to extend the SDN model in a way that avoids
these limitations yet still retains SDN’s great control plane flexibility.
To this end, it must retain its programmatic control plane interface
(so that it provides a general Operator-Network interface), while
cleanly distinguishing between the Host-Network and Packet-Switch
interfaces (as is done in MPLS). We now describe such a design.

3 Extending SDN

3.1 Overview

In this section we explore how the SDN architectural framework
might be extended to better meet the goals listed in the introduction.
Our proposal is centered on the introduction of a new conceptual
component which we call the “network fabric”. While a common
term, for our purposes we limit the definition to refer to a collection
of forwarding elements whose primary purpose is packet transport.
Under this definition, a network fabric does not provide more
complex network services such as filtering or isolation.

The network then has three kinds of components (see Figure
1): hosts, which act as sources and destinations of packets; edge
switches, which serve as both ingress and egress elements; and the
core fabric. The fabric and the edge are controlled by (logically)
separate controllers, with the edge responsible for complex network
services while the fabric only provides basic packet transport. The
edge controller handles the Operator-Network interface; the ingress
edge switch, along with its controller, handle the Host-Network
interface; and the switches in the fabric are where the Packet-Switch
interface is exercised.

The idea of designing a network around a fabric is well understood
within the community. In particular, there are many examples of
limiting the intelligence to the network edge and keeping the core
simple.4 Thus, our goal is not to claim that a network fabric is
4This is commonly done for example in datacenters where
connectivity is provided by a CLOS topology running an IGP and
ECMP. It is also reflected in WANs where interdomain policies are
implemented at the provider edge feeding packets into a simpler
MPLS core providing connectivity across the operator network.

Fabric
Elements

Fabric Controller

Src
Host

Dst
Host

Edge Controller

Ingress
Edge Switch

Egress
Edge Switch

Figure 1: The source host sends a packet to an edge switch, which
after providing network services, sends it across the fabric for the
egress switch to deliver it to the destination host. Neither host sees
any internals of the fabric. The control planes of the edge and fabric
are similarly decoupled.

a new concept but rather we believe it should be included as an
architectural building block within SDN. We now identify the key
properties for these fabrics.

Separation of Forwarding. In order for a fabric to remain decou-
pled from the edge it should provide a minimal set of forwarding
primitives without exposing any internal forwarding mechanisms
that would be visible from the end system if the fabric were
replaced. We describe this in more detail below but we believe
it is particularly important that external addresses are not used in
forwarding decisions within the fabric both to simplify the fabric
forwarding elements, but also to allow for independent evolution of
fabric and edge.

Separation of Control. While there are multiple reasons to keep
the fabric and the edge’s control planes separate, the one we would
like to focus on is that they are solving two different problems. The
fabric is responsible for packet transport across the network, while
the edge is responsible for providing more semantically rich services
such as network security, isolation, and mobility. Separating the
control planes allows them each to evolve separately, focusing on
the specifics of the problem. Indeed, a good fabric should be able
to support any number of intelligent edges (even concurrently) and
vice versa.

Note that fabrics offer some of the same benefits as SDN.
In particular, if the fabric interfaces are clearly defined and
standardized, then fabrics offer vendor independence, and (as we
describe in more detail later) limiting the function of the fabric to
forwarding enables simpler switch implementations.

3.2 Fabric Service Model

Under our proposed model, a fabric is a system component which
roughly represents raw forwarding capacity. In theory, a fabric
should be able to support any number of edge designs including
different addressing schemes and policy models. The reverse should
also be true; that is, a given edge design should be able to take
advantage of any fabric regardless of how it was implemented
internally.

The design of a modern router/switch chassis is a reasonably
good analogy for an SDN architecture that includes a fabric. In
a chassis, the line cards contain most of the intelligence and they
are interconnected by a relatively dumb, but very high bandwidth,
backplane. Likewise, in an SDN architecture with a fabric, the edge
will implement the network policy and manage end-host addressing,
while the fabric will effectively interconnect the edge as fast and
cheaply as possible.

The chassis backplane therefore provides a reasonable starting

extending SDN with MPLS inspiration

fabric
-packet-switch interface (packet transfer alone)

 61

between practicality (support matching on standard headers)
and generality (match on all headers). However, this requires
switch hardware to support lookups over hundreds of bits;
in contrast, core forwarding with MPLS need only match
over some tens of bits. Thus, with respect to the forwarding
hardware alone, an OpenFlow switch is clearly far from the
simplest design achievable.

• Second, it does not provide sufficient flexibility. We expect
host requirements to continue to evolve, leading to increasing
generality in the Host-Network interface, which in turn means
increasing the generality in the matching allowed and the
actions supported. In the current OpenFlow design paradigm,
this additional generality must be present on every switch. It
is inevitable that, in OpenFlow’s attempt to find a sweet spot
in the practicality vs generality tradeoff, needing functionality
to be present on every switch will bias the decision towards a
more limited feature set, reducing OpenFlow’s generality.

• Third, it unnecessarily couples the host requirements to the
network core behavior. This point is similar to but more
general than the point above. If there is a change in the
external network protocols (e.g., switching from IPv4 to IPv6)
which necessitates a change in the matching behavior (because
the matching must be done over different fields), this requires
a change in the packet matching even in the network core.

Thus, our goal is to extend the SDN model in a way that avoids
these limitations yet still retains SDN’s great control plane flexibility.
To this end, it must retain its programmatic control plane interface
(so that it provides a general Operator-Network interface), while
cleanly distinguishing between the Host-Network and Packet-Switch
interfaces (as is done in MPLS). We now describe such a design.

3 Extending SDN

3.1 Overview

In this section we explore how the SDN architectural framework
might be extended to better meet the goals listed in the introduction.
Our proposal is centered on the introduction of a new conceptual
component which we call the “network fabric”. While a common
term, for our purposes we limit the definition to refer to a collection
of forwarding elements whose primary purpose is packet transport.
Under this definition, a network fabric does not provide more
complex network services such as filtering or isolation.

The network then has three kinds of components (see Figure
1): hosts, which act as sources and destinations of packets; edge
switches, which serve as both ingress and egress elements; and the
core fabric. The fabric and the edge are controlled by (logically)
separate controllers, with the edge responsible for complex network
services while the fabric only provides basic packet transport. The
edge controller handles the Operator-Network interface; the ingress
edge switch, along with its controller, handle the Host-Network
interface; and the switches in the fabric are where the Packet-Switch
interface is exercised.

The idea of designing a network around a fabric is well understood
within the community. In particular, there are many examples of
limiting the intelligence to the network edge and keeping the core
simple.4 Thus, our goal is not to claim that a network fabric is
4This is commonly done for example in datacenters where
connectivity is provided by a CLOS topology running an IGP and
ECMP. It is also reflected in WANs where interdomain policies are
implemented at the provider edge feeding packets into a simpler
MPLS core providing connectivity across the operator network.

Fabric
Elements

Fabric Controller

Src
Host

Dst
Host

Edge Controller

Ingress
Edge Switch

Egress
Edge Switch

Figure 1: The source host sends a packet to an edge switch, which
after providing network services, sends it across the fabric for the
egress switch to deliver it to the destination host. Neither host sees
any internals of the fabric. The control planes of the edge and fabric
are similarly decoupled.

a new concept but rather we believe it should be included as an
architectural building block within SDN. We now identify the key
properties for these fabrics.

Separation of Forwarding. In order for a fabric to remain decou-
pled from the edge it should provide a minimal set of forwarding
primitives without exposing any internal forwarding mechanisms
that would be visible from the end system if the fabric were
replaced. We describe this in more detail below but we believe
it is particularly important that external addresses are not used in
forwarding decisions within the fabric both to simplify the fabric
forwarding elements, but also to allow for independent evolution of
fabric and edge.

Separation of Control. While there are multiple reasons to keep
the fabric and the edge’s control planes separate, the one we would
like to focus on is that they are solving two different problems. The
fabric is responsible for packet transport across the network, while
the edge is responsible for providing more semantically rich services
such as network security, isolation, and mobility. Separating the
control planes allows them each to evolve separately, focusing on
the specifics of the problem. Indeed, a good fabric should be able
to support any number of intelligent edges (even concurrently) and
vice versa.

Note that fabrics offer some of the same benefits as SDN.
In particular, if the fabric interfaces are clearly defined and
standardized, then fabrics offer vendor independence, and (as we
describe in more detail later) limiting the function of the fabric to
forwarding enables simpler switch implementations.

3.2 Fabric Service Model

Under our proposed model, a fabric is a system component which
roughly represents raw forwarding capacity. In theory, a fabric
should be able to support any number of edge designs including
different addressing schemes and policy models. The reverse should
also be true; that is, a given edge design should be able to take
advantage of any fabric regardless of how it was implemented
internally.

The design of a modern router/switch chassis is a reasonably
good analogy for an SDN architecture that includes a fabric. In
a chassis, the line cards contain most of the intelligence and they
are interconnected by a relatively dumb, but very high bandwidth,
backplane. Likewise, in an SDN architecture with a fabric, the edge
will implement the network policy and manage end-host addressing,
while the fabric will effectively interconnect the edge as fast and
cheaply as possible.

The chassis backplane therefore provides a reasonable starting

extending SDN with MPLS inspiration

edge implements network policy and manage end-
host addressing while the fabric interconnects as
fast and cheaply as possible

 62

between practicality (support matching on standard headers)
and generality (match on all headers). However, this requires
switch hardware to support lookups over hundreds of bits;
in contrast, core forwarding with MPLS need only match
over some tens of bits. Thus, with respect to the forwarding
hardware alone, an OpenFlow switch is clearly far from the
simplest design achievable.

• Second, it does not provide sufficient flexibility. We expect
host requirements to continue to evolve, leading to increasing
generality in the Host-Network interface, which in turn means
increasing the generality in the matching allowed and the
actions supported. In the current OpenFlow design paradigm,
this additional generality must be present on every switch. It
is inevitable that, in OpenFlow’s attempt to find a sweet spot
in the practicality vs generality tradeoff, needing functionality
to be present on every switch will bias the decision towards a
more limited feature set, reducing OpenFlow’s generality.

• Third, it unnecessarily couples the host requirements to the
network core behavior. This point is similar to but more
general than the point above. If there is a change in the
external network protocols (e.g., switching from IPv4 to IPv6)
which necessitates a change in the matching behavior (because
the matching must be done over different fields), this requires
a change in the packet matching even in the network core.

Thus, our goal is to extend the SDN model in a way that avoids
these limitations yet still retains SDN’s great control plane flexibility.
To this end, it must retain its programmatic control plane interface
(so that it provides a general Operator-Network interface), while
cleanly distinguishing between the Host-Network and Packet-Switch
interfaces (as is done in MPLS). We now describe such a design.

3 Extending SDN

3.1 Overview

In this section we explore how the SDN architectural framework
might be extended to better meet the goals listed in the introduction.
Our proposal is centered on the introduction of a new conceptual
component which we call the “network fabric”. While a common
term, for our purposes we limit the definition to refer to a collection
of forwarding elements whose primary purpose is packet transport.
Under this definition, a network fabric does not provide more
complex network services such as filtering or isolation.

The network then has three kinds of components (see Figure
1): hosts, which act as sources and destinations of packets; edge
switches, which serve as both ingress and egress elements; and the
core fabric. The fabric and the edge are controlled by (logically)
separate controllers, with the edge responsible for complex network
services while the fabric only provides basic packet transport. The
edge controller handles the Operator-Network interface; the ingress
edge switch, along with its controller, handle the Host-Network
interface; and the switches in the fabric are where the Packet-Switch
interface is exercised.

The idea of designing a network around a fabric is well understood
within the community. In particular, there are many examples of
limiting the intelligence to the network edge and keeping the core
simple.4 Thus, our goal is not to claim that a network fabric is
4This is commonly done for example in datacenters where
connectivity is provided by a CLOS topology running an IGP and
ECMP. It is also reflected in WANs where interdomain policies are
implemented at the provider edge feeding packets into a simpler
MPLS core providing connectivity across the operator network.

Fabric
Elements

Fabric Controller

Src
Host

Dst
Host

Edge Controller

Ingress
Edge Switch

Egress
Edge Switch

Figure 1: The source host sends a packet to an edge switch, which
after providing network services, sends it across the fabric for the
egress switch to deliver it to the destination host. Neither host sees
any internals of the fabric. The control planes of the edge and fabric
are similarly decoupled.

a new concept but rather we believe it should be included as an
architectural building block within SDN. We now identify the key
properties for these fabrics.

Separation of Forwarding. In order for a fabric to remain decou-
pled from the edge it should provide a minimal set of forwarding
primitives without exposing any internal forwarding mechanisms
that would be visible from the end system if the fabric were
replaced. We describe this in more detail below but we believe
it is particularly important that external addresses are not used in
forwarding decisions within the fabric both to simplify the fabric
forwarding elements, but also to allow for independent evolution of
fabric and edge.

Separation of Control. While there are multiple reasons to keep
the fabric and the edge’s control planes separate, the one we would
like to focus on is that they are solving two different problems. The
fabric is responsible for packet transport across the network, while
the edge is responsible for providing more semantically rich services
such as network security, isolation, and mobility. Separating the
control planes allows them each to evolve separately, focusing on
the specifics of the problem. Indeed, a good fabric should be able
to support any number of intelligent edges (even concurrently) and
vice versa.

Note that fabrics offer some of the same benefits as SDN.
In particular, if the fabric interfaces are clearly defined and
standardized, then fabrics offer vendor independence, and (as we
describe in more detail later) limiting the function of the fabric to
forwarding enables simpler switch implementations.

3.2 Fabric Service Model

Under our proposed model, a fabric is a system component which
roughly represents raw forwarding capacity. In theory, a fabric
should be able to support any number of edge designs including
different addressing schemes and policy models. The reverse should
also be true; that is, a given edge design should be able to take
advantage of any fabric regardless of how it was implemented
internally.

The design of a modern router/switch chassis is a reasonably
good analogy for an SDN architecture that includes a fabric. In
a chassis, the line cards contain most of the intelligence and they
are interconnected by a relatively dumb, but very high bandwidth,
backplane. Likewise, in an SDN architecture with a fabric, the edge
will implement the network policy and manage end-host addressing,
while the fabric will effectively interconnect the edge as fast and
cheaply as possible.

The chassis backplane therefore provides a reasonable starting

