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-tags
- enabling diverse routing 

functionalities
- multicast
- more flexible routing
- scale routing with hierachy 

-tags
- are simple, well suited- to 

high-performance forwarding
- simplify integration of routers 

and anachronous transfer 
mode switches

tag switching =

 4

a label swapping 
forwarding paradigm

network layer routing

tag switching supports a high-quality, scalable routing system

+



control component
-various routing modules
- each provides a particular set 

of control functionalities
-maintain correct TFIBs 

among a group of 
interconnected tag 
switches

forwarding component
-uses tag information (tags) 

carried by the packets and 
the tag forwarding 
information base (TFIB) 
maintained by a tag switch 
to perform packet 
forwarding

tag switching =

 5



forwarding component



a tag switch uses the tag as an index in its TFIB
-<incoming tag, outgoing tag, outgoing interface …>

forwarding — label swapping
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a tag switch uses the tag as an index in its TFIB
-<incoming tag, outgoing tag, outgoing interface …>

forwarding — label swapping
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replaces the tag with the outgoing tag
-<incoming tag, outgoing tag, outgoing interface …>

forwarding — label swapping
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replaces the tag with the outgoing tag
-<incoming tag, outgoing tag, outgoing interface …>

forwarding — label swapping
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high forwarding performance
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label swapping enables high 
performance
-exact match algorithm using fixed 

length (20 bit) 
- fairly short tag as an index



high forwarding performance
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label swapping enables high 
performance
-exact match algorithm using fixed 

length (20 bit) 
- fairly short tag as an index }compare:

longest 
prefix
match



high forwarding performance
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label swapping enables high 
performance
-exact match algorithm using fixed 

length (20 bit) 
- fairly short tag as an index }compare:

longest 
prefix
match

simple enough to allow straightforward hardware implementation



decoupled from the control component

label swapping is independent of tag’s forwarding 
behavior
-same forwarding paradigm for unicast/multicast
- unicast: a unicast entry has a single <outgoing tag …> subentry
- multicast: … one or more sub-entries

label swapping is independent of network-layer
-same forwarding paradigm that supports a variety of 

network-layer protocols
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decoupled from the control component

label swapping is independent of tag’s forwarding 
behavior
-same forwarding paradigm for unicast/multicast
- unicast: a unicast entry has a single <outgoing tag …> subentry
- multicast: … one or more sub-entries

label swapping is independent of network-layer
-same forwarding paradigm that supports a variety of 

network-layer protocols
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new routing (control) functions can be added without disturbing the 
forwarding paradigm (or re-optimization)



control component



tag binding
binding between a tag and network-layer route
-create a tag binding
- allocating a tag, binding it to a route
-distribute the tag binding information among tag switches
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tag binding
binding between a tag and network-layer route
-create a tag binding
- allocating a tag, binding it to a route
-distribute the tag binding information among tag switches

distribution and maintenance of tag binding 
information is consistent with that of the 
associated routing information
-unicast: like OSPF
-multicast: periodic refresh
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tag binding examples
different tag binding scheme realizes different 
control functionalities
-destination-based routing
-flexible route (explicit routes)
-hierarchy of routing knowledge (BGP)
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destination-based routing
a switch allocates tags and binds them to address 
prefixes in its FIB
-downstream allocation
- the tag carried in a packet is generated and bound to a prefix by the 

switch at the downstream end of a link
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destination-based routing
downstream allocation
-the tag carried in a packet is generated and bound to a prefix 

by the switch at the downstream end of a link
-for each route in the (downstream) switch’s FIB
- allocates a (incoming) tag
- creates an entry in its TFIB
- advertises the binding between the (incoming) tag and the route to the 

(upstream) other adjacent switches
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destination-based routing
downstream allocation
-R1 receives 192.6/16 bound to tag <6>
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destination-based routing
R1 receives 192.6/16 with tag <6>
-creates an entry in TFIB, set outgoing tag to <6>
-generates a local tag <10>, set incoming tag to <10>
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destination-based routing
R1 receives 192.6/16 with tag <6>
-set outgoing tag to <6>, set incoming tag to <10>
-advertises 192.6/16 with <10> to others
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destination-based routing
similarly, R2, R3, R4
-receive tag binding, create TFIB entries, re-advertise
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destination-based routing
R5, router left to which is not a tag switch
-R5 also augments its FIB with outgoing tag <5>
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destination-based routing
a switch allocates tags and binds them to address 
prefixes in its FIB

 27

R4

R1

R5 R3

R2
incoming=100
outgoing=6

incoming=17
outgoing=5

incoming=6
outgoing=10

incoming=5
outgoing=10

incoming=10
outgoing=6

100 6 10

?

6

6

5 10



observation — routes aggregation

tag allocation is topology-driven
-if a tag switch forwards multiple packets to the same next-

hop neighbor
- only a single (incoming) tag is needed
-if a tag switch receives a set of routes associated with a single 

tag
- only a single (incoming) tag is needed

 28



scaling properties
tag switching used for destination-based routing
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# of tags a switch maintains # of routes in the FIB



scaling properties
tag switching used for destination-based routing
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# of tags a switch maintains # of routes in the FIB<<



scaling properties
tag switching used for destination-based routing

tag associated with routes, rather than flows
-much less state required
-no need to perform flow classicification
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scaling properties
tag switching used for destination-based routing

tag associated with routes, rather than flows
-much less state required
-no need to perform flow classicification
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# of tags a switch maintains # of routes in the FIB<<

more robust & stable destination-based routing in the presence of traffic 
pattern change



observation — normal destination-based 
forwarding still needed

when a tag is added to a previously untagged 
packet
-first hop router requires normal FIB forwarding

when a tag switch aggregates a set of routes into a 
single tag, but the routes do not share a common 
next hop
-again, look up the normal FIB
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flexible routing (explicit routes)
provides forwarding along the paths different from 
the path determined by destination-based routing
-install tag binding in tag switches that do not correspond to 

the destination based routing paths
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hierarchical routing (BGP)
Internet routing (BGP)
-2-tier routing scheme, collection of routing domains

tag switching
-decouples interior (intra-) and exterior (inter-) routing
-significantly reduces load on non-border switches
-only border maintains routing information for both interior/

exterior routing
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hierarchical routing (BGP)
tag stack
-a set of tags carried by a packet organized as a stack

operations
-label swapping as before: swap tag at the top
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hierarchical routing (BGP)
tag stack
-a set of tags carried by a packet organized as a stack

operations
-label swapping as before: swap tag at the top
-pop the stack
-push one more tag into the stack
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hierarchical routing (BGP)
when a packet is forwarded between two border 
tag switches in different domains
-the tag stack only has one tag, associated with the AS-level 

route
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hierarchical routing (BGP)
when a packet is forwarded between two border 
tag switches in different domains
-the tag stack only has one tag, associated with the AS-level 

route

when a packet is forwarded within a domain
-ingress router: 2nd tag associated with an interior route to 

the egress border is pushed
-internal switches: only operate on the 2nd top tag
-egress border: pop the top (2nd) tag, uses the original tag for 

tag switching to routers in another domain
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tag switching and forwarding equivalence 
classes (FEC)



forwarding table in a conventional router

forwarding equivalence classes (FEC)
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forwarding table
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next hop for )



forwarding table in a conventional router

forwarding equivalence classes (FEC)
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packets
classification
algorithm

an entry in the 
forwarding table
(determine the 
next hop for )

partitioning the universe of possible 
packets into a finite set of FECs



tag switching and FEC
if a pair of tag switches are adjacent, they must 
agree on assignments of tags to FEC 
-only the first tag switch on a tag switched path needs to 

perform the classification algorithm
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tag switching and FEC
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control functionalities 
revisited
-2 packets in the same FEC if 

they have the same prefix in the 
routing table that is the longest 
match

-2 packets in the same FEC if 
they are alike in some arbitrary 
manner by a policy

-2 packets in the same FEC if 
they have to traverse through a 
common tag switch

destination based
routing

flexible routing 
(explicit routes)

BGP



the power of tag switching, revisited

any number of different kind of FEC’s (control 
schemes) can co-exist in a single switch
-as long as the result partitions the packet space seen by the 

tag switch

different procedures can be used by different tag 
switches to classify packets
a hierarchy of tags can be used
-hierarchical routing
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migration strategies
inherently incrementally deployable
-tag switching performed between a pair of adjacent switches
-tag binding information distributed on a pairwise basis

transparent to legacy routers
-tag switch runs the same routing protocol, no impact on 

existing routers

incentive
-as more tag switches introduced — routers upgraded to 

enable tag switching, the scope of tag switching functionalities 
widens
- e.g., internal BGP routers -> hierarchical tag switching

 46



a tag switch uses the tag as an index in its TFIB
-<incoming tag, outgoing tag, outgoing interface …>

forwarding — label swapping
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Fabric: A Retrospective on 
Evolving SDN

http://yuba.stanford.edu/~casado/fabric.pdf

http://yuba.stanford.edu/~casado/fabric.pdf


many proposals towards a better network

MPLS
-simplifies hardware + improves control flexibility

SDN attempts to make further progress but 
suffers certain shortcomings
-can we overcome those shortcomings by adopting the 

insights underlying MPLS?
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an ideal network
hardware
-simple (inexpensive)
-vendor-neutral
- future proof: accommodate future innovation as much as 

possible

control
-flexible: meet future requirements as they arise
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review
original Internet, MPLS, SDN along two dimensions
-requirements
- interfaces
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requirements
two sources
-hosts
-operators

hosts
-want their packets to travel to a particular destination with 

some QoS requirement about the nature of the services 
these packets receive en-route to the destination

operators
-TE, tunneling, virtualization, isolation, …
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interfaces
places where control information pass between 
network entities
-host-network
- how hosts inform the network of their requirements
- e.g., packet header (destination address), …
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interfaces
places where control information pass between 
network entities
-host-network
- how hosts inform the network of their requirements
- e.g., packet header (destination address), …
-operator-network
- how operator informs the network of their requirements
- e.g., per-box configuration command
-packet-switch
- how a packet identifies itself to a switch
- e.g., packet header as an index into the forwarding table
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Original Internet VS. MPLS VS. SDN
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original 
Internet
MPLS

SDN

host-network
interface

destination
address
packet header
(inspected by
edge tag switch)
packet 
header
(Openflow)

operator-
network
interface
none

none

fully 
programmatic
interface
(network 
abstractions)

packet-switch
interface

destination
address
label (used
by internal 
tag switch)
packet
header
(Openflow)



shortcomings of SDN
not fulfill the promise of simple hardware
-Openflow far complex than the tens of bits MPLS

host generality expected to increas
-in turn means the generality of the host-network interface 

will increase, but the increased generality must also be 
present to every switch

unnecessary coupling the host requirements to the 
network core behavior
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extending SDN with MPLS inspiration

SDN architecture should incorporate “fabric”
-fabric is a transport element
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between practicality (support matching on standard headers)
and generality (match on all headers). However, this requires
switch hardware to support lookups over hundreds of bits;
in contrast, core forwarding with MPLS need only match
over some tens of bits. Thus, with respect to the forwarding
hardware alone, an OpenFlow switch is clearly far from the
simplest design achievable.

• Second, it does not provide sufficient flexibility. We expect
host requirements to continue to evolve, leading to increasing
generality in the Host-Network interface, which in turn means
increasing the generality in the matching allowed and the
actions supported. In the current OpenFlow design paradigm,
this additional generality must be present on every switch. It
is inevitable that, in OpenFlow’s attempt to find a sweet spot
in the practicality vs generality tradeoff, needing functionality
to be present on every switch will bias the decision towards a
more limited feature set, reducing OpenFlow’s generality.

• Third, it unnecessarily couples the host requirements to the
network core behavior. This point is similar to but more
general than the point above. If there is a change in the
external network protocols (e.g., switching from IPv4 to IPv6)
which necessitates a change in the matching behavior (because
the matching must be done over different fields), this requires
a change in the packet matching even in the network core.

Thus, our goal is to extend the SDN model in a way that avoids
these limitations yet still retains SDN’s great control plane flexibility.
To this end, it must retain its programmatic control plane interface
(so that it provides a general Operator-Network interface), while
cleanly distinguishing between the Host-Network and Packet-Switch
interfaces (as is done in MPLS). We now describe such a design.

3 Extending SDN

3.1 Overview

In this section we explore how the SDN architectural framework
might be extended to better meet the goals listed in the introduction.
Our proposal is centered on the introduction of a new conceptual
component which we call the “network fabric”. While a common
term, for our purposes we limit the definition to refer to a collection
of forwarding elements whose primary purpose is packet transport.
Under this definition, a network fabric does not provide more
complex network services such as filtering or isolation.

The network then has three kinds of components (see Figure
1): hosts, which act as sources and destinations of packets; edge
switches, which serve as both ingress and egress elements; and the
core fabric. The fabric and the edge are controlled by (logically)
separate controllers, with the edge responsible for complex network
services while the fabric only provides basic packet transport. The
edge controller handles the Operator-Network interface; the ingress
edge switch, along with its controller, handle the Host-Network
interface; and the switches in the fabric are where the Packet-Switch
interface is exercised.

The idea of designing a network around a fabric is well understood
within the community. In particular, there are many examples of
limiting the intelligence to the network edge and keeping the core
simple.4 Thus, our goal is not to claim that a network fabric is
4This is commonly done for example in datacenters where
connectivity is provided by a CLOS topology running an IGP and
ECMP. It is also reflected in WANs where interdomain policies are
implemented at the provider edge feeding packets into a simpler
MPLS core providing connectivity across the operator network.

Fabric 
Elements

Fabric Controller

Src
Host

Dst
Host

Edge Controller

Ingress 
Edge Switch

Egress 
Edge Switch

Figure 1: The source host sends a packet to an edge switch, which
after providing network services, sends it across the fabric for the
egress switch to deliver it to the destination host. Neither host sees
any internals of the fabric. The control planes of the edge and fabric
are similarly decoupled.

a new concept but rather we believe it should be included as an
architectural building block within SDN. We now identify the key
properties for these fabrics.

Separation of Forwarding. In order for a fabric to remain decou-
pled from the edge it should provide a minimal set of forwarding
primitives without exposing any internal forwarding mechanisms
that would be visible from the end system if the fabric were
replaced. We describe this in more detail below but we believe
it is particularly important that external addresses are not used in
forwarding decisions within the fabric both to simplify the fabric
forwarding elements, but also to allow for independent evolution of
fabric and edge.

Separation of Control. While there are multiple reasons to keep
the fabric and the edge’s control planes separate, the one we would
like to focus on is that they are solving two different problems. The
fabric is responsible for packet transport across the network, while
the edge is responsible for providing more semantically rich services
such as network security, isolation, and mobility. Separating the
control planes allows them each to evolve separately, focusing on
the specifics of the problem. Indeed, a good fabric should be able
to support any number of intelligent edges (even concurrently) and
vice versa.

Note that fabrics offer some of the same benefits as SDN.
In particular, if the fabric interfaces are clearly defined and
standardized, then fabrics offer vendor independence, and (as we
describe in more detail later) limiting the function of the fabric to
forwarding enables simpler switch implementations.

3.2 Fabric Service Model

Under our proposed model, a fabric is a system component which
roughly represents raw forwarding capacity. In theory, a fabric
should be able to support any number of edge designs including
different addressing schemes and policy models. The reverse should
also be true; that is, a given edge design should be able to take
advantage of any fabric regardless of how it was implemented
internally.

The design of a modern router/switch chassis is a reasonably
good analogy for an SDN architecture that includes a fabric. In
a chassis, the line cards contain most of the intelligence and they
are interconnected by a relatively dumb, but very high bandwidth,
backplane. Likewise, in an SDN architecture with a fabric, the edge
will implement the network policy and manage end-host addressing,
while the fabric will effectively interconnect the edge as fast and
cheaply as possible.

The chassis backplane therefore provides a reasonable starting



extending SDN with MPLS inspiration

three components: hosts, edge (ingress, egress), 
fabric (core)
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between practicality (support matching on standard headers)
and generality (match on all headers). However, this requires
switch hardware to support lookups over hundreds of bits;
in contrast, core forwarding with MPLS need only match
over some tens of bits. Thus, with respect to the forwarding
hardware alone, an OpenFlow switch is clearly far from the
simplest design achievable.

• Second, it does not provide sufficient flexibility. We expect
host requirements to continue to evolve, leading to increasing
generality in the Host-Network interface, which in turn means
increasing the generality in the matching allowed and the
actions supported. In the current OpenFlow design paradigm,
this additional generality must be present on every switch. It
is inevitable that, in OpenFlow’s attempt to find a sweet spot
in the practicality vs generality tradeoff, needing functionality
to be present on every switch will bias the decision towards a
more limited feature set, reducing OpenFlow’s generality.

• Third, it unnecessarily couples the host requirements to the
network core behavior. This point is similar to but more
general than the point above. If there is a change in the
external network protocols (e.g., switching from IPv4 to IPv6)
which necessitates a change in the matching behavior (because
the matching must be done over different fields), this requires
a change in the packet matching even in the network core.

Thus, our goal is to extend the SDN model in a way that avoids
these limitations yet still retains SDN’s great control plane flexibility.
To this end, it must retain its programmatic control plane interface
(so that it provides a general Operator-Network interface), while
cleanly distinguishing between the Host-Network and Packet-Switch
interfaces (as is done in MPLS). We now describe such a design.

3 Extending SDN

3.1 Overview

In this section we explore how the SDN architectural framework
might be extended to better meet the goals listed in the introduction.
Our proposal is centered on the introduction of a new conceptual
component which we call the “network fabric”. While a common
term, for our purposes we limit the definition to refer to a collection
of forwarding elements whose primary purpose is packet transport.
Under this definition, a network fabric does not provide more
complex network services such as filtering or isolation.

The network then has three kinds of components (see Figure
1): hosts, which act as sources and destinations of packets; edge
switches, which serve as both ingress and egress elements; and the
core fabric. The fabric and the edge are controlled by (logically)
separate controllers, with the edge responsible for complex network
services while the fabric only provides basic packet transport. The
edge controller handles the Operator-Network interface; the ingress
edge switch, along with its controller, handle the Host-Network
interface; and the switches in the fabric are where the Packet-Switch
interface is exercised.

The idea of designing a network around a fabric is well understood
within the community. In particular, there are many examples of
limiting the intelligence to the network edge and keeping the core
simple.4 Thus, our goal is not to claim that a network fabric is
4This is commonly done for example in datacenters where
connectivity is provided by a CLOS topology running an IGP and
ECMP. It is also reflected in WANs where interdomain policies are
implemented at the provider edge feeding packets into a simpler
MPLS core providing connectivity across the operator network.

Fabric 
Elements

Fabric Controller

Src
Host

Dst
Host

Edge Controller

Ingress 
Edge Switch

Egress 
Edge Switch

Figure 1: The source host sends a packet to an edge switch, which
after providing network services, sends it across the fabric for the
egress switch to deliver it to the destination host. Neither host sees
any internals of the fabric. The control planes of the edge and fabric
are similarly decoupled.

a new concept but rather we believe it should be included as an
architectural building block within SDN. We now identify the key
properties for these fabrics.

Separation of Forwarding. In order for a fabric to remain decou-
pled from the edge it should provide a minimal set of forwarding
primitives without exposing any internal forwarding mechanisms
that would be visible from the end system if the fabric were
replaced. We describe this in more detail below but we believe
it is particularly important that external addresses are not used in
forwarding decisions within the fabric both to simplify the fabric
forwarding elements, but also to allow for independent evolution of
fabric and edge.

Separation of Control. While there are multiple reasons to keep
the fabric and the edge’s control planes separate, the one we would
like to focus on is that they are solving two different problems. The
fabric is responsible for packet transport across the network, while
the edge is responsible for providing more semantically rich services
such as network security, isolation, and mobility. Separating the
control planes allows them each to evolve separately, focusing on
the specifics of the problem. Indeed, a good fabric should be able
to support any number of intelligent edges (even concurrently) and
vice versa.

Note that fabrics offer some of the same benefits as SDN.
In particular, if the fabric interfaces are clearly defined and
standardized, then fabrics offer vendor independence, and (as we
describe in more detail later) limiting the function of the fabric to
forwarding enables simpler switch implementations.

3.2 Fabric Service Model

Under our proposed model, a fabric is a system component which
roughly represents raw forwarding capacity. In theory, a fabric
should be able to support any number of edge designs including
different addressing schemes and policy models. The reverse should
also be true; that is, a given edge design should be able to take
advantage of any fabric regardless of how it was implemented
internally.

The design of a modern router/switch chassis is a reasonably
good analogy for an SDN architecture that includes a fabric. In
a chassis, the line cards contain most of the intelligence and they
are interconnected by a relatively dumb, but very high bandwidth,
backplane. Likewise, in an SDN architecture with a fabric, the edge
will implement the network policy and manage end-host addressing,
while the fabric will effectively interconnect the edge as fast and
cheaply as possible.

The chassis backplane therefore provides a reasonable starting
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host
-generator and destination of traffic
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between practicality (support matching on standard headers)
and generality (match on all headers). However, this requires
switch hardware to support lookups over hundreds of bits;
in contrast, core forwarding with MPLS need only match
over some tens of bits. Thus, with respect to the forwarding
hardware alone, an OpenFlow switch is clearly far from the
simplest design achievable.

• Second, it does not provide sufficient flexibility. We expect
host requirements to continue to evolve, leading to increasing
generality in the Host-Network interface, which in turn means
increasing the generality in the matching allowed and the
actions supported. In the current OpenFlow design paradigm,
this additional generality must be present on every switch. It
is inevitable that, in OpenFlow’s attempt to find a sweet spot
in the practicality vs generality tradeoff, needing functionality
to be present on every switch will bias the decision towards a
more limited feature set, reducing OpenFlow’s generality.

• Third, it unnecessarily couples the host requirements to the
network core behavior. This point is similar to but more
general than the point above. If there is a change in the
external network protocols (e.g., switching from IPv4 to IPv6)
which necessitates a change in the matching behavior (because
the matching must be done over different fields), this requires
a change in the packet matching even in the network core.

Thus, our goal is to extend the SDN model in a way that avoids
these limitations yet still retains SDN’s great control plane flexibility.
To this end, it must retain its programmatic control plane interface
(so that it provides a general Operator-Network interface), while
cleanly distinguishing between the Host-Network and Packet-Switch
interfaces (as is done in MPLS). We now describe such a design.

3 Extending SDN

3.1 Overview

In this section we explore how the SDN architectural framework
might be extended to better meet the goals listed in the introduction.
Our proposal is centered on the introduction of a new conceptual
component which we call the “network fabric”. While a common
term, for our purposes we limit the definition to refer to a collection
of forwarding elements whose primary purpose is packet transport.
Under this definition, a network fabric does not provide more
complex network services such as filtering or isolation.

The network then has three kinds of components (see Figure
1): hosts, which act as sources and destinations of packets; edge
switches, which serve as both ingress and egress elements; and the
core fabric. The fabric and the edge are controlled by (logically)
separate controllers, with the edge responsible for complex network
services while the fabric only provides basic packet transport. The
edge controller handles the Operator-Network interface; the ingress
edge switch, along with its controller, handle the Host-Network
interface; and the switches in the fabric are where the Packet-Switch
interface is exercised.

The idea of designing a network around a fabric is well understood
within the community. In particular, there are many examples of
limiting the intelligence to the network edge and keeping the core
simple.4 Thus, our goal is not to claim that a network fabric is
4This is commonly done for example in datacenters where
connectivity is provided by a CLOS topology running an IGP and
ECMP. It is also reflected in WANs where interdomain policies are
implemented at the provider edge feeding packets into a simpler
MPLS core providing connectivity across the operator network.

Fabric 
Elements

Fabric Controller

Src
Host

Dst
Host

Edge Controller

Ingress 
Edge Switch

Egress 
Edge Switch

Figure 1: The source host sends a packet to an edge switch, which
after providing network services, sends it across the fabric for the
egress switch to deliver it to the destination host. Neither host sees
any internals of the fabric. The control planes of the edge and fabric
are similarly decoupled.

a new concept but rather we believe it should be included as an
architectural building block within SDN. We now identify the key
properties for these fabrics.

Separation of Forwarding. In order for a fabric to remain decou-
pled from the edge it should provide a minimal set of forwarding
primitives without exposing any internal forwarding mechanisms
that would be visible from the end system if the fabric were
replaced. We describe this in more detail below but we believe
it is particularly important that external addresses are not used in
forwarding decisions within the fabric both to simplify the fabric
forwarding elements, but also to allow for independent evolution of
fabric and edge.

Separation of Control. While there are multiple reasons to keep
the fabric and the edge’s control planes separate, the one we would
like to focus on is that they are solving two different problems. The
fabric is responsible for packet transport across the network, while
the edge is responsible for providing more semantically rich services
such as network security, isolation, and mobility. Separating the
control planes allows them each to evolve separately, focusing on
the specifics of the problem. Indeed, a good fabric should be able
to support any number of intelligent edges (even concurrently) and
vice versa.

Note that fabrics offer some of the same benefits as SDN.
In particular, if the fabric interfaces are clearly defined and
standardized, then fabrics offer vendor independence, and (as we
describe in more detail later) limiting the function of the fabric to
forwarding enables simpler switch implementations.

3.2 Fabric Service Model

Under our proposed model, a fabric is a system component which
roughly represents raw forwarding capacity. In theory, a fabric
should be able to support any number of edge designs including
different addressing schemes and policy models. The reverse should
also be true; that is, a given edge design should be able to take
advantage of any fabric regardless of how it was implemented
internally.

The design of a modern router/switch chassis is a reasonably
good analogy for an SDN architecture that includes a fabric. In
a chassis, the line cards contain most of the intelligence and they
are interconnected by a relatively dumb, but very high bandwidth,
backplane. Likewise, in an SDN architecture with a fabric, the edge
will implement the network policy and manage end-host addressing,
while the fabric will effectively interconnect the edge as fast and
cheaply as possible.

The chassis backplane therefore provides a reasonable starting
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between practicality (support matching on standard headers)
and generality (match on all headers). However, this requires
switch hardware to support lookups over hundreds of bits;
in contrast, core forwarding with MPLS need only match
over some tens of bits. Thus, with respect to the forwarding
hardware alone, an OpenFlow switch is clearly far from the
simplest design achievable.

• Second, it does not provide sufficient flexibility. We expect
host requirements to continue to evolve, leading to increasing
generality in the Host-Network interface, which in turn means
increasing the generality in the matching allowed and the
actions supported. In the current OpenFlow design paradigm,
this additional generality must be present on every switch. It
is inevitable that, in OpenFlow’s attempt to find a sweet spot
in the practicality vs generality tradeoff, needing functionality
to be present on every switch will bias the decision towards a
more limited feature set, reducing OpenFlow’s generality.

• Third, it unnecessarily couples the host requirements to the
network core behavior. This point is similar to but more
general than the point above. If there is a change in the
external network protocols (e.g., switching from IPv4 to IPv6)
which necessitates a change in the matching behavior (because
the matching must be done over different fields), this requires
a change in the packet matching even in the network core.

Thus, our goal is to extend the SDN model in a way that avoids
these limitations yet still retains SDN’s great control plane flexibility.
To this end, it must retain its programmatic control plane interface
(so that it provides a general Operator-Network interface), while
cleanly distinguishing between the Host-Network and Packet-Switch
interfaces (as is done in MPLS). We now describe such a design.

3 Extending SDN

3.1 Overview

In this section we explore how the SDN architectural framework
might be extended to better meet the goals listed in the introduction.
Our proposal is centered on the introduction of a new conceptual
component which we call the “network fabric”. While a common
term, for our purposes we limit the definition to refer to a collection
of forwarding elements whose primary purpose is packet transport.
Under this definition, a network fabric does not provide more
complex network services such as filtering or isolation.

The network then has three kinds of components (see Figure
1): hosts, which act as sources and destinations of packets; edge
switches, which serve as both ingress and egress elements; and the
core fabric. The fabric and the edge are controlled by (logically)
separate controllers, with the edge responsible for complex network
services while the fabric only provides basic packet transport. The
edge controller handles the Operator-Network interface; the ingress
edge switch, along with its controller, handle the Host-Network
interface; and the switches in the fabric are where the Packet-Switch
interface is exercised.

The idea of designing a network around a fabric is well understood
within the community. In particular, there are many examples of
limiting the intelligence to the network edge and keeping the core
simple.4 Thus, our goal is not to claim that a network fabric is
4This is commonly done for example in datacenters where
connectivity is provided by a CLOS topology running an IGP and
ECMP. It is also reflected in WANs where interdomain policies are
implemented at the provider edge feeding packets into a simpler
MPLS core providing connectivity across the operator network.
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Figure 1: The source host sends a packet to an edge switch, which
after providing network services, sends it across the fabric for the
egress switch to deliver it to the destination host. Neither host sees
any internals of the fabric. The control planes of the edge and fabric
are similarly decoupled.

a new concept but rather we believe it should be included as an
architectural building block within SDN. We now identify the key
properties for these fabrics.

Separation of Forwarding. In order for a fabric to remain decou-
pled from the edge it should provide a minimal set of forwarding
primitives without exposing any internal forwarding mechanisms
that would be visible from the end system if the fabric were
replaced. We describe this in more detail below but we believe
it is particularly important that external addresses are not used in
forwarding decisions within the fabric both to simplify the fabric
forwarding elements, but also to allow for independent evolution of
fabric and edge.

Separation of Control. While there are multiple reasons to keep
the fabric and the edge’s control planes separate, the one we would
like to focus on is that they are solving two different problems. The
fabric is responsible for packet transport across the network, while
the edge is responsible for providing more semantically rich services
such as network security, isolation, and mobility. Separating the
control planes allows them each to evolve separately, focusing on
the specifics of the problem. Indeed, a good fabric should be able
to support any number of intelligent edges (even concurrently) and
vice versa.

Note that fabrics offer some of the same benefits as SDN.
In particular, if the fabric interfaces are clearly defined and
standardized, then fabrics offer vendor independence, and (as we
describe in more detail later) limiting the function of the fabric to
forwarding enables simpler switch implementations.

3.2 Fabric Service Model

Under our proposed model, a fabric is a system component which
roughly represents raw forwarding capacity. In theory, a fabric
should be able to support any number of edge designs including
different addressing schemes and policy models. The reverse should
also be true; that is, a given edge design should be able to take
advantage of any fabric regardless of how it was implemented
internally.

The design of a modern router/switch chassis is a reasonably
good analogy for an SDN architecture that includes a fabric. In
a chassis, the line cards contain most of the intelligence and they
are interconnected by a relatively dumb, but very high bandwidth,
backplane. Likewise, in an SDN architecture with a fabric, the edge
will implement the network policy and manage end-host addressing,
while the fabric will effectively interconnect the edge as fast and
cheaply as possible.

The chassis backplane therefore provides a reasonable starting
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between practicality (support matching on standard headers)
and generality (match on all headers). However, this requires
switch hardware to support lookups over hundreds of bits;
in contrast, core forwarding with MPLS need only match
over some tens of bits. Thus, with respect to the forwarding
hardware alone, an OpenFlow switch is clearly far from the
simplest design achievable.

• Second, it does not provide sufficient flexibility. We expect
host requirements to continue to evolve, leading to increasing
generality in the Host-Network interface, which in turn means
increasing the generality in the matching allowed and the
actions supported. In the current OpenFlow design paradigm,
this additional generality must be present on every switch. It
is inevitable that, in OpenFlow’s attempt to find a sweet spot
in the practicality vs generality tradeoff, needing functionality
to be present on every switch will bias the decision towards a
more limited feature set, reducing OpenFlow’s generality.

• Third, it unnecessarily couples the host requirements to the
network core behavior. This point is similar to but more
general than the point above. If there is a change in the
external network protocols (e.g., switching from IPv4 to IPv6)
which necessitates a change in the matching behavior (because
the matching must be done over different fields), this requires
a change in the packet matching even in the network core.

Thus, our goal is to extend the SDN model in a way that avoids
these limitations yet still retains SDN’s great control plane flexibility.
To this end, it must retain its programmatic control plane interface
(so that it provides a general Operator-Network interface), while
cleanly distinguishing between the Host-Network and Packet-Switch
interfaces (as is done in MPLS). We now describe such a design.

3 Extending SDN

3.1 Overview

In this section we explore how the SDN architectural framework
might be extended to better meet the goals listed in the introduction.
Our proposal is centered on the introduction of a new conceptual
component which we call the “network fabric”. While a common
term, for our purposes we limit the definition to refer to a collection
of forwarding elements whose primary purpose is packet transport.
Under this definition, a network fabric does not provide more
complex network services such as filtering or isolation.

The network then has three kinds of components (see Figure
1): hosts, which act as sources and destinations of packets; edge
switches, which serve as both ingress and egress elements; and the
core fabric. The fabric and the edge are controlled by (logically)
separate controllers, with the edge responsible for complex network
services while the fabric only provides basic packet transport. The
edge controller handles the Operator-Network interface; the ingress
edge switch, along with its controller, handle the Host-Network
interface; and the switches in the fabric are where the Packet-Switch
interface is exercised.

The idea of designing a network around a fabric is well understood
within the community. In particular, there are many examples of
limiting the intelligence to the network edge and keeping the core
simple.4 Thus, our goal is not to claim that a network fabric is
4This is commonly done for example in datacenters where
connectivity is provided by a CLOS topology running an IGP and
ECMP. It is also reflected in WANs where interdomain policies are
implemented at the provider edge feeding packets into a simpler
MPLS core providing connectivity across the operator network.
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Figure 1: The source host sends a packet to an edge switch, which
after providing network services, sends it across the fabric for the
egress switch to deliver it to the destination host. Neither host sees
any internals of the fabric. The control planes of the edge and fabric
are similarly decoupled.

a new concept but rather we believe it should be included as an
architectural building block within SDN. We now identify the key
properties for these fabrics.

Separation of Forwarding. In order for a fabric to remain decou-
pled from the edge it should provide a minimal set of forwarding
primitives without exposing any internal forwarding mechanisms
that would be visible from the end system if the fabric were
replaced. We describe this in more detail below but we believe
it is particularly important that external addresses are not used in
forwarding decisions within the fabric both to simplify the fabric
forwarding elements, but also to allow for independent evolution of
fabric and edge.

Separation of Control. While there are multiple reasons to keep
the fabric and the edge’s control planes separate, the one we would
like to focus on is that they are solving two different problems. The
fabric is responsible for packet transport across the network, while
the edge is responsible for providing more semantically rich services
such as network security, isolation, and mobility. Separating the
control planes allows them each to evolve separately, focusing on
the specifics of the problem. Indeed, a good fabric should be able
to support any number of intelligent edges (even concurrently) and
vice versa.

Note that fabrics offer some of the same benefits as SDN.
In particular, if the fabric interfaces are clearly defined and
standardized, then fabrics offer vendor independence, and (as we
describe in more detail later) limiting the function of the fabric to
forwarding enables simpler switch implementations.

3.2 Fabric Service Model

Under our proposed model, a fabric is a system component which
roughly represents raw forwarding capacity. In theory, a fabric
should be able to support any number of edge designs including
different addressing schemes and policy models. The reverse should
also be true; that is, a given edge design should be able to take
advantage of any fabric regardless of how it was implemented
internally.

The design of a modern router/switch chassis is a reasonably
good analogy for an SDN architecture that includes a fabric. In
a chassis, the line cards contain most of the intelligence and they
are interconnected by a relatively dumb, but very high bandwidth,
backplane. Likewise, in an SDN architecture with a fabric, the edge
will implement the network policy and manage end-host addressing,
while the fabric will effectively interconnect the edge as fast and
cheaply as possible.

The chassis backplane therefore provides a reasonable starting
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between practicality (support matching on standard headers)
and generality (match on all headers). However, this requires
switch hardware to support lookups over hundreds of bits;
in contrast, core forwarding with MPLS need only match
over some tens of bits. Thus, with respect to the forwarding
hardware alone, an OpenFlow switch is clearly far from the
simplest design achievable.

• Second, it does not provide sufficient flexibility. We expect
host requirements to continue to evolve, leading to increasing
generality in the Host-Network interface, which in turn means
increasing the generality in the matching allowed and the
actions supported. In the current OpenFlow design paradigm,
this additional generality must be present on every switch. It
is inevitable that, in OpenFlow’s attempt to find a sweet spot
in the practicality vs generality tradeoff, needing functionality
to be present on every switch will bias the decision towards a
more limited feature set, reducing OpenFlow’s generality.

• Third, it unnecessarily couples the host requirements to the
network core behavior. This point is similar to but more
general than the point above. If there is a change in the
external network protocols (e.g., switching from IPv4 to IPv6)
which necessitates a change in the matching behavior (because
the matching must be done over different fields), this requires
a change in the packet matching even in the network core.

Thus, our goal is to extend the SDN model in a way that avoids
these limitations yet still retains SDN’s great control plane flexibility.
To this end, it must retain its programmatic control plane interface
(so that it provides a general Operator-Network interface), while
cleanly distinguishing between the Host-Network and Packet-Switch
interfaces (as is done in MPLS). We now describe such a design.

3 Extending SDN

3.1 Overview

In this section we explore how the SDN architectural framework
might be extended to better meet the goals listed in the introduction.
Our proposal is centered on the introduction of a new conceptual
component which we call the “network fabric”. While a common
term, for our purposes we limit the definition to refer to a collection
of forwarding elements whose primary purpose is packet transport.
Under this definition, a network fabric does not provide more
complex network services such as filtering or isolation.

The network then has three kinds of components (see Figure
1): hosts, which act as sources and destinations of packets; edge
switches, which serve as both ingress and egress elements; and the
core fabric. The fabric and the edge are controlled by (logically)
separate controllers, with the edge responsible for complex network
services while the fabric only provides basic packet transport. The
edge controller handles the Operator-Network interface; the ingress
edge switch, along with its controller, handle the Host-Network
interface; and the switches in the fabric are where the Packet-Switch
interface is exercised.

The idea of designing a network around a fabric is well understood
within the community. In particular, there are many examples of
limiting the intelligence to the network edge and keeping the core
simple.4 Thus, our goal is not to claim that a network fabric is
4This is commonly done for example in datacenters where
connectivity is provided by a CLOS topology running an IGP and
ECMP. It is also reflected in WANs where interdomain policies are
implemented at the provider edge feeding packets into a simpler
MPLS core providing connectivity across the operator network.
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Figure 1: The source host sends a packet to an edge switch, which
after providing network services, sends it across the fabric for the
egress switch to deliver it to the destination host. Neither host sees
any internals of the fabric. The control planes of the edge and fabric
are similarly decoupled.

a new concept but rather we believe it should be included as an
architectural building block within SDN. We now identify the key
properties for these fabrics.

Separation of Forwarding. In order for a fabric to remain decou-
pled from the edge it should provide a minimal set of forwarding
primitives without exposing any internal forwarding mechanisms
that would be visible from the end system if the fabric were
replaced. We describe this in more detail below but we believe
it is particularly important that external addresses are not used in
forwarding decisions within the fabric both to simplify the fabric
forwarding elements, but also to allow for independent evolution of
fabric and edge.

Separation of Control. While there are multiple reasons to keep
the fabric and the edge’s control planes separate, the one we would
like to focus on is that they are solving two different problems. The
fabric is responsible for packet transport across the network, while
the edge is responsible for providing more semantically rich services
such as network security, isolation, and mobility. Separating the
control planes allows them each to evolve separately, focusing on
the specifics of the problem. Indeed, a good fabric should be able
to support any number of intelligent edges (even concurrently) and
vice versa.

Note that fabrics offer some of the same benefits as SDN.
In particular, if the fabric interfaces are clearly defined and
standardized, then fabrics offer vendor independence, and (as we
describe in more detail later) limiting the function of the fabric to
forwarding enables simpler switch implementations.

3.2 Fabric Service Model

Under our proposed model, a fabric is a system component which
roughly represents raw forwarding capacity. In theory, a fabric
should be able to support any number of edge designs including
different addressing schemes and policy models. The reverse should
also be true; that is, a given edge design should be able to take
advantage of any fabric regardless of how it was implemented
internally.

The design of a modern router/switch chassis is a reasonably
good analogy for an SDN architecture that includes a fabric. In
a chassis, the line cards contain most of the intelligence and they
are interconnected by a relatively dumb, but very high bandwidth,
backplane. Likewise, in an SDN architecture with a fabric, the edge
will implement the network policy and manage end-host addressing,
while the fabric will effectively interconnect the edge as fast and
cheaply as possible.

The chassis backplane therefore provides a reasonable starting


